
Beej’s Guide to Network Programming
Using Internet Sockets

Brian “Beej Jorgensen” Hall

v3.1.12, Copyright © July 17, 2024

Contents

1 Intro 1
1.1 Audience . 1
1.2 Platform and Compiler . 1
1.3 Official Homepage and Books For Sale . 1
1.4 Note for Solaris/SunOS Programmers . 2
1.5 Note for Windows Programmers . 2
1.6 Email Policy . 4
1.7 Mirroring . 4
1.8 Note for Translators . 4
1.9 Copyright, Distribution, and Legal . 4
1.10 Dedication . 5
1.11 Publishing Information . 5

2 What is a socket? 6
2.1 Two Types of Internet Sockets . 6
2.2 Low level Nonsense and Network Theory . 8

3 IP Addresses, structs, and Data Munging 10
3.1 IP Addresses, versions 4 and 6 . 10

3.1.1 Subnets . 11
3.1.2 Port Numbers . 12

3.2 Byte Order . 12
3.3 structs . 14
3.4 IP Addresses, Part Deux . 16

3.4.1 Private (Or Disconnected) Networks . 17

4 Jumping from IPv4 to IPv6 19

5 System Calls or Bust 21
5.1 getaddrinfo()—Prepare to launch! . 21
5.2 socket()—Get the File Descriptor! . 24
5.3 bind()—What port am I on? . 25
5.4 connect()—Hey, you! . 27
5.5 listen()—Will somebody please call me? . 28
5.6 accept()—“Thank you for calling port 3490.” . 29
5.7 send() and recv()—Talk to me, baby! . 30
5.8 sendto() and recvfrom()—Talk to me, DGRAM-style 31
5.9 close() and shutdown()—Get outta my face! . 32
5.10 getpeername()—Who are you? . 32
5.11 gethostname()—Who am I? . 33

6 Client-Server Background 34
6.1 A Simple Stream Server . 34
6.2 A Simple Stream Client . 37

i

CONTENTS ii

6.3 Datagram Sockets . 39

7 Slightly Advanced Techniques 44
7.1 Blocking . 44
7.2 poll()—Synchronous I/O Multiplexing . 45
7.3 select()—Synchronous I/O Multiplexing, Old School 51
7.4 Handling Partial send()s . 57
7.5 Serialization—How to Pack Data . 58
7.6 Son of Data Encapsulation . 72
7.7 Broadcast Packets—Hello, World! . 74

8 Common Questions 77

9 Man Pages 83
9.1 accept() . 83
9.2 bind() . 85
9.3 connect() . 87
9.4 close() . 88
9.5 getaddrinfo(), freeaddrinfo(), gai_strerror() 89
9.6 gethostname() . 92
9.7 gethostbyname(), gethostbyaddr() . 93
9.8 getnameinfo() . 95
9.9 getpeername() . 96
9.10 errno . 97
9.11 fcntl() . 99
9.12 htons(), htonl(), ntohs(), ntohl() . 99
9.13 inet_ntoa(), inet_aton(), inet_addr . 101
9.14 inet_ntop(), inet_pton() . 102
9.15 listen() . 104
9.16 perror(), strerror() . 105
9.17 poll() . 106
9.18 recv(), recvfrom() . 108
9.19 select() . 110
9.20 setsockopt(), getsockopt() . 112
9.21 send(), sendto() . 114
9.22 shutdown() . 116
9.23 socket() . 117
9.24 struct sockaddr and pals . 118

10 More References 121
10.1 Books . 121
10.2 Web References . 121
10.3 RFCs . 122

Chapter 1

Intro

Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out from the man
pages? Youwant to do cool Internet programming, but you don’t have time to wade through a gob of structs
trying to figure out if you have to call bind() before you connect(), etc., etc.

Well, guesswhat! I’ve already done this nasty business, and I’m dying to share the informationwith everyone!
You’ve come to the right place. This document should give the average competent C programmer the edge
s/he needs to get a grip on this networking noise.

And check it out: I’ve finally caught up with the future (just in the nick of time, too!) and have updated the
Guide for IPv6! Enjoy!

1.1 Audience
This document has been written as a tutorial, not a complete reference. It is probably at its best when read by
individuals who are just starting out with socket programming and are looking for a foothold. It is certainly
not the complete and total guide to sockets programming, by any means.

Hopefully, though, it’ll be just enough for those man pages to start making sense… :-)

1.2 Platform and Compiler
The code contained within this document was compiled on a Linux PC using Gnu’s gcc compiler. It should,
however, build on just about any platform that uses gcc. Naturally, this doesn’t apply if you’re programming
for Windows—see the section on Windows programming, below.

1.3 Official Homepage and Books For Sale
This official location of this document is:

• https://beej.us/guide/bgnet/

There you will also find example code and translations of the guide into various languages.

To buy nicely bound print copies (some call them “books”), visit:

• https://beej.us/guide/url/bgbuy

I’ll appreciate the purchase because it helps sustain my document-writing lifestyle!

1

https://beej.us/guide/bgnet/
https://beej.us/guide/url/bgbuy

Chapter 1. Intro 2

1.4 Note for Solaris/SunOS Programmers
When compiling for Solaris or SunOS, you need to specify some extra command-line switches for linking in
the proper libraries. In order to do this, simply add “-lnsl -lsocket -lresolv” to the end of the compile
command, like so:

$ cc -o server server.c -lnsl -lsocket -lresolv

If you still get errors, you could try further adding a -lxnet to the end of that command line. I don’t know
what that does, exactly, but some people seem to need it.

Another place that you might find problems is in the call to setsockopt(). The prototype differs from that
on my Linux box, so instead of:

int yes=1;

enter this:

char yes='1';

As I don’t have a Sun box, I haven’t tested any of the above information—it’s just what people have told me
through email.

1.5 Note for Windows Programmers
At this point in the guide, historically, I’ve done a bit of bagging on Windows, simply due to the fact that I
don’t like it very much. But I should really be fair and tell you that Windows has a huge install base and is
obviously a perfectly fine operating system.

They say absence makes the heart grow fonder, and in this case, I believe it to be true. (Or maybe it’s age.)
But what I can say is that after a decade-plus of not using Microsoft OSes for my personal work, I’m much
happier! As such, I can sit back and safely say, “Sure, feel free to use Windows!” …OK yes, it does make
me grit my teeth to say that.

So I still encourage you to try Linux1, BSD2, or some flavor of Unix, instead.

But people like what they like, and you Windows folk will be pleased to know that this information is gener-
ally applicable to you guys, with a few minor changes, if any.

Another thing that you should strongly consider is theWindows Subsystem for Linux3. This basically allows
you to install a Linux VM-ish thing on Windows 10. That will also definitely get you situated, and you’ll be
able to build and run these programs as is.

One cool thing you can do is install Cygwin4, which is a collection of Unix tools for Windows. I’ve heard
on the grapevine that doing so allows all these programs to compile unmodified, but I’ve never tried it.

But some of you might want to do things the Pure Windows Way. That’s very gutsy of you, and this is what
you have to do: run out and get Unix immediately! No, no—I’m kidding. I’m supposed to be Windows-
friendly(er) these days…

This is what you’ll have to do: first, ignore pretty much all of the system header files I mention in here.
Instead, include:

1https://www.linux.com/
2https://bsd.org/
3https://learn.microsoft.com/en-us/windows/wsl/
4https://cygwin.com/

https://www.linux.com/
https://bsd.org/
https://learn.microsoft.com/en-us/windows/wsl/
https://cygwin.com/

Chapter 1. Intro 3

#include <winsock2.h>
#include <ws2tcpip.h>

winsock2 is the “new” (circa 1994) version of the Windows socket library.

Unfortunately, if you include windows.h, it automatically pulls in the older winsock.h (version 1) header
file which conflicts with winsock2.h! Fun times.

So if you have to include windows.h, you need to define a macro to get it to not include the older header:

#define WIN32_LEAN_AND_MEAN // Say this...

#include <windows.h> // And now we can include that.
#include <winsock2.h> // And this.

Wait! You also have to make a call to WSAStartup() before doing anything else with the sockets library.
You pass in the Winsock version you desire to this function (e.g. version 2.2). And then you can check the
result to make sure that version is available.

The code to do that looks something like this:

1 #include <winsock2.h>
2

3 {
4 WSADATA wsaData;
5

6 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0) {
7 fprintf(stderr, "WSAStartup failed.\n");
8 exit(1);
9 }
10

11 if (LOBYTE(wsaData.wVersion) != 2 ||
12 HIBYTE(wsaData.wVersion) != 2)
13 {
14 fprintf(stderr,"Versiion 2.2 of Winsock is not available.\n");
15 WSACleanup();
16 exit(2);
17 }

Note that call to WSACleanup() in there. That’s what you want to call when you’re done with the Winsock
library.

You also have to tell your compiler to link in the Winsock library, called ws2_32.lib for Winsock 2. Under
VC++, this can be done through the Project menu, under Settings.... Click the Link tab, and look for
the box titled “Object/library modules”. Add “ws2_32.lib” (or whichever lib is your preference) to that list.

Or so I hear.

Once you do that, the rest of the examples in this tutorial should generally apply, with a few exceptions.
For one thing, you can’t use close() to close a socket—you need to use closesocket(), instead. Also,
select() only works with socket descriptors, not file descriptors (like 0 for stdin).

There is also a socket class that you can use, CSocketCheck your compiler’s help pages for more information.

To get more information about Winsock, check out the official page at Microsoft.

Finally, I hear thatWindows has no fork() system call which is, unfortunately, used in some of my examples.
Maybe you have to link in a POSIX library or something to get it to work, or you can use CreateProcess()

https://learn.microsoft.com/en-us/cpp/mfc/reference/csocket-class?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2

Chapter 1. Intro 4

instead. fork() takes no arguments, and CreateProcess() takes about 48 billion arguments. If you’re not
up to that, the CreateThread() is a little easier to digest…unfortunately a discussion about multithreading
is beyond the scope of this document. I can only talk about so much, you know!

Extra finally, Steven Mitchell has ported a number of the examples5 to Winsock. Check that stuff out.

1.6 Email Policy
I’m generally available to help out with email questions so feel free to write in, but I can’t guarantee a
response. I lead a pretty busy life and there are times when I just can’t answer a question you have. When
that’s the case, I usually just delete the message. It’s nothing personal; I just won’t ever have the time to give
the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your
question before mailing it and be sure to include any pertinent information (like platform, compiler, error
messages you’re getting, and anything else you think might help me troubleshoot), you’re much more likely
to get a response. For more pointers, read ESR’s document, How To Ask Questions The Smart Way6.

If you don’t get a response, hack on it some more, try to find the answer, and if it’s still elusive, then write
me again with the information you’ve found and hopefully it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that I fully
appreciate all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me to
hear that it is being used for good! :-) Thank you!

1.7 Mirroring
You are more than welcome to mirror this site, whether publicly or privately. If you publicly mirror the site
and want me to link to it from the main page, drop me a line at beej@beej.us.

1.8 Note for Translators
If you want to translate the guide into another language, write me at beej@beej.us and I’ll link to your
translation from the main page. Feel free to add your name and contact info to the translation.

This source markdown document uses UTF-8 encoding.

Please note the license restrictions in the Copyright, Distribution, and Legal section, below.

If you want me to host the translation, just ask. I’ll also link to it if you want to host it; either way is fine.

1.9 Copyright, Distribution, and Legal
Beej’s Guide to Network Programming is Copyright © 2019 Brian “Beej Jorgensen” Hall.

With specific exceptions for source code and translations, below, this work is licensed under the Creative
Commons Attribution- Noncommercial- No Derivative Works 3.0 License. To view a copy of this license,
visit

https://creativecommons.org/licenses/by-nc-nd/3.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
5https://www.tallyhawk.net/WinsockExamples/
6http://www.catb.org/~esr/faqs/smart-questions.html

https://www.tallyhawk.net/WinsockExamples/
http://www.catb.org/~esr/faqs/smart-questions.html
beej@beej.us
beej@beej.us
https://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1. Intro 5

One specific exception to the “No Derivative Works” portion of the license is as follows: this guide may
be freely translated into any language, provided the translation is accurate, and the guide is reprinted in its
entirety. The same license restrictions apply to the translation as to the original guide. The translation may
also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain, and is completely free
of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.

Unless otherwise mutually agreed by the parties in writing, the author offers the work as-is and makes no
representations or warranties of any kind concerning the work, express, implied, statutory or otherwise, in-
cluding, without limitation, warranties of title, merchantability, fitness for a particular purpose, noninfringe-
ment, or the absence of latent or other defects, accuracy, or the presence of absence of errors, whether or not
discoverable.

Except to the extent required by applicable law, in no event will the author be liable to you on any legal
theory for any special, incidental, consequential, punitive or exemplary damages arising out of the use of the
work, even if the author has been advised of the possibility of such damages.

Contact beej@beej.us for more information.

1.10 Dedication
Thanks to everyone who has helped in the past and future with me getting this guide written. And thank
you to all the people who produce the Free software and packages that I use to make the Guide: GNU,
Linux, Slackware, vim, Python, Inkscape, pandoc, many others. And finally a big thank-you to the literally
thousands of you who have written in with suggestions for improvements and words of encouragement.

I dedicate this guide to some of my biggest heroes and inpirators in the world of computers: Donald Knuth,
Bruce Schneier, W. Richard Stevens, and The Woz, my Readership, and the entire Free and Open Source
Software Community.

1.11 Publishing Information
This book is written in Markdown using the vim editor on an Arch Linux box loaded with GNU tools. The
cover “art” and diagrams are produced with Inkscape. TheMarkdown is converted to HTML and LaTex/PDF
by Python, Pandoc and XeLaTeX, using Liberation fonts. The toolchain is composed of 100% Free and Open
Source Software.

mailto:beej@beej.us

Chapter 2

What is a socket?

You hear talk of “sockets” all the time, and perhaps you are wondering just what they are exactly. Well,
they’re this: a way to speak to other programs using standard Unix file descriptors.

What?

Ok—you may have heard some Unix hacker state, “Jeez, everything in Unix is a file!” What that person
may have been talking about is the fact that when Unix programs do any sort of I/O, they do it by reading or
writing to a file descriptor. A file descriptor is simply an integer associated with an open file. But (and here’s
the catch), that file can be a network connection, a FIFO, a pipe, a terminal, a real on-the-disk file, or just
about anything else. Everything in Unix is a file! So when you want to communicate with another program
over the Internet you’re gonna do it through a file descriptor, you’d better believe it.

“Where do I get this file descriptor for network communication, Mr. Smarty-Pants?” is probably the last
question on your mind right now, but I’m going to answer it anyway: Youmake a call to the socket() system
routine. It returns the socket descriptor, and you communicate through it using the specialized send() and
recv() (man send, man recv) socket calls.

“But, hey!” you might be exclaiming right about now. “If it’s a file descriptor, why in the name of Neptune
can’t I just use the normal read() and write() calls to communicate through the socket?” The short answer
is, “You can!” The longer answer is, “You can, but send() and recv() offer much greater control over your
data transmission.”

What next? How about this: there are all kinds of sockets. There are DARPA Internet addresses (Internet
Sockets), path names on a local node (Unix Sockets), CCITT X.25 addresses (X.25 Sockets that you can
safely ignore), and probably many others depending on which Unix flavor you run. This document deals
only with the first: Internet Sockets.

2.1 Two Types of Internet Sockets
What’s this? There are two types of Internet sockets? Yes. Well, no. I’m lying. There are more, but I didn’t
want to scare you. I’m only going to talk about two types here. Except for this sentence, where I’m going to
tell you that “Raw Sockets” are also very powerful and you should look them up.

All right, already. What are the two types? One is “Stream Sockets”; the other is “Datagram Sockets”,
which may hereafter be referred to as “SOCK_STREAM” and “SOCK_DGRAM”, respectively. Datagram sockets
are sometimes called “connectionless sockets”. (Though they can be connect()’d if you really want. See
connect(), below.)

Stream sockets are reliable two-way connected communication streams. If you output two items into the
socket in the order “1, 2”, they will arrive in the order “1, 2” at the opposite end. They will also be error-free.

6

Chapter 2. What is a socket? 7

I’m so certain, in fact, they will be error-free, that I’m just going to put my fingers in my ears and chant la
la la la if anyone tries to claim otherwise.

What uses stream sockets? Well, you may have heard of the telnet or ssh applications, yes? They use
stream sockets. All the characters you type need to arrive in the same order you type them, right? Also, web
browsers use the Hypertext Transfer Protocol (HTTP) which uses stream sockets to get pages. Indeed, if you
telnet to a web site on port 80, and type “GET / HTTP/1.0” and hit RETURN twice, it’ll dump the HTML
back at you!

If you don’t have telnet installed and don’t want to install it, or your telnet is being picky about
connecting to clients, the guide comes with a telnet-like program called telnota. This should work
well for all the needs of the guide. (Note that telnet is actually a spec’d networking protocolb, and
telnot doesn’t implement this protocol at all.)

ahttps://beej.us/guide/bgnet/source/examples/telnot.c
bhttps://tools.ietf.org/html/rfc854

How do stream sockets achieve this high level of data transmission quality? They use a protocol called “The
Transmission Control Protocol”, otherwise known as “TCP” (see RFC 7931 for extremely detailed info on
TCP). TCP makes sure your data arrives sequentially and error-free. You may have heard “TCP” before as
the better half of “TCP/IP” where “IP” stands for “Internet Protocol” (see RFC 7912). IP deals primarily
with Internet routing and is not generally responsible for data integrity.

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal, here, anyway?
Why are they unreliable? Well, here are some facts: if you send a datagram, it may arrive. It may arrive out
of order. If it arrives, the data within the packet will be error-free.

Datagram sockets also use IP for routing, but they don’t use TCP; they use the “User Datagram Protocol”,
or “UDP” (see RFC 7683).

Why are they connectionless? Well, basically, it’s because you don’t have to maintain an open connection
as you do with stream sockets. You just build a packet, slap an IP header on it with destination information,
and send it out. No connection needed. They are generally used either when a TCP stack is unavailable or
when a few dropped packets here and there don’t mean the end of the Universe. Sample applications: tftp
(trivial file transfer protocol, a little brother to FTP), dhcpcd (a DHCP client), multiplayer games, streaming
audio, video conferencing, etc.

“Wait a minute! tftp and dhcpcd are used to transfer binary applications from one host to another! Data
can’t be lost if you expect the application to work when it arrives! What kind of dark magic is this?”

Well, my human friend, tftp and similar programs have their own protocol on top of UDP. For example,
the tftp protocol says that for each packet that gets sent, the recipient has to send back a packet that says,
“I got it!” (an “ACK” packet). If the sender of the original packet gets no reply in, say, five seconds, he’ll
re-transmit the packet until he finally gets an ACK. This acknowledgment procedure is very important when
implementing reliable SOCK_DGRAM applications.

For unreliable applications like games, audio, or video, you just ignore the dropped packets, or perhaps try to
cleverly compensate for them. (Quake players will know the manifestation this effect by the technical term:
accursed lag. The word “accursed”, in this case, represents any extremely profane utterance.)

Why would you use an unreliable underlying protocol? Two reasons: speed and speed. It’s way faster to
fire-and-forget than it is to keep track of what has arrived safely and make sure it’s in order and all that. If
you’re sending chat messages, TCP is great; if you’re sending 40 positional updates per second of the players
in the world, maybe it doesn’t matter so much if one or two get dropped, and UDP is a good choice.

1https://tools.ietf.org/html/rfc793
2https://tools.ietf.org/html/rfc791
3https://tools.ietf.org/html/rfc768

https://beej.us/guide/bgnet/source/examples/telnot.c
https://tools.ietf.org/html/rfc854
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc768

Chapter 2. What is a socket? 8

2.2 Low level Nonsense and Network Theory
Since I just mentioned layering of protocols, it’s time to talk about how networks really work, and to show
some examples of how SOCK_DGRAM packets are built. Practically, you can probably skip this section. It’s
good background, however.

Figure 2.1: Data Encapsulation.

Hey, kids, it’s time to learn about Data Encapsulation! This is very very important. It’s so important that
you might just learn about it if you take the networks course here at Chico State ;-). Basically, it says this:
a packet is born, the packet is wrapped (“encapsulated”) in a header (and rarely a footer) by the first protocol
(say, the TFTP protocol), then the whole thing (TFTP header included) is encapsulated again by the next
protocol (say, UDP), then again by the next (IP), then again by the final protocol on the hardware (physical)
layer (say, Ethernet).

When another computer receives the packet, the hardware strips the Ethernet header, the kernel strips the IP
and UDP headers, the TFTP program strips the TFTP header, and it finally has the data.

Now I can finally talk about the infamous Layered Network Model (aka “ISO/OSI”). This Network Model
describes a system of network functionality that has many advantages over other models. For instance, you
can write sockets programs that are exactly the same without caring how the data is physically transmitted
(serial, thin Ethernet, AUI, whatever) because programs on lower levels deal with it for you. The actual
network hardware and topology is transparent to the socket programmer.

Without any further ado, I’ll present the layers of the full-blown model. Remember this for network class
exams:

• Application
• Presentation
• Session
• Transport
• Network
• Data Link
• Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about as far from
the physical layer as you can imagine—it’s the place where users interact with the network.

Now, this model is so general you could probably use it as an automobile repair guide if you really wanted
to. A layered model more consistent with Unix might be:

• Application Layer (telnet, ftp, etc.)
• Host-to-Host Transport Layer (TCP, UDP)
• Internet Layer (IP and routing)
• Network Access Layer (Ethernet, wi-fi, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of the original
data.

See how much work there is in building a simple packet? Jeez! And you have to type in the packet headers
yourself using “cat”! Just kidding. All you have to do for stream sockets is send() the data out. All you
have to do for datagram sockets is encapsulate the packet in the method of your choosing and sendto() it
out. The kernel builds the Transport Layer and Internet Layer on for you and the hardware does the Network
Access Layer. Ah, modern technology.

Chapter 2. What is a socket? 9

So ends our brief foray into network theory. Oh yes, I forgot to tell you everything I wanted to say about
routing: nothing! That’s right, I’m not going to talk about it at all. The router strips the packet to the IP
header, consults its routing table, blah blah blah. Check out the IP RFC4 if you really really care. If you
never learn about it, well, you’ll live.

4https://tools.ietf.org/html/rfc791

https://tools.ietf.org/html/rfc791

Chapter 3

IP Addresses, structs, and Data
Munging

Here’s the part of the game where we get to talk code for a change.

But first, let’s discuss more non-code! Yay! First I want to talk about IP addresses and ports for just a tad so
we have that sorted out. Then we’ll talk about how the sockets API stores and manipulates IP addresses and
other data.

3.1 IP Addresses, versions 4 and 6
In the good old days back when Ben Kenobi was still called Obi Wan Kenobi, there was a wonderful network
routing system called The Internet Protocol Version 4, also called IPv4. It had addresses made up of four
bytes (A.K.A. four “octets”), and was commonly written in “dots and numbers” form, like so: 192.0.2.111.

You’ve probably seen it around.

In fact, as of this writing, virtually every site on the Internet uses IPv4.

Everyone, including Obi Wan, was happy. Things were great, until some naysayer by the name of Vint Cerf
warned everyone that we were about to run out of IPv4 addresses!

(Besides warning everyone of the Coming IPv4 Apocalypse Of Doom And Gloom, Vint Cerf1 is also well-
known for being The Father Of The Internet. So I really am in no position to second-guess his judgment.)

Run out of addresses? How could this be? I mean, there are like billions of IP addresses in a 32-bit IPv4
address. Do we really have billions of computers out there?

Yes.

Also, in the beginning, when there were only a few computers and everyone thought a billion was an impos-
sibly large number, some big organizations were generously allocated millions of IP addresses for their own
use. (Such as Xerox, MIT, Ford, HP, IBM, GE, AT&T, and some little company called Apple, to name a
few.)

In fact, if it weren’t for several stopgap measures, we would have run out a long time ago.

But now we’re living in an era where we’re talking about every human having an IP address, every computer,
every calculator, every phone, every parking meter, and (why not) every puppy dog, as well.

1https://en.wikipedia.org/wiki/Vint_Cerf

10

https://en.wikipedia.org/wiki/Vint_Cerf

Chapter 3. IP Addresses, structs, and Data Munging 11

And so, IPv6 was born. Since Vint Cerf is probably immortal (even if his physical form should pass on,
heaven forbid, he is probably already existing as some kind of hyper-intelligent ELIZA2 program out in the
depths of the Internet2), no one wants to have to hear him say again “I told you so” if we don’t have enough
addresses in the next version of the Internet Protocol.

What does this suggest to you?

That we need a lot more addresses. That we need not just twice as many addresses, not a billion times as
many, not a thousand trillion times as many, but 79 MILLION BILLION TRILLION times as many possible
addresses! That’ll show ’em!

You’re saying, “Beej, is that true? I have every reason to disbelieve large numbers.” Well, the difference
between 32 bits and 128 bits might not sound like a lot; it’s only 96 more bits, right? But remember, we’re
talking powers here: 32 bits represents some 4 billion numbers (232), while 128 bits represents about 340
trillion trillion trillion numbers (for real, 2128). That’s like a million IPv4 Internets for every single star in
the Universe.

Forget this dots-and-numbers look of IPv4, too; now we’ve got a hexadecimal representation, with each
two-byte chunk separated by a colon, like this:

2001:0db8:c9d2:aee5:73e3:934a:a5ae:9551

That’s not all! Lots of times, you’ll have an IP address with lots of zeros in it, and you can compress them
between two colons. And you can leave off leading zeros for each byte pair. For instance, each of these pairs
of addresses are equivalent:

2001:0db8:c9d2:0012:0000:0000:0000:0051
2001:db8:c9d2:12::51

2001:0db8:ab00:0000:0000:0000:0000:0000
2001:db8:ab00::

0000:0000:0000:0000:0000:0000:0000:0001
::1

The address ::1 is the loopback address. It always means “this machine I’m running on now”. In IPv4, the
loopback address is 127.0.0.1.

Finally, there’s an IPv4-compatibility mode for IPv6 addresses that you might come across. If you want,
for example, to represent the IPv4 address 192.0.2.33 as an IPv6 address, you use the following notation:
“::ffff:192.0.2.33”.

We’re talking serious fun.

In fact, it’s such serious fun, that the Creators of IPv6 have quite cavalierly lopped off trillions and trillions
of addresses for reserved use, but we have so many, frankly, who’s even counting anymore? There are plenty
left over for every man, woman, child, puppy, and parking meter on every planet in the galaxy. And believe
me, every planet in the galaxy has parking meters. You know it’s true.

3.1.1 Subnets
For organizational reasons, it’s sometimes convenient to declare that “this first part of this IP address up
through this bit is the network portion of the IP address, and the remainder is the host portion.

For instance, with IPv4, you might have 192.0.2.12, and we could say that the first three bytes are the net-
work and the last byte was the host. Or, put another way, we’re talking about host 12 on network 192.0.2.0

2https://en.wikipedia.org/wiki/ELIZA

https://en.wikipedia.org/wiki/ELIZA

Chapter 3. IP Addresses, structs, and Data Munging 12

(see how we zero out the byte that was the host).

And now for more outdated information! Ready? In the Ancient Times, there were “classes” of subnets,
where the first one, two, or three bytes of the address was the network part. If you were lucky enough to
have one byte for the network and three for the host, you could have 24 bits-worth of hosts on your network
(16 million or so). That was a “Class A” network. On the opposite end was a “Class C”, with three bytes of
network, and one byte of host (256 hosts, minus a couple that were reserved).

So as you can see, there were just a few Class As, a huge pile of Class Cs, and some Class Bs in the middle.

The network portion of the IP address is described by something called the netmask, which you bitwise-
AND with the IP address to get the network number out of it. The netmask usually looks something like
255.255.255.0. (E.g. with that netmask, if your IP is 192.0.2.12, then your network is 192.0.2.12
AND 255.255.255.0 which gives 192.0.2.0.)

Unfortunately, it turned out that this wasn’t fine-grained enough for the eventual needs of the Internet; we
were running out of Class C networks quite quickly, and we were most definitely out of Class As, so don’t
even bother to ask. To remedy this, The Powers That Be allowed for the netmask to be an arbitrary number
of bits, not just 8, 16, or 24. So you might have a netmask of, say 255.255.255.252, which is 30 bits of
network, and 2 bits of host allowing for four hosts on the network. (Note that the netmask is ALWAYS a
bunch of 1-bits followed by a bunch of 0-bits.)

But it’s a bit unwieldy to use a big string of numbers like 255.192.0.0 as a netmask. First of all, people
don’t have an intuitive idea of how many bits that is, and secondly, it’s really not compact. So the New Style
came along, and it’s much nicer. You just put a slash after the IP address, and then follow that by the number
of network bits in decimal. Like this: 192.0.2.12/30.

Or, for IPv6, something like this: 2001:db8::/32 or 2001:db8:5413:4028::9db9/64.

3.1.2 Port Numbers
If you’ll kindly remember, I presented you earlier with the Layered Network Model which had the Internet
Layer (IP) split off from the Host-to-Host Transport Layer (TCP and UDP). Get up to speed on that before
the next paragraph.

Turns out that besides an IP address (used by the IP layer), there is another address that is used by TCP
(stream sockets) and, coincidentally, by UDP (datagram sockets). It is the port number. It’s a 16-bit number
that’s like the local address for the connection.

Think of the IP address as the street address of a hotel, and the port number as the room number. That’s a
decent analogy; maybe later I’ll come up with one involving the automobile industry.

Say you want to have a computer that handles incoming mail AND web services—how do you differentiate
between the two on a computer with a single IP address?

Well, different services on the Internet have different well-known port numbers. You can see them all in the
Big IANA Port List3 or, if you’re on a Unix box, in your /etc/services file. HTTP (the web) is port 80,
telnet is port 23, SMTP is port 25, the game DOOM4 used port 666, etc. and so on. Ports under 1024 are
often considered special, and usually require special OS privileges to use.

And that’s about it!

3.2 Byte Order
By Order of the Realm! There shall be two byte orderings, hereafter to be known as Lame and Magnificent!

I joke, but one really is better than the other. :-)

3https://www.iana.org/assignments/port-numbers
4https://en.wikipedia.org/wiki/Doom_(1993_video_game)

https://www.iana.org/assignments/port-numbers
https://www.iana.org/assignments/port-numbers
https://en.wikipedia.org/wiki/Doom_(1993_video_game)

Chapter 3. IP Addresses, structs, and Data Munging 13

There really is no easy way to say this, so I’ll just blurt it out: your computer might have been storing bytes
in reverse order behind your back. I know! No one wanted to have to tell you.

The thing is, everyone in the Internet world has generally agreed that if you want to represent the two-byte
hex number, say b34f, you’ll store it in two sequential bytes b3 followed by 4f. Makes sense, and, asWilford
Brimley5 would tell you, it’s the Right Thing To Do. This number, stored with the big end first, is called
Big-Endian.

Unfortunately, a few computers scattered here and there throughout the world, namely anything with an Intel
or Intel-compatible processor, store the bytes reversed, so b34f would be stored in memory as the sequential
bytes 4f followed by b3. This storage method is called Little-Endian.

But wait, I’m not done with terminology yet! The more-sane Big-Endian is also called Network Byte Order
because that’s the order us network types like.

Your computer stores numbers inHost Byte Order. If it’s an Intel 80x86, Host Byte Order is Little-Endian. If
it’s a Motorola 68k, Host Byte Order is Big-Endian. If it’s a PowerPC, Host Byte Order is…well, it depends!

A lot of times when you’re building packets or filling out data structures you’ll need to make sure your two-
and four-byte numbers are in Network Byte Order. But how can you do this if you don’t know the native
Host Byte Order?

Good news! You just get to assume the Host Byte Order isn’t right, and you always run the value through a
function to set it to Network Byte Order. The function will do the magic conversion if it has to, and this way
your code is portable to machines of differing endianness.

All righty. There are two types of numbers that you can convert: short (two bytes) and long (four bytes).
These functions work for the unsigned variations as well. Say you want to convert a short from Host Byte
Order to Network Byte Order. Start with “h” for “host”, follow it with “to”, then “n” for “network”, and “s”
for “short”: h-to-n-s, or htons() (read: “Host to Network Short”).

It’s almost too easy…

You can use every combination of “n”, “h”, “s”, and “l” you want, not counting the really stupid ones. For
example, there is NOT a stolh() (“Short to Long Host”) function—not at this party, anyway. But there are:

Function Description

htons()
host to network short

htonl()
host to network long

ntohs()
network to host short

ntohl()
network to host long

Basically, you’ll want to convert the numbers to Network Byte Order before they go out on the wire, and
convert them to Host Byte Order as they come in off the wire.

I don’t know of a 64-bit variant, sorry. And if you want to do floating point, check out the section on
Serialization, far below.

Assume the numbers in this document are in Host Byte Order unless I say otherwise.
5https://en.wikipedia.org/wiki/Wilford_Brimley

https://en.wikipedia.org/wiki/Wilford_Brimley
https://en.wikipedia.org/wiki/Wilford_Brimley

Chapter 3. IP Addresses, structs, and Data Munging 14

3.3 structs
Well, we’re finally here. It’s time to talk about programming. In this section, I’ll cover various data types
used by the sockets interface, since some of them are a real bear to figure out.

First the easy one: a socket descriptor. A socket descriptor is the following type:

int

Just a regular int.

Things get weird from here, so just read through and bear with me.

My First Struct™—struct addrinfo. This structure is a more recent invention, and is used to prep the
socket address structures for subsequent use. It’s also used in host name lookups, and service name lookups.
That’ll make more sense later when we get to actual usage, but just know for now that it’s one of the first
things you’ll call when making a connection.

struct addrinfo {
int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
int ai_protocol; // use 0 for "any"
size_t ai_addrlen; // size of ai_addr in bytes
struct sockaddr *ai_addr; // struct sockaddr_in or _in6
char *ai_canonname; // full canonical hostname

struct addrinfo *ai_next; // linked list, next node
};

You’ll load this struct up a bit, and then call getaddrinfo(). It’ll return a pointer to a new linked list of
these structures filled out with all the goodies you need.

You can force it to use IPv4 or IPv6 in the ai_family field, or leave it as AF_UNSPEC to use whatever. This
is cool because your code can be IP version-agnostic.

Note that this is a linked list: ai_next points at the next element—there could be several results for you to
choose from. I’d use the first result that worked, but you might have different business needs; I don’t know
everything, man!

You’ll see that the ai_addr field in the struct addrinfo is a pointer to a struct sockaddr. This is where
we start getting into the nitty-gritty details of what’s inside an IP address structure.

You might not usually need to write to these structures; oftentimes, a call to getaddrinfo() to fill out your
struct addrinfo for you is all you’ll need. You will, however, have to peer inside these structs to get
the values out, so I’m presenting them here.

(Also, all the code written before struct addrinfo was invented we packed all this stuff by hand, so you’ll
see a lot of IPv4 code out in the wild that does exactly that. You know, in old versions of this guide and so
on.)

Some structs are IPv4, some are IPv6, and some are both. I’ll make notes of which are what.

Anyway, the struct sockaddr holds socket address information for many types of sockets.

struct sockaddr {
unsigned short sa_family; // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

Chapter 3. IP Addresses, structs, and Data Munging 15

};

sa_family can be a variety of things, but it’ll be AF_INET (IPv4) or AF_INET6 (IPv6) for everything we
do in this document. sa_data contains a destination address and port number for the socket. This is rather
unwieldy since you don’t want to tediously pack the address in the sa_data by hand.

To deal with struct sockaddr, programmers created a parallel structure: struct sockaddr_in (“in” for
“Internet”) to be used with IPv4.

And this is the important bit: a pointer to a struct sockaddr_in can be cast to a pointer to a
struct sockaddr and vice-versa. So even though connect() wants a struct sockaddr*, you can still
use a struct sockaddr_in and cast it at the last minute!

// (IPv4 only--see struct sockaddr_in6 for IPv6)

struct sockaddr_in {
short int sin_family; // Address family, AF_INET
unsigned short int sin_port; // Port number
struct in_addr sin_addr; // Internet address
unsigned char sin_zero[8]; // Same size as struct sockaddr

};

This structure makes it easy to reference elements of the socket address. Note that sin_zero (which is
included to pad the structure to the length of a struct sockaddr) should be set to all zeros with the function
memset(). Also, notice that sin_family corresponds to sa_family in a struct sockaddr and should be
set to “AF_INET”. Finally, the sin_port must be in Network Byte Order (by using htons()!)

Let’s dig deeper! You see the sin_addr field is a struct in_addr. What is that thing? Well, not to be
overly dramatic, but it’s one of the scariest unions of all time:

// (IPv4 only--see struct in6_addr for IPv6)

// Internet address (a structure for historical reasons)
struct in_addr {

uint32_t s_addr; // that's a 32-bit int (4 bytes)
};

Whoa! Well, it used to be a union, but now those days seem to be gone. Good riddance. So if you
have declared ina to be of type struct sockaddr_in, then ina.sin_addr.s_addr references the 4-
byte IP address (in Network Byte Order). Note that even if your system still uses the God-awful union
for struct in_addr, you can still reference the 4-byte IP address in exactly the same way as I did above
(this due to #defines).

What about IPv6? Similar structs exist for it, as well:

// (IPv6 only--see struct sockaddr_in and struct in_addr for IPv4)

struct sockaddr_in6 {
u_int16_t sin6_family; // address family, AF_INET6
u_int16_t sin6_port; // port number, Network Byte Order
u_int32_t sin6_flowinfo; // IPv6 flow information
struct in6_addr sin6_addr; // IPv6 address
u_int32_t sin6_scope_id; // Scope ID

};

Chapter 3. IP Addresses, structs, and Data Munging 16

struct in6_addr {
unsigned char s6_addr[16]; // IPv6 address

};

Note that IPv6 has an IPv6 address and a port number, just like IPv4 has an IPv4 address and a port number.

Also note that I’m not going to talk about the IPv6 flow information or Scope ID fields for the moment…
this is just a starter guide. :-)

Last but not least, here is another simple structure, struct sockaddr_storage that is designed to be large
enough to hold both IPv4 and IPv6 structures. See, for some calls, sometimes you don’t know in advance
if it’s going to fill out your struct sockaddr with an IPv4 or IPv6 address. So you pass in this parallel
structure, very similar to struct sockaddr except larger, and then cast it to the type you need:

struct sockaddr_storage {
sa_family_t ss_family; // address family

// all this is padding, implementation specific, ignore it:
char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;
char __ss_pad2[_SS_PAD2SIZE];

};

What’s important is that you can see the address family in the ss_family field—check this to see
if it’s AF_INET or AF_INET6 (for IPv4 or IPv6). Then you can cast it to a struct sockaddr_in or
struct sockaddr_in6 if you wanna.

3.4 IP Addresses, Part Deux
Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses. No need to
figure them out by hand and stuff them in a long with the << operator.

First, let’s say you have a struct sockaddr_in ina, and you have an IP address “10.12.110.57” or
“2001:db8:63b3:1::3490” that you want to store into it. The function you want to use, inet_pton(),
converts an IP address in numbers-and-dots notation into either a struct in_addr or a struct in6_addr
depending on whether you specify AF_INET or AF_INET6. (“pton” stands for “presentation to network”—
you can call it “printable to network” if that’s easier to remember.) The conversion can be made as follows:

struct sockaddr_in sa; // IPv4
struct sockaddr_in6 sa6; // IPv6

inet_pton(AF_INET, "10.12.110.57", &(sa.sin_addr)); // IPv4
inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr)); // IPv6

(Quick note: the old way of doing things used a function called inet_addr() or another function called
inet_aton(); these are now obsolete and don’t work with IPv6.)

Now, the above code snippet isn’t very robust because there is no error checking. See, inet_pton() returns
-1 on error, or 0 if the address is messed up. So check to make sure the result is greater than 0 before using!

All right, now you can convert string IP addresses to their binary representations. What about the other way
around? What if you have a struct in_addr and you want to print it in numbers-and-dots notation? (Or
a struct in6_addr that you want in, uh, “hex-and-colons” notation.) In this case, you’ll want to use the

Chapter 3. IP Addresses, structs, and Data Munging 17

function inet_ntop() (“ntop” means “network to presentation”—you can call it “network to printable” if
that’s easier to remember), like this:

1 // IPv4:
2

3 char ip4[INET_ADDRSTRLEN]; // space to hold the IPv4 string
4 struct sockaddr_in sa; // pretend this is loaded with something
5

6 inet_ntop(AF_INET, &(sa.sin_addr), ip4, INET_ADDRSTRLEN);
7

8 printf("The IPv4 address is: %s\n", ip4);
9

10

11 // IPv6:
12

13 char ip6[INET6_ADDRSTRLEN]; // space to hold the IPv6 string
14 struct sockaddr_in6 sa6; // pretend this is loaded with something
15

16 inet_ntop(AF_INET6, &(sa6.sin6_addr), ip6, INET6_ADDRSTRLEN);
17

18 printf("The address is: %s\n", ip6);

When you call it, you’ll pass the address type (IPv4 or IPv6), the address, a pointer to a string to hold the
result, and the maximum length of that string. (Two macros conveniently hold the size of the string you’ll
need to hold the largest IPv4 or IPv6 address: INET_ADDRSTRLEN and INET6_ADDRSTRLEN.)

(Another quick note to mention once again the old way of doing things: the historical function to do this
conversion was called inet_ntoa(). It’s also obsolete and won’t work with IPv6.)

Lastly, these functions only work with numeric IP addresses—they won’t do any nameserver DNS lookup
on a hostname, like “www.example.com”. You will use getaddrinfo() to do that, as you’ll see later on.

3.4.1 Private (Or Disconnected) Networks
Lots of places have a firewall that hides the network from the rest of the world for their own protection.
And often times, the firewall translates “internal” IP addresses to “external” (that everyone else in the world
knows) IP addresses using a process called Network Address Translation, or NAT.

Are you getting nervous yet? “Where’s he going with all this weird stuff?”

Well, relax and buy yourself a non-alcoholic (or alcoholic) drink, because as a beginner, you don’t even have
to worry about NAT, since it’s done for you transparently. But I wanted to talk about the network behind the
firewall in case you started getting confused by the network numbers you were seeing.

For instance, I have a firewall at home. I have two static IPv4 addresses allocated to me by the DSL company,
and yet I have seven computers on the network. How is this possible? Two computers can’t share the same
IP address, or else the data wouldn’t know which one to go to!

The answer is: they don’t share the same IP addresses. They are on a private network with 24 million IP
addresses allocated to it. They are all just for me. Well, all for me as far as anyone else is concerned. Here’s
what’s happening:

If I log into a remote computer, it tells me I’m logged in from 192.0.2.33 which is the public IP address
my ISP has provided to me. But if I ask my local computer what its IP address is, it says 10.0.0.5. Who is
translating the IP address from one to the other? That’s right, the firewall! It’s doing NAT!

10.x.x.x is one of a few reserved networks that are only to be used either on fully disconnected networks,
or on networks that are behind firewalls. The details of which private network numbers are available for

Chapter 3. IP Addresses, structs, and Data Munging 18

you to use are outlined in RFC 19186, but some common ones you’ll see are 10.x.x.x and 192.168.x.x,
where x is 0-255, generally. Less common is 172.y.x.x, where y goes between 16 and 31.

Networks behind a NATing firewall don’t need to be on one of these reserved networks, but they commonly
are.

(Fun fact! My external IP address isn’t really 192.0.2.33. The 192.0.2.x network is reserved for make-
believe “real” IP addresses to be used in documentation, just like this guide! Wowzers!)

IPv6 has private networks, too, in a sense. They’ll start with fdXX: (or maybe in the future fcXX:), as per
RFC 41937. NAT and IPv6 don’t generally mix, however (unless you’re doing the IPv6 to IPv4 gateway thing
which is beyond the scope of this document)—in theory you’ll have so many addresses at your disposal that
you won’t need to use NAT any longer. But if you want to allocate addresses for yourself on a network that
won’t route outside, this is how to do it.

6https://tools.ietf.org/html/rfc1918
7https://tools.ietf.org/html/rfc4193

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc4193

Chapter 4

Jumping from IPv4 to IPv6

But I just want to know what to change in my code to get it going with IPv6! Tell me now!

Ok! Ok!

Almost everything in here is something I’ve gone over, above, but it’s the short version for the impatient.
(Of course, there is more than this, but this is what applies to the guide.)

1. First of all, try to use getaddrinfo() to get all the struct sockaddr info, instead of packing the
structures by hand. This will keep you IP version-agnostic, and will eliminate many of the subsequent
steps.

2. Any place that you find you’re hard-coding anything related to the IP version, try to wrap up in a helper
function.

3. Change AF_INET to AF_INET6.

4. Change PF_INET to PF_INET6.

5. Change INADDR_ANY assignments to in6addr_any assignments, which are slightly different:

struct sockaddr_in sa;
struct sockaddr_in6 sa6;

sa.sin_addr.s_addr = INADDR_ANY; // use my IPv4 address
sa6.sin6_addr = in6addr_any; // use my IPv6 address

Also, the value IN6ADDR_ANY_INIT can be used as an initializer when the struct in6_addr is de-
clared, like so:

struct in6_addr ia6 = IN6ADDR_ANY_INIT;

6. Instead of struct sockaddr_in use struct sockaddr_in6, being sure to add “6” to the fields as
appropriate (see structs, above). There is no sin6_zero field.

7. Instead of struct in_addr use struct in6_addr, being sure to add “6” to the fields as appropriate
(see structs, above).

8. Instead of inet_aton() or inet_addr(), use inet_pton().

9. Instead of inet_ntoa(), use inet_ntop().

10. Instead of gethostbyname(), use the superior getaddrinfo().

19

Chapter 4. Jumping from IPv4 to IPv6 20

11. Instead of gethostbyaddr(), use the superior getnameinfo() (although gethostbyaddr() can
still work with IPv6).

12. INADDR_BROADCAST no longer works. Use IPv6 multicast instead.

Et voila!

Chapter 5

System Calls or Bust

This is the section where we get into the system calls (and other library calls) that allow you to access the
network functionality of a Unix box, or any box that supports the sockets API for that matter (BSD,Windows,
Linux, Mac, what-have-you.) When you call one of these functions, the kernel takes over and does all the
work for you automagically.

The place most people get stuck around here is what order to call these things in. In that, the man pages are
no use, as you’ve probably discovered. Well, to help with that dreadful situation, I’ve tried to lay out the
system calls in the following sections in exactly (approximately) the same order that you’ll need to call them
in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which I fear you will
have to supply yourself), and some raw guts and courage, and you’ll be beaming data around the Internet
like the Son of Jon Postel!

(Please note that for brevity, many code snippets below do not include necessary error checking. And they
very commonly assume that the result from calls to getaddrinfo() succeed and return a valid entry in the
linked list. Both of these situations are properly addressed in the stand-alone programs, though, so use those
as a model.)

5.1 getaddrinfo()—Prepare to launch!
This is a real workhorse of a function with a lot of options, but usage is actually pretty simple. It helps set
up the structs you need later on.

A tiny bit of history: it used to be that you would use a function called gethostbyname() to do DNS lookups.
Then you’d load that information by hand into a struct sockaddr_in, and use that in your calls.

This is no longer necessary, thankfully. (Nor is it desirable, if you want to write code that works for both
IPv4 and IPv6!) In these modern times, you now have the function getaddrinfo() that does all kinds of
good stuff for you, including DNS and service name lookups, and fills out the structs you need, besides!

Let’s take a look!

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, // e.g. "www.example.com" or IP
const char *service, // e.g. "http" or port number

21

Chapter 5. System Calls or Bust 22

const struct addrinfo *hints,
struct addrinfo **res);

You give this function three input parameters, and it gives you a pointer to a linked-list, res, of results.

The node parameter is the host name to connect to, or an IP address.

Next is the parameter service, which can be a port number, like “80”, or the name of a particular service
(found in The IANA Port List1 or the /etc/services file on your Unix machine) like “http” or “ftp” or
“telnet” or “smtp” or whatever.

Finally, the hints parameter points to a struct addrinfo that you’ve already filled out with relevant in-
formation.

Here’s a sample call if you’re a server who wants to listen on your host’s IP address, port 3490. Note that
this doesn’t actually do any listening or network setup; it merely sets up structures we’ll use later:

1 int status;
2 struct addrinfo hints;
3 struct addrinfo *servinfo; // will point to the results
4

5 memset(&hints, 0, sizeof hints); // make sure the struct is empty
6 hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6
7 hints.ai_socktype = SOCK_STREAM; // TCP stream sockets
8 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
9

10 if ((status = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {
11 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(status));
12 exit(1);
13 }
14

15 // servinfo now points to a linked list of 1 or more struct addrinfos
16

17 // ... do everything until you don't need servinfo anymore
18

19 freeaddrinfo(servinfo); // free the linked-list

Notice that I set the ai_family to AF_UNSPEC, thereby saying that I don’t care if we use IPv4 or IPv6. You
can set it to AF_INET or AF_INET6 if you want one or the other specifically.

Also, you’ll see the AI_PASSIVE flag in there; this tells getaddrinfo() to assign the address of my local
host to the socket structures. This is nice because then you don’t have to hardcode it. (Or you can put a
specific address in as the first parameter to getaddrinfo() where I currently have NULL, up there.)

Then we make the call. If there’s an error (getaddrinfo() returns non-zero), we can print it out using
the function gai_strerror(), as you see. If everything works properly, though, servinfo will point to a
linked list of struct addrinfos, each of which contains a struct sockaddr of some kind that we can use
later! Nifty!

Finally, when we’re eventually all done with the linked list that getaddrinfo() so graciously allocated for
us, we can (and should) free it all up with a call to freeaddrinfo().

Here’s a sample call if you’re a client who wants to connect to a particular server, say “www.example.net”
port 3490. Again, this doesn’t actually connect, but it sets up the structures we’ll use later:

1https://www.iana.org/assignments/port-numbers

https://www.iana.org/assignments/port-numbers

Chapter 5. System Calls or Bust 23

1 int status;
2 struct addrinfo hints;
3 struct addrinfo *servinfo; // will point to the results
4

5 memset(&hints, 0, sizeof hints); // make sure the struct is empty
6 hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6
7 hints.ai_socktype = SOCK_STREAM; // TCP stream sockets
8

9 // get ready to connect
10 status = getaddrinfo("www.example.net", "3490", &hints, &servinfo);
11

12 // servinfo now points to a linked list of 1 or more struct addrinfos
13

14 // etc.

I keep saying that servinfo is a linked list with all kinds of address information. Let’s write a quick demo
program to show off this information. This short program2 will print the IP addresses for whatever host you
specify on the command line:

1 /*
2 ** showip.c -- show IP addresses for a host given on the command line
3 */
4

5 #include <stdio.h>
6 #include <string.h>
7 #include <sys/types.h>
8 #include <sys/socket.h>
9 #include <netdb.h>
10 #include <arpa/inet.h>
11 #include <netinet/in.h>
12

13 int main(int argc, char *argv[])
14 {
15 struct addrinfo hints, *res, *p;
16 int status;
17 char ipstr[INET6_ADDRSTRLEN];
18

19 if (argc != 2) {
20 fprintf(stderr,"usage: showip hostname\n");
21 return 1;
22 }
23

24 memset(&hints, 0, sizeof hints);
25 hints.ai_family = AF_UNSPEC; // AF_INET or AF_INET6 to force version
26 hints.ai_socktype = SOCK_STREAM;
27

28 if ((status = getaddrinfo(argv[1], NULL, &hints, &res)) != 0) {
29 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(status));
30 return 2;
31 }
32

2https://beej.us/guide/bgnet/source/examples/showip.c

https://beej.us/guide/bgnet/source/examples/showip.c

Chapter 5. System Calls or Bust 24

33 printf("IP addresses for %s:\n\n", argv[1]);
34

35 for(p = res;p != NULL; p = p->ai_next) {
36 void *addr;
37 char *ipver;
38

39 // get the pointer to the address itself,
40 // different fields in IPv4 and IPv6:
41 if (p->ai_family == AF_INET) { // IPv4
42 struct sockaddr_in *ipv4 = (struct sockaddr_in *)p->ai_addr;
43 addr = &(ipv4->sin_addr);
44 ipver = "IPv4";
45 } else { // IPv6
46 struct sockaddr_in6 *ipv6 = (struct sockaddr_in6 *)p->ai_addr;
47 addr = &(ipv6->sin6_addr);
48 ipver = "IPv6";
49 }
50

51 // convert the IP to a string and print it:
52 inet_ntop(p->ai_family, addr, ipstr, sizeof ipstr);
53 printf(" %s: %s\n", ipver, ipstr);
54 }
55

56 freeaddrinfo(res); // free the linked list
57

58 return 0;
59 }

As you see, the code calls getaddrinfo() on whatever you pass on the command line, that fills out the
linked list pointed to by res, and then we can iterate over the list and print stuff out or do whatever.

(There’s a little bit of ugliness there where we have to dig into the different types of struct sockaddrs
depending on the IP version. Sorry about that! I’m not sure of a better way around it.)

Sample run! Everyone loves screenshots:

$ showip www.example.net
IP addresses for www.example.net:

IPv4: 192.0.2.88

$ showip ipv6.example.com
IP addresses for ipv6.example.com:

IPv4: 192.0.2.101
IPv6: 2001:db8:8c00:22::171

Now that we have that under control, we’ll use the results we get from getaddrinfo() to pass to other
socket functions and, at long last, get our network connection established! Keep reading!

5.2 socket()—Get the File Descriptor!

I guess I can put it off no longer—I have to talk about the socket() system call. Here’s the breakdown:

Chapter 5. System Calls or Bust 25

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? They allow you to say what kind of socket you want (IPv4 or IPv6, stream
or datagram, and TCP or UDP).

It used to be people would hardcode these values, and you can absolutely still do that. (domain is PF_INET
or PF_INET6, type is SOCK_STREAM or SOCK_DGRAM, and protocol can be set to 0 to choose the proper
protocol for the given type. Or you can call getprotobyname() to look up the protocol you want, “tcp” or
“udp”.)

(This PF_INET thing is a close relative of the AF_INET that you can use when initializing the sin_family
field in your struct sockaddr_in. In fact, they’re so closely related that they actually have the same value,
andmany programmers will call socket() and pass AF_INET as the first argument instead of PF_INET. Now,
get some milk and cookies, because it’s time for a story. Once upon a time, a long time ago, it was thought
that maybe an address family (what the “AF” in “AF_INET” stands for) might support several protocols
that were referred to by their protocol family (what the “PF” in “PF_INET” stands for). That didn’t happen.
And they all lived happily ever after, The End. So the most correct thing to do is to use AF_INET in your
struct sockaddr_in and PF_INET in your call to socket().)

Anyway, enough of that. What you really want to do is use the values from the results of the call to
getaddrinfo(), and feed them into socket() directly like this:

1 int s;
2 struct addrinfo hints, *res;
3

4 // do the lookup
5 // [pretend we already filled out the "hints" struct]
6 getaddrinfo("www.example.com", "http", &hints, &res);
7

8 // again, you should do error-checking on getaddrinfo(), and walk
9 // the "res" linked list looking for valid entries instead of just
10 // assuming the first one is good (like many of these examples do).
11 // See the section on client/server for real examples.
12

13 s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

socket() simply returns to you a socket descriptor that you can use in later system calls, or -1 on error. The
global variable errno is set to the error’s value (see the errno man page for more details, and a quick note
on using errno in multithreaded programs).

Fine, fine, fine, but what good is this socket? The answer is that it’s really no good by itself, and you need
to read on and make more system calls for it to make any sense.

5.3 bind()—What port am I on?
Once you have a socket, you might have to associate that socket with a port on your local machine. (This
is commonly done if you’re going to listen() for incoming connections on a specific port—multiplayer
network games do this when they tell you to “connect to 192.168.5.10 port 3490”.) The port number is used
by the kernel to match an incoming packet to a certain process’s socket descriptor. If you’re going to only be
doing a connect() (because you’re the client, not the server), this is probably unnecessary. Read it anyway,
just for kicks.

Chapter 5. System Calls or Bust 26

Here is the synopsis for the bind() system call:

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned by socket(). my_addr is a pointer to a struct sockaddr that
contains information about your address, namely, port and IP address. addrlen is the length in bytes of that
address.

Whew. That’s a bit to absorb in one chunk. Let’s have an example that binds the socket to the host the
program is running on, port 3490:

1 struct addrinfo hints, *res;
2 int sockfd;
3

4 // first, load up address structs with getaddrinfo():
5

6 memset(&hints, 0, sizeof hints);
7 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
8 hints.ai_socktype = SOCK_STREAM;
9 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
10

11 getaddrinfo(NULL, "3490", &hints, &res);
12

13 // make a socket:
14

15 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
16

17 // bind it to the port we passed in to getaddrinfo():
18

19 bind(sockfd, res->ai_addr, res->ai_addrlen);

By using the AI_PASSIVE flag, I’m telling the program to bind to the IP of the host it’s running on. If
you want to bind to a specific local IP address, drop the AI_PASSIVE and put an IP address in for the first
argument to getaddrinfo().

bind() also returns -1 on error and sets errno to the error’s value.

Lots of old code manually packs the struct sockaddr_in before calling bind(). Obviously this is IPv4-
specific, but there’s really nothing stopping you from doing the same thing with IPv6, except that using
getaddrinfo() is going to be easier, generally. Anyway, the old code looks something like this:

1 // !!! THIS IS THE OLD WAY !!!
2

3 int sockfd;
4 struct sockaddr_in my_addr;
5

6 sockfd = socket(PF_INET, SOCK_STREAM, 0);
7

8 my_addr.sin_family = AF_INET;
9 my_addr.sin_port = htons(MYPORT); // short, network byte order
10 my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

Chapter 5. System Calls or Bust 27

11 memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);
12

13 bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr);

In the above code, you could also assign INADDR_ANY to the s_addr field if you wanted to bind to your
local IP address (like the AI_PASSIVE flag, above). The IPv6 version of INADDR_ANY is a global variable
in6addr_any that is assigned into the sin6_addr field of your struct sockaddr_in6. (There is also a
macro IN6ADDR_ANY_INIT that you can use in a variable initializer.)

Another thing to watch out for when calling bind(): don’t go underboard with your port numbers. All ports
below 1024 are RESERVED (unless you’re the superuser)! You can have any port number above that, right
up to 65535 (provided they aren’t already being used by another program).

Sometimes, you might notice, you try to rerun a server and bind() fails, claiming “Address already in use.”
What does that mean? Well, a little bit of a socket that was connected is still hanging around in the kernel,
and it’s hogging the port. You can either wait for it to clear (a minute or so), or add code to your program
allowing it to reuse the port, like this:

1 int yes=1;
2 //char yes='1'; // Solaris people use this
3

4 // lose the pesky "Address already in use" error message
5 if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof yes) == -1) {
6 perror("setsockopt");
7 exit(1);
8 }

One small extra final note about bind(): there are times when you won’t absolutely have to call it. If you
are connect()ing to a remote machine and you don’t care what your local port is (as is the case with telnet
where you only care about the remote port), you can simply call connect(), it’ll check to see if the socket
is unbound, and will bind() it to an unused local port if necessary.

5.4 connect()—Hey, you!
Let’s just pretend for a few minutes that you’re a telnet application. Your user commands you (just like in
the movie TRON) to get a socket file descriptor. You comply and call socket(). Next, the user tells you to
connect to “10.12.110.57” on port “23” (the standard telnet port). Yow! What do you do now?

Lucky for you, program, you’re now perusing the section on connect()—how to connect to a remote host.
So read furiously onward! No time to lose!

The connect() call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned by the socket() call, serv_addr
is a struct sockaddr containing the destination port and IP address, and addrlen is the length in bytes of
the server address structure.

All of this information can be gleaned from the results of the getaddrinfo() call, which rocks.

Chapter 5. System Calls or Bust 28

Is this starting to make more sense? I can’t hear you from here, so I’ll just have to hope that it is. Let’s have
an example where we make a socket connection to “www.example.com”, port 3490:

1 struct addrinfo hints, *res;
2 int sockfd;
3

4 // first, load up address structs with getaddrinfo():
5

6 memset(&hints, 0, sizeof hints);
7 hints.ai_family = AF_UNSPEC;
8 hints.ai_socktype = SOCK_STREAM;
9

10 getaddrinfo("www.example.com", "3490", &hints, &res);
11

12 // make a socket:
13

14 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
15

16 // connect!
17

18 connect(sockfd, res->ai_addr, res->ai_addrlen);

Again, old-school programs filled out their own struct sockaddr_ins to pass to connect(). You can do
that if you want to. See the similar note in the bind() section, above.

Be sure to check the return value from connect()—it’ll return -1 on error and set the variable errno.

Also, notice that we didn’t call bind(). Basically, we don’t care about our local port number; we only care
where we’re going (the remote port). The kernel will choose a local port for us, and the site we connect to
will automatically get this information from us. No worries.

5.5 listen()—Will somebody please call me?
OK, time for a change of pace. What if you don’t want to connect to a remote host. Say, just for kicks, that
you want to wait for incoming connections and handle them in some way. The process is two step: first you
listen(), then you accept() (see below).

The listen() call is fairly simple, but requires a bit of explanation:

int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from the socket() system call. backlog is the number of connec-
tions allowed on the incoming queue. What does that mean? Well, incoming connections are going to wait
in this queue until you accept() them (see below) and this is the limit on how many can queue up. Most
systems silently limit this number to about 20; you can probably get away with setting it to 5 or 10.

Again, as per usual, listen() returns -1 and sets errno on error.

Well, as you can probably imagine, we need to call bind() before we call listen() so that the server is
running on a specific port. (You have to be able to tell your buddies which port to connect to!) So if you’re
going to be listening for incoming connections, the sequence of system calls you’ll make is:

1 getaddrinfo();
2 socket();

Chapter 5. System Calls or Bust 29

3 bind();
4 listen();
5 /* accept() goes here */

I’ll just leave that in the place of sample code, since it’s fairly self-explanatory. (The code in the accept()
section, below, is more complete.) The really tricky part of this whole sha-bang is the call to accept().

5.6 accept()—“Thank you for calling port 3490.”

Get ready—the accept() call is kinda weird! What’s going to happen is this: someone far far away will try
to connect() to your machine on a port that you are listen()ing on. Their connection will be queued up
waiting to be accept()ed. You call accept() and you tell it to get the pending connection. It’ll return to
you a brand new socket file descriptor to use for this single connection! That’s right, suddenly you have two
socket file descriptors for the price of one! The original one is still listening for more new connections, and
the newly created one is finally ready to send() and recv(). We’re there!

The call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

sockfd is the listen()ing socket descriptor. Easy enough. addr will usually be a pointer to a local
struct sockaddr_storage. This is where the information about the incoming connection will go (and
with it you can determine which host is calling you from which port). addrlen is a local integer variable that
should be set to sizeof(struct sockaddr_storage) before its address is passed to accept(). accept()
will not put more than that many bytes into addr. If it puts fewer in, it’ll change the value of addrlen to
reflect that.

Guess what? accept() returns -1 and sets errno if an error occurs. Betcha didn’t figure that.

Like before, this is a bunch to absorb in one chunk, so here’s a sample code fragment for your perusal:

1 #include <string.h>
2 #include <sys/types.h>
3 #include <sys/socket.h>
4 #include <netdb.h>
5

6 #define MYPORT "3490" // the port users will be connecting to
7 #define BACKLOG 10 // how many pending connections queue will hold
8

9 int main(void)
10 {
11 struct sockaddr_storage their_addr;
12 socklen_t addr_size;
13 struct addrinfo hints, *res;
14 int sockfd, new_fd;
15

16 // !! don't forget your error checking for these calls !!
17

18 // first, load up address structs with getaddrinfo():
19

Chapter 5. System Calls or Bust 30

20 memset(&hints, 0, sizeof hints);
21 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
22 hints.ai_socktype = SOCK_STREAM;
23 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
24

25 getaddrinfo(NULL, MYPORT, &hints, &res);
26

27 // make a socket, bind it, and listen on it:
28

29 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
30 bind(sockfd, res->ai_addr, res->ai_addrlen);
31 listen(sockfd, BACKLOG);
32

33 // now accept an incoming connection:
34

35 addr_size = sizeof their_addr;
36 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &addr_size);
37

38 // ready to communicate on socket descriptor new_fd!
39 .
40 .
41 .

Again, note that we will use the socket descriptor new_fd for all send() and recv() calls. If you’re only
getting one single connection ever, you can close() the listening sockfd in order to prevent more incoming
connections on the same port, if you so desire.

5.7 send() and recv()—Talk to me, baby!
These two functions are for communicating over stream sockets or connected datagram sockets. If you want
to use regular unconnected datagram sockets, you’ll need to see the section on sendto() and recvfrom(),
below.

The send() call:

int send(int sockfd, const void *msg, int len, int flags);

sockfd is the socket descriptor you want to send data to (whether it’s the one returned by socket() or the
one you got with accept()). msg is a pointer to the data you want to send, and len is the length of that data
in bytes. Just set flags to 0. (See the send() man page for more information concerning flags.)

Some sample code might be:

1 char *msg = "Beej was here!";
2 int len, bytes_sent;
3 .
4 .
5 .
6 len = strlen(msg);
7 bytes_sent = send(sockfd, msg, len, 0);
8 .
9 .
10 .

Chapter 5. System Calls or Bust 31

send() returns the number of bytes actually sent out—this might be less than the number you told it to send!
See, sometimes you tell it to send a whole gob of data and it just can’t handle it. It’ll fire off as much of the
data as it can, and trust you to send the rest later. Remember, if the value returned by send() doesn’t match
the value in len, it’s up to you to send the rest of the string. The good news is this: if the packet is small
(less than 1K or so) it will probably manage to send the whole thing all in one go. Again, -1 is returned on
error, and errno is set to the error number.

The recv() call is similar in many respects:

int recv(int sockfd, void *buf, int len, int flags);

sockfd is the socket descriptor to read from, buf is the buffer to read the information into, len is the maxi-
mum length of the buffer, and flags can again be set to 0. (See the recv() man page for flag information.)

recv() returns the number of bytes actually read into the buffer, or -1 on error (with errno set, accordingly).

Wait! recv() can return 0. This can mean only one thing: the remote side has closed the connection on you!
A return value of 0 is recv()’s way of letting you know this has occurred.

There, that was easy, wasn’t it? You can now pass data back and forth on stream sockets! Whee! You’re a
Unix Network Programmer!

5.8 sendto() and recvfrom()—Talk to me, DGRAM-style
“This is all fine and dandy,” I hear you saying, “but where does this leave me with unconnected datagram
sockets?” No problemo, amigo. We have just the thing.

Since datagram sockets aren’t connected to a remote host, guess which piece of information we need to give
before we send a packet? That’s right! The destination address! Here’s the scoop:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, socklen_t tolen);

As you can see, this call is basically the same as the call to send() with the addition of two other pieces of
information. to is a pointer to a struct sockaddr (which will probably be another struct sockaddr_in
or struct sockaddr_in6 or struct sockaddr_storage that you cast at the last minute) which contains
the destination IP address and port. tolen, an int deep-down, can simply be set to sizeof *to or
sizeof(struct sockaddr_storage).

To get your hands on the destination address structure, you’ll probably either get it from getaddrinfo(),
or from recvfrom(), below, or you’ll fill it out by hand.

Just like with send(), sendto() returns the number of bytes actually sent (which, again, might be less than
the number of bytes you told it to send!), or -1 on error.

Equally similar are recv() and recvfrom(). The synopsis of recvfrom() is:

int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen);

Again, this is just like recv() with the addition of a couple fields. from is a pointer to a lo-
cal struct sockaddr_storage that will be filled with the IP address and port of the originat-
ing machine. fromlen is a pointer to a local int that should be initialized to sizeof *from or
sizeof(struct sockaddr_storage). When the function returns, fromlen will contain the length of the
address actually stored in from.

recvfrom() returns the number of bytes received, or -1 on error (with errno set accordingly).

Chapter 5. System Calls or Bust 32

So, here’s a question: why do we use struct sockaddr_storage as the socket type? Why not
struct sockaddr_in? Because, you see, we want to not tie ourselves down to IPv4 or IPv6. So we use
the generic struct sockaddr_storage which we know will be big enough for either.

(So… here’s another question: why isn’t struct sockaddr itself big enough for any address? We even
cast the general-purpose struct sockaddr_storage to the general-purpose struct sockaddr! Seems
extraneous and redundant, huh. The answer is, it just isn’t big enough, and I’d guess that changing it at this
point would be Problematic. So they made a new one.)

Remember, if you connect() a datagram socket, you can then simply use send() and recv() for all your
transactions. The socket itself is still a datagram socket and the packets still use UDP, but the socket interface
will automatically add the destination and source information for you.

5.9 close() and shutdown()—Get outta my face!

Whew! You’ve been send()ing and recv()ing data all day long, and you’ve had it. You’re ready to close
the connection on your socket descriptor. This is easy. You can just use the regular Unix file descriptor
close() function:

close(sockfd);

This will prevent any more reads and writes to the socket. Anyone attempting to read or write the socket on
the remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use the shutdown() function.
It allows you to cut off communication in a certain direction, or both ways (just like close() does). Synopsis:

int shutdown(int sockfd, int how);

sockfd is the socket file descriptor you want to shutdown, and how is one of the following:

how Effect

0 Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are disallowed (like close())

shutdown() returns 0 on success, and -1 on error (with errno set accordingly).

If you deign to use shutdown() on unconnected datagram sockets, it will simplymake the socket unavailable
for further send() and recv() calls (remember that you can use these if you connect() your datagram
socket).

It’s important to note that shutdown() doesn’t actually close the file descriptor—it just changes its usability.
To free a socket descriptor, you need to use close().

Nothing to it.

(Except to remember that if you’re usingWindows andWinsock that you should call closesocket() instead
of close().)

5.10 getpeername()—Who are you?
This function is so easy.

Chapter 5. System Calls or Bust 33

It’s so easy, I almost didn’t give it its own section. But here it is anyway.

The function getpeername() will tell you who is at the other end of a connected stream socket. The synop-
sis:

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream socket, addr is a pointer to a struct sockaddr (or a
struct sockaddr_in) that will hold the information about the other side of the connection, and addrlen
is a pointer to an int, that should be initialized to sizeof *addr or sizeof(struct sockaddr).

The function returns -1 on error and sets errno accordingly.

Once you have their address, you can use inet_ntop(), getnameinfo(), or gethostbyaddr() to print
or get more information. No, you can’t get their login name. (Ok, ok. If the other computer is running an
ident daemon, this is possible. This, however, is beyond the scope of this document. Check out RFC 14133
for more info.)

5.11 gethostname()—Who am I?

Even easier than getpeername() is the function gethostname(). It returns the name of the computer that
your program is running on. The name can then be used by getaddrinfo(), above, to determine the IP
address of your local machine.

What could be more fun? I could think of a few things, but they don’t pertain to socket programming.
Anyway, here’s the breakdown:

#include <unistd.h>

int gethostname(char *hostname, size_t size);

The arguments are simple: hostname is a pointer to an array of chars that will contain the hostname upon
the function’s return, and size is the length in bytes of the hostname array.

The function returns 0 on successful completion, and -1 on error, setting errno as usual.

3https://tools.ietf.org/html/rfc1413

https://tools.ietf.org/html/rfc1413

Chapter 6

Client-Server Background

It’s a client-server world, baby. Just about everything on the network deals with client processes talking to
server processes and vice-versa. Take telnet, for instance. When you connect to a remote host on port 23
with telnet (the client), a program on that host (called telnetd, the server) springs to life. It handles the
incoming telnet connection, sets you up with a login prompt, etc.

Client Server

request

response

send()

recv()

recv()

send() The N
etw

ork

Figure 6.1: Client-Server Interaction.

The exchange of information between client and server is summarized in the above diagram.

Note that the client-server pair can speak SOCK_STREAM, SOCK_DGRAM, or anything else (as long as they’re
speaking the same thing). Some good examples of client-server pairs are telnet/telnetd, ftp/ftpd, or
Firefox/Apache. Every time you use ftp, there’s a remote program, ftpd, that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clients using fork().
The basic routine is: server will wait for a connection, accept() it, and fork() a child process to handle it.
This is what our sample server does in the next section.

6.1 A Simple Stream Server
All this server does is send the string “Hello, world!” out over a stream connection. All you need to do to
test this server is run it in one window, and telnet to it from another with:

$ telnet remotehostname 3490

where remotehostname is the name of the machine you’re running it on.

34

Chapter 6. Client-Server Background 35

The server code1:

1 /*
2 ** server.c -- a stream socket server demo
3 */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <string.h>
10 #include <sys/types.h>
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <netdb.h>
14 #include <arpa/inet.h>
15 #include <sys/wait.h>
16 #include <signal.h>
17

18 #define PORT "3490" // the port users will be connecting to
19

20 #define BACKLOG 10 // how many pending connections queue will hold
21

22 void sigchld_handler(int s)
23 {
24 // waitpid() might overwrite errno, so we save and restore it:
25 int saved_errno = errno;
26

27 while(waitpid(-1, NULL, WNOHANG) > 0);
28

29 errno = saved_errno;
30 }
31

32

33 // get sockaddr, IPv4 or IPv6:
34 void *get_in_addr(struct sockaddr *sa)
35 {
36 if (sa->sa_family == AF_INET) {
37 return &(((struct sockaddr_in*)sa)->sin_addr);
38 }
39

40 return &(((struct sockaddr_in6*)sa)->sin6_addr);
41 }
42

43 int main(void)
44 {
45 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
46 struct addrinfo hints, *servinfo, *p;
47 struct sockaddr_storage their_addr; // connector's address information
48 socklen_t sin_size;
49 struct sigaction sa;

1https://beej.us/guide/bgnet/source/examples/server.c

https://beej.us/guide/bgnet/source/examples/server.c

Chapter 6. Client-Server Background 36

50 int yes=1;
51 char s[INET6_ADDRSTRLEN];
52 int rv;
53

54 memset(&hints, 0, sizeof hints);
55 hints.ai_family = AF_UNSPEC;
56 hints.ai_socktype = SOCK_STREAM;
57 hints.ai_flags = AI_PASSIVE; // use my IP
58

59 if ((rv = getaddrinfo(NULL, PORT, &hints, &servinfo)) != 0) {
60 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
61 return 1;
62 }
63

64 // loop through all the results and bind to the first we can
65 for(p = servinfo; p != NULL; p = p->ai_next) {
66 if ((sockfd = socket(p->ai_family, p->ai_socktype,
67 p->ai_protocol)) == -1) {
68 perror("server: socket");
69 continue;
70 }
71

72 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes,
73 sizeof(int)) == -1) {
74 perror("setsockopt");
75 exit(1);
76 }
77

78 if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
79 close(sockfd);
80 perror("server: bind");
81 continue;
82 }
83

84 break;
85 }
86

87 freeaddrinfo(servinfo); // all done with this structure
88

89 if (p == NULL) {
90 fprintf(stderr, "server: failed to bind\n");
91 exit(1);
92 }
93

94 if (listen(sockfd, BACKLOG) == -1) {
95 perror("listen");
96 exit(1);
97 }
98

99 sa.sa_handler = sigchld_handler; // reap all dead processes
100 sigemptyset(&sa.sa_mask);
101 sa.sa_flags = SA_RESTART;
102 if (sigaction(SIGCHLD, &sa, NULL) == -1) {

Chapter 6. Client-Server Background 37

103 perror("sigaction");
104 exit(1);
105 }
106

107 printf("server: waiting for connections...\n");
108

109 while(1) { // main accept() loop
110 sin_size = sizeof their_addr;
111 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);
112 if (new_fd == -1) {
113 perror("accept");
114 continue;
115 }
116

117 inet_ntop(their_addr.ss_family,
118 get_in_addr((struct sockaddr *)&their_addr),
119 s, sizeof s);
120 printf("server: got connection from %s\n", s);
121

122 if (!fork()) { // this is the child process
123 close(sockfd); // child doesn't need the listener
124 if (send(new_fd, "Hello, world!", 13, 0) == -1)
125 perror("send");
126 close(new_fd);
127 exit(0);
128 }
129 close(new_fd); // parent doesn't need this
130 }
131

132 return 0;
133 }

In case you’re curious, I have the code in one big main() function for (I feel) syntactic clarity. Feel free to
split it into smaller functions if it makes you feel better.

(Also, this whole sigaction() thing might be new to you—that’s OK. The code that’s there is responsible
for reaping zombie processes that appear as the fork()ed child processes exit. If you make lots of zombies
and don’t reap them, your system administrator will become agitated.)

You can get the data from this server by using the client listed in the next section.

6.2 A Simple Stream Client
This guy’s even easier than the server. All this client does is connect to the host you specify on the command
line, port 3490. It gets the string that the server sends.

The client source2:

1 /*
2 ** client.c -- a stream socket client demo
3 */
4

2https://beej.us/guide/bgnet/source/examples/client.c

https://beej.us/guide/bgnet/source/examples/client.c

Chapter 6. Client-Server Background 38

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <string.h>
10 #include <netdb.h>
11 #include <sys/types.h>
12 #include <netinet/in.h>
13 #include <sys/socket.h>
14

15 #include <arpa/inet.h>
16

17 #define PORT "3490" // the port client will be connecting to
18

19 #define MAXDATASIZE 100 // max number of bytes we can get at once
20

21 // get sockaddr, IPv4 or IPv6:
22 void *get_in_addr(struct sockaddr *sa)
23 {
24 if (sa->sa_family == AF_INET) {
25 return &(((struct sockaddr_in*)sa)->sin_addr);
26 }
27

28 return &(((struct sockaddr_in6*)sa)->sin6_addr);
29 }
30

31 int main(int argc, char *argv[])
32 {
33 int sockfd, numbytes;
34 char buf[MAXDATASIZE];
35 struct addrinfo hints, *servinfo, *p;
36 int rv;
37 char s[INET6_ADDRSTRLEN];
38

39 if (argc != 2) {
40 fprintf(stderr,"usage: client hostname\n");
41 exit(1);
42 }
43

44 memset(&hints, 0, sizeof hints);
45 hints.ai_family = AF_UNSPEC;
46 hints.ai_socktype = SOCK_STREAM;
47

48 if ((rv = getaddrinfo(argv[1], PORT, &hints, &servinfo)) != 0) {
49 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
50 return 1;
51 }
52

53 // loop through all the results and connect to the first we can
54 for(p = servinfo; p != NULL; p = p->ai_next) {
55 if ((sockfd = socket(p->ai_family, p->ai_socktype,
56 p->ai_protocol)) == -1) {
57 perror("client: socket");

Chapter 6. Client-Server Background 39

58 continue;
59 }
60

61 if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
62 close(sockfd);
63 perror("client: connect");
64 continue;
65 }
66

67 break;
68 }
69

70 if (p == NULL) {
71 fprintf(stderr, "client: failed to connect\n");
72 return 2;
73 }
74

75 inet_ntop(p->ai_family, get_in_addr((struct sockaddr *)p->ai_addr),
76 s, sizeof s);
77 printf("client: connecting to %s\n", s);
78

79 freeaddrinfo(servinfo); // all done with this structure
80

81 if ((numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
82 perror("recv");
83 exit(1);
84 }
85

86 buf[numbytes] = '\0';
87

88 printf("client: received '%s'\n",buf);
89

90 close(sockfd);
91

92 return 0;
93 }

Notice that if you don’t run the server before you run the client, connect() returns “Connection refused”.
Very useful.

6.3 Datagram Sockets
We’ve already covered the basics of UDP datagram sockets with our discussion of sendto() and
recvfrom(), above, so I’ll just present a couple of sample programs: talker.c and listener.c.

listener sits on a machine waiting for an incoming packet on port 4950. talker sends a packet to that
port, on the specified machine, that contains whatever the user enters on the command line.

Because datagram sockets are connectionless and just fire packets off into the ether with callous disregard
for success, we are going to tell the client and server to use specifically IPv6. This way we avoid the situation
where the server is listening on IPv6 and the client sends on IPv4; the data simply would not be received. (In
our connected TCP stream sockets world, we might still have the mismatch, but the error on connect() for
one address family would cause us to retry for the other.)

Chapter 6. Client-Server Background 40

Here is the source for listener.c3:

1 /*
2 ** listener.c -- a datagram sockets "server" demo
3 */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <string.h>
10 #include <sys/types.h>
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <arpa/inet.h>
14 #include <netdb.h>
15

16 #define MYPORT "4950" // the port users will be connecting to
17

18 #define MAXBUFLEN 100
19

20 // get sockaddr, IPv4 or IPv6:
21 void *get_in_addr(struct sockaddr *sa)
22 {
23 if (sa->sa_family == AF_INET) {
24 return &(((struct sockaddr_in*)sa)->sin_addr);
25 }
26

27 return &(((struct sockaddr_in6*)sa)->sin6_addr);
28 }
29

30 int main(void)
31 {
32 int sockfd;
33 struct addrinfo hints, *servinfo, *p;
34 int rv;
35 int numbytes;
36 struct sockaddr_storage their_addr;
37 char buf[MAXBUFLEN];
38 socklen_t addr_len;
39 char s[INET6_ADDRSTRLEN];
40

41 memset(&hints, 0, sizeof hints);
42 hints.ai_family = AF_INET6; // set to AF_INET to use IPv4
43 hints.ai_socktype = SOCK_DGRAM;
44 hints.ai_flags = AI_PASSIVE; // use my IP
45

46 if ((rv = getaddrinfo(NULL, MYPORT, &hints, &servinfo)) != 0) {
47 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
48 return 1;
49 }
50

3https://beej.us/guide/bgnet/source/examples/listener.c

https://beej.us/guide/bgnet/source/examples/listener.c

Chapter 6. Client-Server Background 41

51 // loop through all the results and bind to the first we can
52 for(p = servinfo; p != NULL; p = p->ai_next) {
53 if ((sockfd = socket(p->ai_family, p->ai_socktype,
54 p->ai_protocol)) == -1) {
55 perror("listener: socket");
56 continue;
57 }
58

59 if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
60 close(sockfd);
61 perror("listener: bind");
62 continue;
63 }
64

65 break;
66 }
67

68 if (p == NULL) {
69 fprintf(stderr, "listener: failed to bind socket\n");
70 return 2;
71 }
72

73 freeaddrinfo(servinfo);
74

75 printf("listener: waiting to recvfrom...\n");
76

77 addr_len = sizeof their_addr;
78 if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1 , 0,
79 (struct sockaddr *)&their_addr, &addr_len)) == -1) {
80 perror("recvfrom");
81 exit(1);
82 }
83

84 printf("listener: got packet from %s\n",
85 inet_ntop(their_addr.ss_family,
86 get_in_addr((struct sockaddr *)&their_addr),
87 s, sizeof s));
88 printf("listener: packet is %d bytes long\n", numbytes);
89 buf[numbytes] = '\0';
90 printf("listener: packet contains \"%s\"\n", buf);
91

92 close(sockfd);
93

94 return 0;
95 }

Notice that in our call to getaddrinfo() we’re finally using SOCK_DGRAM. Also, note that there’s no need
to listen() or accept(). This is one of the perks of using unconnected datagram sockets!

Next comes the source for talker.c4:

4https://beej.us/guide/bgnet/source/examples/talker.c

https://beej.us/guide/bgnet/source/examples/talker.c

Chapter 6. Client-Server Background 42

1 /*
2 ** talker.c -- a datagram "client" demo
3 */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <string.h>
10 #include <sys/types.h>
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <arpa/inet.h>
14 #include <netdb.h>
15

16 #define SERVERPORT "4950" // the port users will be connecting to
17

18 int main(int argc, char *argv[])
19 {
20 int sockfd;
21 struct addrinfo hints, *servinfo, *p;
22 int rv;
23 int numbytes;
24

25 if (argc != 3) {
26 fprintf(stderr,"usage: talker hostname message\n");
27 exit(1);
28 }
29

30 memset(&hints, 0, sizeof hints);
31 hints.ai_family = AF_INET6; // set to AF_INET to use IPv4
32 hints.ai_socktype = SOCK_DGRAM;
33

34 if ((rv = getaddrinfo(argv[1], SERVERPORT, &hints, &servinfo)) != 0) {
35 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
36 return 1;
37 }
38

39 // loop through all the results and make a socket
40 for(p = servinfo; p != NULL; p = p->ai_next) {
41 if ((sockfd = socket(p->ai_family, p->ai_socktype,
42 p->ai_protocol)) == -1) {
43 perror("talker: socket");
44 continue;
45 }
46

47 break;
48 }
49

50 if (p == NULL) {
51 fprintf(stderr, "talker: failed to create socket\n");
52 return 2;
53 }

Chapter 6. Client-Server Background 43

54

55 if ((numbytes = sendto(sockfd, argv[2], strlen(argv[2]), 0,
56 p->ai_addr, p->ai_addrlen)) == -1) {
57 perror("talker: sendto");
58 exit(1);
59 }
60

61 freeaddrinfo(servinfo);
62

63 printf("talker: sent %d bytes to %s\n", numbytes, argv[1]);
64 close(sockfd);
65

66 return 0;
67 }

And that’s all there is to it! Run listener on some machine, then run talker on another. Watch them
communicate! Fun G-rated excitement for the entire nuclear family!

You don’t even have to run the server this time! You can run talker by itself, and it just happily fires packets
off into the ether where they disappear if no one is ready with a recvfrom() on the other side. Remember:
data sent using UDP datagram sockets isn’t guaranteed to arrive!

Except for one more tiny detail that I’ve mentioned many times in the past: connected datagram sockets. I
need to talk about this here, since we’re in the datagram section of the document. Let’s say that talker
calls connect() and specifies the listener’s address. From that point on, talker may only send to and
receive from the address specified by connect(). For this reason, you don’t have to use sendto() and
recvfrom(); you can simply use send() and recv().

Chapter 7

Slightly Advanced Techniques

These aren’t really advanced, but they’re getting out of the more basic levels we’ve already covered. In fact,
if you’ve gotten this far, you should consider yourself fairly accomplished in the basics of Unix network
programming! Congratulations!

So here we go into the brave new world of some of the more esoteric things you might want to learn about
sockets. Have at it!

7.1 Blocking
Blocking. You’ve heard about it—now what the heck is it? In a nutshell, “block” is techie jargon for “sleep”.
You probably noticed that when you run listener, above, it just sits there until a packet arrives. What
happened is that it called recvfrom(), there was no data, and so recvfrom() is said to “block” (that is,
sleep there) until some data arrives.

Lots of functions block. accept() blocks. All the recv() functions block. The reason they can do this is
because they’re allowed to. When you first create the socket descriptor with socket(), the kernel sets it to
blocking. If you don’t want a socket to be blocking, you have to make a call to fcntl():

1 #include <unistd.h>
2 #include <fcntl.h>
3 .
4 .
5 .
6 sockfd = socket(PF_INET, SOCK_STREAM, 0);
7 fcntl(sockfd, F_SETFL, O_NONBLOCK);
8 .
9 .
10 .

By setting a socket to non-blocking, you can effectively “poll” the socket for information. If you try to read
from a non-blocking socket and there’s no data there, it’s not allowed to block—it will return -1 and errno
will be set to EAGAIN or EWOULDBLOCK.

(Wait—it can return EAGAIN or EWOULDBLOCK? Which do you check for? The specification doesn’t actually
specify which your system will return, so for portability, check them both.)

Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait
looking for data on the socket, you’ll suck up CPU time like it was going out of style. A more elegant
solution for checking to see if there’s data waiting to be read comes in the following section on poll().

44

Chapter 7. Slightly Advanced Techniques 45

7.2 poll()—Synchronous I/O Multiplexing
What you really want to be able to do is somehow monitor a bunch of sockets at once and then handle the
ones that have data ready. This way you don’t have to continuously poll all those sockets to see which are
ready to read.

A word of warning: poll() is horribly slow when it comes to giant numbers of connections. In those
circumstances, you’ll get better performance out of an event library such as libeventa that attempts
to use the fastest possible method availabile on your system.

ahttps://libevent.org/

So how can you avoid polling? Not slightly ironically, you can avoid polling by using the poll() system
call. In a nutshell, we’re going to ask the operating system to do all the dirty work for us, and just let us know
when some data is ready to read on which sockets. In the meantime, our process can go to sleep, saving
system resources.

The general gameplan is to keep an array of struct pollfds with information about which socket descrip-
tors we want to monitor, and what kind of events we want to monitor for. The OS will block on the poll()
call until one of those events occurs (e.g. “socket ready to read!”) or until a user-specified timeout occurs.

Usefully, a listen()ing socket will return “ready to read” when a new incoming connection is ready to be
accept()ed.

That’s enough banter. How do we use this?

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

fds is our array of information (which sockets to monitor for what), nfds is the count of elements in the
array, and timeout is a timeout in milliseconds. It returns the number of elements in the array that have had
an event occur.

Let’s have a look at that struct:

struct pollfd {
int fd; // the socket descriptor
short events; // bitmap of events we're interested in
short revents; // when poll() returns, bitmap of events that occurred

};

So we’re going to have an array of those, and we’ll set the fd field for each element to a socket descriptor
we’re interested in monitoring. And then we’ll set the events field to indicate the type of events we’re
interested in.

The events field is the bitwise-OR of the following:

Macro Description

POLLIN Alert me when data is ready to recv() on this socket.
POLLOUT Alert me when I can send() data to this socket without blocking.

Once you have your array of struct pollfds in order, then you can pass it to poll(), also passing the size
of the array, as well as a timeout value in milliseconds. (You can specify a negative timeout to wait forever.)

https://libevent.org/

Chapter 7. Slightly Advanced Techniques 46

After poll() returns, you can check the revents field to see if POLLIN or POLLOUT is set, indicating that
event occurred.

(There’s actually more that you can do with the poll() call. See the poll() man page, below, for more
details.)

Here’s an example1 where we’ll wait 2.5 seconds for data to be ready to read from standard input, i.e. when
you hit RETURN:

1 #include <stdio.h>
2 #include <poll.h>
3

4 int main(void)
5 {
6 struct pollfd pfds[1]; // More if you want to monitor more
7

8 pfds[0].fd = 0; // Standard input
9 pfds[0].events = POLLIN; // Tell me when ready to read
10

11 // If you needed to monitor other things, as well:
12 //pfds[1].fd = some_socket; // Some socket descriptor
13 //pfds[1].events = POLLIN; // Tell me when ready to read
14

15 printf("Hit RETURN or wait 2.5 seconds for timeout\n");
16

17 int num_events = poll(pfds, 1, 2500); // 2.5 second timeout
18

19 if (num_events == 0) {
20 printf("Poll timed out!\n");
21 } else {
22 int pollin_happened = pfds[0].revents & POLLIN;
23

24 if (pollin_happened) {
25 printf("File descriptor %d is ready to read\n", pfds[0].fd);
26 } else {
27 printf("Unexpected event occurred: %d\n", pfds[0].revents);
28 }
29 }
30

31 return 0;
32 }

Notice again that poll() returns the number of elements in the pfds array for which events have occurred.
It doesn’t tell you which elements in the array (you still have to scan for that), but it does tell you how many
entries have a non-zero revents field (so you can stop scanning after you find that many).

A couple questions might come up here: how to add new file descriptors to the set I pass to poll()? For
this, simply make sure you have enough space in the array for all you need, or realloc() more space as
needed.

What about deleting items from the set? For this, you can copy the last element in the array over-top the one
you’re deleting. And then pass in one fewer as the count to poll(). Another option is that you can set any
fd field to a negative number and poll() will ignore it.

How can we put it all together into a chat server that you can telnet to?

1https://beej.us/guide/bgnet/source/examples/poll.c

https://beej.us/guide/bgnet/source/examples/poll.c

Chapter 7. Slightly Advanced Techniques 47

What we’ll do is start a listener socket, and add it to the set of file descriptors to poll(). (It will show
ready-to-read when there’s an incoming connection.)

Then we’ll add new connections to our struct pollfd array. And we’ll grow it dynamically if we run out
of space.

When a connection is closed, we’ll remove it from the array.

And when a connection is ready-to-read, we’ll read the data from it and send that data to all the other con-
nections so they can see what the other users typed.

So give this poll server2 a try. Run it in one window, then telnet localhost 9034 from a number of other
terminal windows. You should be able to see what you type in one window in the other ones (after you hit
RETURN).

Not only that, but if you hit CTRL-] and type quit to exit telnet, the server should detect the disconnection
and remove you from the array of file descriptors.

1 /*
2 ** pollserver.c -- a cheezy multiperson chat server
3 */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <sys/types.h>
10 #include <sys/socket.h>
11 #include <netinet/in.h>
12 #include <arpa/inet.h>
13 #include <netdb.h>
14 #include <poll.h>
15

16 #define PORT "9034" // Port we're listening on
17

18 // Get sockaddr, IPv4 or IPv6:
19 void *get_in_addr(struct sockaddr *sa)
20 {
21 if (sa->sa_family == AF_INET) {
22 return &(((struct sockaddr_in*)sa)->sin_addr);
23 }
24

25 return &(((struct sockaddr_in6*)sa)->sin6_addr);
26 }
27

28 // Return a listening socket
29 int get_listener_socket(void)
30 {
31 int listener; // Listening socket descriptor
32 int yes=1; // For setsockopt() SO_REUSEADDR, below
33 int rv;
34

35 struct addrinfo hints, *ai, *p;
36

2https://beej.us/guide/bgnet/source/examples/pollserver.c

https://beej.us/guide/bgnet/source/examples/pollserver.c

Chapter 7. Slightly Advanced Techniques 48

37 // Get us a socket and bind it
38 memset(&hints, 0, sizeof hints);
39 hints.ai_family = AF_UNSPEC;
40 hints.ai_socktype = SOCK_STREAM;
41 hints.ai_flags = AI_PASSIVE;
42 if ((rv = getaddrinfo(NULL, PORT, &hints, &ai)) != 0) {
43 fprintf(stderr, "pollserver: %s\n", gai_strerror(rv));
44 exit(1);
45 }
46

47 for(p = ai; p != NULL; p = p->ai_next) {
48 listener = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
49 if (listener < 0) {
50 continue;
51 }
52

53 // Lose the pesky "address already in use" error message
54 setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int));
55

56 if (bind(listener, p->ai_addr, p->ai_addrlen) < 0) {
57 close(listener);
58 continue;
59 }
60

61 break;
62 }
63

64 freeaddrinfo(ai); // All done with this
65

66 // If we got here, it means we didn't get bound
67 if (p == NULL) {
68 return -1;
69 }
70

71 // Listen
72 if (listen(listener, 10) == -1) {
73 return -1;
74 }
75

76 return listener;
77 }
78

79 // Add a new file descriptor to the set
80 void add_to_pfds(struct pollfd *pfds[], int newfd, int *fd_count, int *fd_size)
81 {
82 // If we don't have room, add more space in the pfds array
83 if (*fd_count == *fd_size) {
84 *fd_size *= 2; // Double it
85

86 *pfds = realloc(*pfds, sizeof(**pfds) * (*fd_size));
87 }
88

89 (*pfds)[*fd_count].fd = newfd;

Chapter 7. Slightly Advanced Techniques 49

90 (*pfds)[*fd_count].events = POLLIN; // Check ready-to-read
91

92 (*fd_count)++;
93 }
94

95 // Remove an index from the set
96 void del_from_pfds(struct pollfd pfds[], int i, int *fd_count)
97 {
98 // Copy the one from the end over this one
99 pfds[i] = pfds[*fd_count-1];
100

101 (*fd_count)--;
102 }
103

104 // Main
105 int main(void)
106 {
107 int listener; // Listening socket descriptor
108

109 int newfd; // Newly accept()ed socket descriptor
110 struct sockaddr_storage remoteaddr; // Client address
111 socklen_t addrlen;
112

113 char buf[256]; // Buffer for client data
114

115 char remoteIP[INET6_ADDRSTRLEN];
116

117 // Start off with room for 5 connections
118 // (We'll realloc as necessary)
119 int fd_count = 0;
120 int fd_size = 5;
121 struct pollfd *pfds = malloc(sizeof *pfds * fd_size);
122

123 // Set up and get a listening socket
124 listener = get_listener_socket();
125

126 if (listener == -1) {
127 fprintf(stderr, "error getting listening socket\n");
128 exit(1);
129 }
130

131 // Add the listener to set
132 pfds[0].fd = listener;
133 pfds[0].events = POLLIN; // Report ready to read on incoming connection
134

135 fd_count = 1; // For the listener
136

137 // Main loop
138 for(;;) {
139 int poll_count = poll(pfds, fd_count, -1);
140

141 if (poll_count == -1) {
142 perror("poll");

Chapter 7. Slightly Advanced Techniques 50

143 exit(1);
144 }
145

146 // Run through the existing connections looking for data to read
147 for(int i = 0; i < fd_count; i++) {
148

149 // Check if someone's ready to read
150 if (pfds[i].revents & POLLIN) { // We got one!!
151

152 if (pfds[i].fd == listener) {
153 // If listener is ready to read, handle new connection
154

155 addrlen = sizeof remoteaddr;
156 newfd = accept(listener,
157 (struct sockaddr *)&remoteaddr,
158 &addrlen);
159

160 if (newfd == -1) {
161 perror("accept");
162 } else {
163 add_to_pfds(&pfds, newfd, &fd_count, &fd_size);
164

165 printf("pollserver: new connection from %s on "
166 "socket %d\n",
167 inet_ntop(remoteaddr.ss_family,
168 get_in_addr((struct sockaddr*)&remoteaddr),
169 remoteIP, INET6_ADDRSTRLEN),
170 newfd);
171 }
172 } else {
173 // If not the listener, we're just a regular client
174 int nbytes = recv(pfds[i].fd, buf, sizeof buf, 0);
175

176 int sender_fd = pfds[i].fd;
177

178 if (nbytes <= 0) {
179 // Got error or connection closed by client
180 if (nbytes == 0) {
181 // Connection closed
182 printf("pollserver: socket %d hung up\n", sender_fd);
183 } else {
184 perror("recv");
185 }
186

187 close(pfds[i].fd); // Bye!
188

189 del_from_pfds(pfds, i, &fd_count);
190

191 } else {
192 // We got some good data from a client
193

194 for(int j = 0; j < fd_count; j++) {
195 // Send to everyone!

Chapter 7. Slightly Advanced Techniques 51

196 int dest_fd = pfds[j].fd;
197

198 // Except the listener and ourselves
199 if (dest_fd != listener && dest_fd != sender_fd) {
200 if (send(dest_fd, buf, nbytes, 0) == -1) {
201 perror("send");
202 }
203 }
204 }
205 }
206 } // END handle data from client
207 } // END got ready-to-read from poll()
208 } // END looping through file descriptors
209 } // END for(;;)--and you thought it would never end!
210

211 return 0;
212 }

In the next section, we’ll look at a similar, older function called select(). Both select() and poll()
offer similar functionality and performance, and only really differ in how they’re used. select() might be
slightly more portable, but is perhaps a little clunkier in use. Choose the one you like the best, as long as it’s
supported on your system.

7.3 select()—Synchronous I/O Multiplexing, Old School
This function is somewhat strange, but it’s very useful. Take the following situation: you are a server and
you want to listen for incoming connections as well as keep reading from the connections you already have.

No problem, you say, just an accept() and a couple of recv()s. Not so fast, buster! What if you’re blocking
on an accept() call? How are you going to recv() data at the same time? “Use non-blocking sockets!”
No way! You don’t want to be a CPU hog. What, then?

select() gives you the power to monitor several sockets at the same time. It’ll tell you which ones are
ready for reading, which are ready for writing, and which sockets have raised exceptions, if you really want
to know that.

A word of warning: select(), though very portable, is terribly slow when it comes to giant numbers
of connections. In those circumstances, you’ll get better performance out of an event library such as
libeventa that attempts to use the fastest possible method availabile on your system.

ahttps://libevent.org/

Without any further ado, I’ll offer the synopsis of select():

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int numfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

The function monitors “sets” of file descriptors; in particular readfds, writefds, and exceptfds. If you
want to see if you can read from standard input and some socket descriptor, sockfd, just add the file descrip-
tors 0 and sockfd to the set readfds. The parameter numfds should be set to the values of the highest file

https://libevent.org/

Chapter 7. Slightly Advanced Techniques 52

descriptor plus one. In this example, it should be set to sockfd+1, since it is assuredly higher than standard
input (0).

When select() returns, readfdswill be modified to reflect which of the file descriptors you selected which
is ready for reading. You can test them with the macro FD_ISSET(), below.

Before progressing much further, I’ll talk about how to manipulate these sets. Each set is of the type fd_set.
The following macros operate on this type:

Function Description

FD_SET(int fd, fd_set *set);
Add fd to the set.

FD_CLR(int fd, fd_set *set);
Remove fd from the set.

FD_ISSET(int fd, fd_set *set);
Return true if fd is in the set.

FD_ZERO(fd_set *set);
Clear all entries from the set.

Finally, what is this weirded-out struct timeval? Well, sometimes you don’t want to wait forever for
someone to send you some data. Maybe every 96 seconds you want to print “Still Going…” to the termi-
nal even though nothing has happened. This time structure allows you to specify a timeout period. If the
time is exceeded and select() still hasn’t found any ready file descriptors, it’ll return so you can continue
processing.

The struct timeval has the follow fields:

struct timeval {
int tv_sec; // seconds
int tv_usec; // microseconds

};

Just set tv_sec to the number of seconds to wait, and set tv_usec to the number of microseconds to wait.
Yes, that’s _micro_seconds, not milliseconds. There are 1,000 microseconds in a millisecond, and 1,000
milliseconds in a second. Thus, there are 1,000,000 microseconds in a second. Why is it “usec”? The “u”
is supposed to look like the Greek letter μ (Mu) that we use for “micro”. Also, when the function returns,
timeout might be updated to show the time still remaining. This depends on what flavor of Unix you’re
running.

Yay! We have a microsecond resolution timer! Well, don’t count on it. You’ll probably have to wait some
part of your standard Unix timeslice no matter how small you set your struct timeval.

Other things of interest: If you set the fields in your struct timeval to 0, select() will timeout imme-
diately, effectively polling all the file descriptors in your sets. If you set the parameter timeout to NULL,
it will never timeout, and will wait until the first file descriptor is ready. Finally, if you don’t care about
waiting for a certain set, you can just set it to NULL in the call to select().

The following code snippet3 waits 2.5 seconds for something to appear on standard input:

1 /*
2 ** select.c -- a select() demo
3 */
4

5 #include <stdio.h>

3https://beej.us/guide/bgnet/source/examples/select.c

https://beej.us/guide/bgnet/source/examples/select.c

Chapter 7. Slightly Advanced Techniques 53

6 #include <sys/time.h>
7 #include <sys/types.h>
8 #include <unistd.h>
9

10 #define STDIN 0 // file descriptor for standard input
11

12 int main(void)
13 {
14 struct timeval tv;
15 fd_set readfds;
16

17 tv.tv_sec = 2;
18 tv.tv_usec = 500000;
19

20 FD_ZERO(&readfds);
21 FD_SET(STDIN, &readfds);
22

23 // don't care about writefds and exceptfds:
24 select(STDIN+1, &readfds, NULL, NULL, &tv);
25

26 if (FD_ISSET(STDIN, &readfds))
27 printf("A key was pressed!\n");
28 else
29 printf("Timed out.\n");
30

31 return 0;
32 }

If you’re on a line buffered terminal, the key you hit should be RETURN or it will time out anyway.

Now, some of you might think this is a great way to wait for data on a datagram socket—and you are right:
it might be. Some Unices can use select in this manner, and some can’t. You should see what your local man
page says on the matter if you want to attempt it.

Some Unices update the time in your struct timeval to reflect the amount of time still remaining before a
timeout. But others do not. Don’t rely on that occurring if you want to be portable. (Use gettimeofday()
if you need to track time elapsed. It’s a bummer, I know, but that’s the way it is.)

What happens if a socket in the read set closes the connection? Well, in that case, select() returns with
that socket descriptor set as “ready to read”. When you actually do recv() from it, recv() will return 0.
That’s how you know the client has closed the connection.

One more note of interest about select(): if you have a socket that is listen()ing, you can check to see
if there is a new connection by putting that socket’s file descriptor in the readfds set.

And that, my friends, is a quick overview of the almighty select() function.

But, by popular demand, here is an in-depth example. Unfortunately, the difference between the dirt-simple
example, above, and this one here is significant. But have a look, then read the description that follows it.

This program4 acts like a simple multi-user chat server. Start it running in one window, then telnet to it
(“telnet hostname 9034”) frommultiple other windows. When you type something in one telnet session,
it should appear in all the others.

4https://beej.us/guide/bgnet/source/examples/selectserver.c

https://beej.us/guide/bgnet/source/examples/selectserver.c

Chapter 7. Slightly Advanced Techniques 54

1 /*
2 ** selectserver.c -- a cheezy multiperson chat server
3 */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <sys/types.h>
10 #include <sys/socket.h>
11 #include <netinet/in.h>
12 #include <arpa/inet.h>
13 #include <netdb.h>
14

15 #define PORT "9034" // port we're listening on
16

17 // get sockaddr, IPv4 or IPv6:
18 void *get_in_addr(struct sockaddr *sa)
19 {
20 if (sa->sa_family == AF_INET) {
21 return &(((struct sockaddr_in*)sa)->sin_addr);
22 }
23

24 return &(((struct sockaddr_in6*)sa)->sin6_addr);
25 }
26

27 int main(void)
28 {
29 fd_set master; // master file descriptor list
30 fd_set read_fds; // temp file descriptor list for select()
31 int fdmax; // maximum file descriptor number
32

33 int listener; // listening socket descriptor
34 int newfd; // newly accept()ed socket descriptor
35 struct sockaddr_storage remoteaddr; // client address
36 socklen_t addrlen;
37

38 char buf[256]; // buffer for client data
39 int nbytes;
40

41 char remoteIP[INET6_ADDRSTRLEN];
42

43 int yes=1; // for setsockopt() SO_REUSEADDR, below
44 int i, j, rv;
45

46 struct addrinfo hints, *ai, *p;
47

48 FD_ZERO(&master); // clear the master and temp sets
49 FD_ZERO(&read_fds);
50

51 // get us a socket and bind it
52 memset(&hints, 0, sizeof hints);
53 hints.ai_family = AF_UNSPEC;

Chapter 7. Slightly Advanced Techniques 55

54 hints.ai_socktype = SOCK_STREAM;
55 hints.ai_flags = AI_PASSIVE;
56 if ((rv = getaddrinfo(NULL, PORT, &hints, &ai)) != 0) {
57 fprintf(stderr, "selectserver: %s\n", gai_strerror(rv));
58 exit(1);
59 }
60

61 for(p = ai; p != NULL; p = p->ai_next) {
62 listener = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
63 if (listener < 0) {
64 continue;
65 }
66

67 // lose the pesky "address already in use" error message
68 setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int));
69

70 if (bind(listener, p->ai_addr, p->ai_addrlen) < 0) {
71 close(listener);
72 continue;
73 }
74

75 break;
76 }
77

78 // if we got here, it means we didn't get bound
79 if (p == NULL) {
80 fprintf(stderr, "selectserver: failed to bind\n");
81 exit(2);
82 }
83

84 freeaddrinfo(ai); // all done with this
85

86 // listen
87 if (listen(listener, 10) == -1) {
88 perror("listen");
89 exit(3);
90 }
91

92 // add the listener to the master set
93 FD_SET(listener, &master);
94

95 // keep track of the biggest file descriptor
96 fdmax = listener; // so far, it's this one
97

98 // main loop
99 for(;;) {
100 read_fds = master; // copy it
101 if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {
102 perror("select");
103 exit(4);
104 }
105

106 // run through the existing connections looking for data to read

Chapter 7. Slightly Advanced Techniques 56

107 for(i = 0; i <= fdmax; i++) {
108 if (FD_ISSET(i, &read_fds)) { // we got one!!
109 if (i == listener) {
110 // handle new connections
111 addrlen = sizeof remoteaddr;
112 newfd = accept(listener,
113 (struct sockaddr *)&remoteaddr,
114 &addrlen);
115

116 if (newfd == -1) {
117 perror("accept");
118 } else {
119 FD_SET(newfd, &master); // add to master set
120 if (newfd > fdmax) { // keep track of the max
121 fdmax = newfd;
122 }
123 printf("selectserver: new connection from %s on "
124 "socket %d\n",
125 inet_ntop(remoteaddr.ss_family,
126 get_in_addr((struct sockaddr*)&remoteaddr),
127 remoteIP, INET6_ADDRSTRLEN),
128 newfd);
129 }
130 } else {
131 // handle data from a client
132 if ((nbytes = recv(i, buf, sizeof buf, 0)) <= 0) {
133 // got error or connection closed by client
134 if (nbytes == 0) {
135 // connection closed
136 printf("selectserver: socket %d hung up\n", i);
137 } else {
138 perror("recv");
139 }
140 close(i); // bye!
141 FD_CLR(i, &master); // remove from master set
142 } else {
143 // we got some data from a client
144 for(j = 0; j <= fdmax; j++) {
145 // send to everyone!
146 if (FD_ISSET(j, &master)) {
147 // except the listener and ourselves
148 if (j != listener && j != i) {
149 if (send(j, buf, nbytes, 0) == -1) {
150 perror("send");
151 }
152 }
153 }
154 }
155 }
156 } // END handle data from client
157 } // END got new incoming connection
158 } // END looping through file descriptors

Chapter 7. Slightly Advanced Techniques 57

159 } // END for(;;)--and you thought it would never end!
160

161 return 0;
162 }

Notice I have two file descriptor sets in the code: master and read_fds. The first, master, holds all
the socket descriptors that are currently connected, as well as the socket descriptor that is listening for new
connections.

The reason I have the master set is that select() actually changes the set you pass into it to reflect which
sockets are ready to read. Since I have to keep track of the connections from one call of select() to the
next, I must store these safely away somewhere. At the last minute, I copy the master into the read_fds,
and then call select().

But doesn’t this mean that every time I get a new connection, I have to add it to the master set? Yup! And
every time a connection closes, I have to remove it from the master set? Yes, it does.

Notice I check to see when the listener socket is ready to read. When it is, it means I have a new connection
pending, and I accept() it and add it to the master set. Similarly, when a client connection is ready to read,
and recv() returns 0, I know the client has closed the connection, and I must remove it from the master
set.

If the client recv() returns non-zero, though, I know some data has been received. So I get it, and then go
through the master list and send that data to all the rest of the connected clients.

And that, my friends, is a less-than-simple overview of the almighty select() function.

Quick note to all you Linux fans out there: sometimes, in rare circumstances, Linux’s select() can return
“ready-to-read” and then not actually be ready to read! This means it will block on the read() after the
select() says it won’t! Why you little—! Anyway, the workaround solution is to set the O_NONBLOCK flag
on the receiving socket so it errors with EWOULDBLOCK (which you can just safely ignore if it occurs). See
the fcntl() reference page for more info on setting a socket to non-blocking.

In addition, here is a bonus afterthought: there is another function called poll() which behaves much the
same way select() does, but with a different system for managing the file descriptor sets. Check it out!

7.4 Handling Partial send()s

Remember back in the section about send(), above, when I said that send() might not send all the bytes
you asked it to? That is, you want it to send 512 bytes, but it returns 412. What happened to the remaining
100 bytes?

Well, they’re still in your little buffer waiting to be sent out. Due to circumstances beyond your control, the
kernel decided not to send all the data out in one chunk, and now, my friend, it’s up to you to get the data out
there.

You could write a function like this to do it, too:

1 #include <sys/types.h>
2 #include <sys/socket.h>
3

4 int sendall(int s, char *buf, int *len)
5 {
6 int total = 0; // how many bytes we've sent
7 int bytesleft = *len; // how many we have left to send
8 int n;

Chapter 7. Slightly Advanced Techniques 58

9

10 while(total < *len) {
11 n = send(s, buf+total, bytesleft, 0);
12 if (n == -1) { break; }
13 total += n;
14 bytesleft -= n;
15 }
16

17 *len = total; // return number actually sent here
18

19 return n==-1?-1:0; // return -1 on failure, 0 on success
20 }

In this example, s is the socket you want to send the data to, buf is the buffer containing the data, and len
is a pointer to an int containing the number of bytes in the buffer.

The function returns -1 on error (and errno is still set from the call to send()). Also, the number of bytes
actually sent is returned in len. This will be the same number of bytes you asked it to send, unless there was
an error. sendall() will do it’s best, huffing and puffing, to send the data out, but if there’s an error, it gets
back to you right away.

For completeness, here’s a sample call to the function:

1 char buf[10] = "Beej!";
2 int len;
3

4 len = strlen(buf);
5 if (sendall(s, buf, &len) == -1) {
6 perror("sendall");
7 printf("We only sent %d bytes because of the error!\n", len);
8 }

What happens on the receiver’s end when part of a packet arrives? If the packets are variable length, how
does the receiver know when one packet ends and another begins? Yes, real-world scenarios are a royal pain
in the donkeys. You probably have to encapsulate (remember that from the data encapsulation section way
back there at the beginning?) Read on for details!

7.5 Serialization—How to Pack Data
It’s easy enough to send text data across the network, you’re finding, but what happens if you want to send
some “binary” data like ints or floats? It turns out you have a few options.

1. Convert the number into text with a function like sprintf(), then send the text. The receiver will
parse the text back into a number using a function like strtol().

2. Just send the data raw, passing a pointer to the data to send().

3. Encode the number into a portable binary form. The receiver will decode it.

Sneak preview! Tonight only!

[Curtain raises]

Beej says, “I prefer Method Three, above!”

[THE END]

Chapter 7. Slightly Advanced Techniques 59

(Before I begin this section in earnest, I should tell you that there are libraries out there for doing this, and
rolling your own and remaining portable and error-free is quite a challenge. So hunt around and do your
homework before deciding to implement this stuff yourself. I include the information here for those curious
about how things like this work.)

Actually all the methods, above, have their drawbacks and advantages, but, like I said, in general, I prefer
the third method. First, though, let’s talk about some of the drawbacks and advantages to the other two.

The first method, encoding the numbers as text before sending, has the advantage that you can easily print
and read the data that’s coming over the wire. Sometimes a human-readable protocol is excellent to use in a
non-bandwidth-intensive situation, such as with Internet Relay Chat (IRC)5. However, it has the disadvantage
that it is slow to convert, and the results almost always take up more space than the original number!

Method two: passing the raw data. This one is quite easy (but dangerous!): just take a pointer to the data to
send, and call send with it.

double d = 3490.15926535;

send(s, &d, sizeof d, 0); /* DANGER--non-portable! */

The receiver gets it like this:

double d;

recv(s, &d, sizeof d, 0); /* DANGER--non-portable! */

Fast, simple—what’s not to like? Well, it turns out that not all architectures represent a double (or int
for that matter) with the same bit representation or even the same byte ordering! The code is decidedly
non-portable. (Hey—maybe you don’t need portability, in which case this is nice and fast.)

When packing integer types, we’ve already seen how the htons()-class of functions can help keep things
portable by transforming the numbers into Network Byte Order, and how that’s the Right Thing to do. Un-
fortunately, there are no similar functions for float types. Is all hope lost?

Fear not! (Were you afraid there for a second? No? Not even a little bit?) There is something we can do:
we can pack (or “marshal”, or “serialize”, or one of a thousand million other names) the data into a known
binary format that the receiver can unpack on the remote side.

What do I mean by “known binary format”? Well, we’ve already seen the htons() example, right? It
changes (or “encodes”, if you want to think of it that way) a number from whatever the host format is into
Network Byte Order. To reverse (unencode) the number, the receiver calls ntohs().

But didn’t I just get finished saying there wasn’t any such function for other non-integer types? Yes. I did.
And since there’s no standard way in C to do this, it’s a bit of a pickle (that a gratuitous pun there for you
Python fans).

The thing to do is to pack the data into a known format and send that over the wire for decoding. For example,
to pack floats, here’s something quick and dirty with plenty of room for improvement6:

1 #include <stdint.h>
2

3 uint32_t htonf(float f)
4 {
5 uint32_t p;

5https://en.wikipedia.org/wiki/Internet_Relay_Chat
6https://beej.us/guide/bgnet/source/examples/pack.c

https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://beej.us/guide/bgnet/source/examples/pack.c

Chapter 7. Slightly Advanced Techniques 60

6 uint32_t sign;
7

8 if (f < 0) { sign = 1; f = -f; }
9 else { sign = 0; }
10

11 p = ((((uint32_t)f)&0x7fff)<<16) | (sign<<31); // whole part and sign
12 p |= (uint32_t)(((f - (int)f) * 65536.0f))&0xffff; // fraction
13

14 return p;
15 }
16

17 float ntohf(uint32_t p)
18 {
19 float f = ((p>>16)&0x7fff); // whole part
20 f += (p&0xffff) / 65536.0f; // fraction
21

22 if (((p>>31)&0x1) == 0x1) { f = -f; } // sign bit set
23

24 return f;
25 }

The above code is sort of a naive implementation that stores a float in a 32-bit number. The high bit (31) is
used to store the sign of the number (“1” means negative), and the next seven bits (30-16) are used to store
the whole number portion of the float. Finally, the remaining bits (15-0) are used to store the fractional
portion of the number.

Usage is fairly straightforward:

1 #include <stdio.h>
2

3 int main(void)
4 {
5 float f = 3.1415926, f2;
6 uint32_t netf;
7

8 netf = htonf(f); // convert to "network" form
9 f2 = ntohf(netf); // convert back to test
10

11 printf("Original: %f\n", f); // 3.141593
12 printf(" Network: 0x%08X\n", netf); // 0x0003243F
13 printf("Unpacked: %f\n", f2); // 3.141586
14

15 return 0;
16 }

On the plus side, it’s small, simple, and fast. On the minus side, it’s not an efficient use of space and the
range is severely restricted—try storing a number greater-than 32767 in there and it won’t be very happy!
You can also see in the above example that the last couple decimal places are not correctly preserved.

What can we do instead? Well, The Standard for storing floating point numbers is known as IEEE-7547.
Most computers use this format internally for doing floating point math, so in those cases, strictly speaking,
conversion wouldn’t need to be done. But if you want your source code to be portable, that’s an assumption

7https://en.wikipedia.org/wiki/IEEE_754

https://en.wikipedia.org/wiki/IEEE_754

Chapter 7. Slightly Advanced Techniques 61

you can’t necessarily make. (On the other hand, if you want things to be fast, you should optimize this out
on platforms that don’t need to do it! That’s what htons() and its ilk do.)

Here’s some code that encodes floats and doubles into IEEE-754 format8. (Mostly—it doesn’t encode NaN
or Infinity, but it could be modified to do that.)

1 #define pack754_32(f) (pack754((f), 32, 8))
2 #define pack754_64(f) (pack754((f), 64, 11))
3 #define unpack754_32(i) (unpack754((i), 32, 8))
4 #define unpack754_64(i) (unpack754((i), 64, 11))
5

6 uint64_t pack754(long double f, unsigned bits, unsigned expbits)
7 {
8 long double fnorm;
9 int shift;
10 long long sign, exp, significand;
11 unsigned significandbits = bits - expbits - 1; // -1 for sign bit
12

13 if (f == 0.0) return 0; // get this special case out of the way
14

15 // check sign and begin normalization
16 if (f < 0) { sign = 1; fnorm = -f; }
17 else { sign = 0; fnorm = f; }
18

19 // get the normalized form of f and track the exponent
20 shift = 0;
21 while(fnorm >= 2.0) { fnorm /= 2.0; shift++; }
22 while(fnorm < 1.0) { fnorm *= 2.0; shift--; }
23 fnorm = fnorm - 1.0;
24

25 // calculate the binary form (non-float) of the significand data
26 significand = fnorm * ((1LL<<significandbits) + 0.5f);
27

28 // get the biased exponent
29 exp = shift + ((1<<(expbits-1)) - 1); // shift + bias
30

31 // return the final answer
32 return (sign<<(bits-1)) | (exp<<(bits-expbits-1)) | significand;
33 }
34

35 long double unpack754(uint64_t i, unsigned bits, unsigned expbits)
36 {
37 long double result;
38 long long shift;
39 unsigned bias;
40 unsigned significandbits = bits - expbits - 1; // -1 for sign bit
41

42 if (i == 0) return 0.0;
43

44 // pull the significand
45 result = (i&((1LL<<significandbits)-1)); // mask
46 result /= (1LL<<significandbits); // convert back to float

8https://beej.us/guide/bgnet/source/examples/ieee754.c

https://beej.us/guide/bgnet/source/examples/ieee754.c

Chapter 7. Slightly Advanced Techniques 62

47 result += 1.0f; // add the one back on
48

49 // deal with the exponent
50 bias = (1<<(expbits-1)) - 1;
51 shift = ((i>>significandbits)&((1LL<<expbits)-1)) - bias;
52 while(shift > 0) { result *= 2.0; shift--; }
53 while(shift < 0) { result /= 2.0; shift++; }
54

55 // sign it
56 result *= (i>>(bits-1))&1? -1.0: 1.0;
57

58 return result;
59 }

I put some handy macros up there at the top for packing and unpacking 32-bit (probably a float) and 64-
bit (probably a double) numbers, but the pack754() function could be called directly and told to encode
bits-worth of data (expbits of which are reserved for the normalized number’s exponent).

Here’s sample usage:

1

2 #include <stdio.h>
3 #include <stdint.h> // defines uintN_t types
4 #include <inttypes.h> // defines PRIx macros
5

6 int main(void)
7 {
8 float f = 3.1415926, f2;
9 double d = 3.14159265358979323, d2;
10 uint32_t fi;
11 uint64_t di;
12

13 fi = pack754_32(f);
14 f2 = unpack754_32(fi);
15

16 di = pack754_64(d);
17 d2 = unpack754_64(di);
18

19 printf("float before : %.7f\n", f);
20 printf("float encoded: 0x%08" PRIx32 "\n", fi);
21 printf("float after : %.7f\n\n", f2);
22

23 printf("double before : %.20lf\n", d);
24 printf("double encoded: 0x%016" PRIx64 "\n", di);
25 printf("double after : %.20lf\n", d2);
26

27 return 0;
28 }

The above code produces this output:

float before : 3.1415925
float encoded: 0x40490FDA

Chapter 7. Slightly Advanced Techniques 63

float after : 3.1415925

double before : 3.14159265358979311600
double encoded: 0x400921FB54442D18
double after : 3.14159265358979311600

Another question you might have is how do you pack structs? Unfortunately for you, the compiler is free
to put padding all over the place in a struct, and that means you can’t portably send the whole thing over
the wire in one chunk. (Aren’t you getting sick of hearing “can’t do this”, “can’t do that”? Sorry! To quote
a friend, “Whenever anything goes wrong, I always blame Microsoft.” This one might not be Microsoft’s
fault, admittedly, but my friend’s statement is completely true.)

Back to it: the best way to send the struct over the wire is to pack each field independently and then unpack
them into the struct when they arrive on the other side.

That’s a lot of work, is what you’re thinking. Yes, it is. One thing you can do is write a helper function to
help pack the data for you. It’ll be fun! Really!

In the book The Practice of Programming9 by Kernighan and Pike, they implement printf()-like functions
called pack() and unpack() that do exactly this. I’d link to them, but apparently those functions aren’t
online with the rest of the source from the book.

(The Practice of Programming is an excellent read. Zeus saves a kitten every time I recommend it.)

At this point, I’m going to drop a pointer to a Protocol Buffers implementation in C10 which I’ve never used,
but looks completely respectable. Python and Perl programmers will want to check out their language’s
pack() and unpack() functions for accomplishing the same thing. And Java has a big-ol’ Serializable
interface that can be used in a similar way.

But if you want to write your own packing utility in C, K&P’s trick is to use variable argument lists to make
printf()-like functions to build the packets. Here’s a version I cooked up11 on my own based on that which
hopefully will be enough to give you an idea of how such a thing can work.

(This code references the pack754() functions, above. The packi*() functions operate like the familiar
htons() family, except they pack into a char array instead of another integer.)

1 #include <stdio.h>
2 #include <ctype.h>
3 #include <stdarg.h>
4 #include <string.h>
5

6 /*
7 ** packi16() -- store a 16-bit int into a char buffer (like htons())
8 */
9 void packi16(unsigned char *buf, unsigned int i)
10 {
11 *buf++ = i>>8; *buf++ = i;
12 }
13

14 /*
15 ** packi32() -- store a 32-bit int into a char buffer (like htonl())
16 */
17 void packi32(unsigned char *buf, unsigned long int i)

9https://beej.us/guide/url/tpop
10https://github.com/protobuf-c/protobuf-c
11https://beej.us/guide/bgnet/source/examples/pack2.c

https://beej.us/guide/url/tpop
https://github.com/protobuf-c/protobuf-c
https://beej.us/guide/bgnet/source/examples/pack2.c

Chapter 7. Slightly Advanced Techniques 64

18 {
19 *buf++ = i>>24; *buf++ = i>>16;
20 *buf++ = i>>8; *buf++ = i;
21 }
22

23 /*
24 ** packi64() -- store a 64-bit int into a char buffer (like htonl())
25 */
26 void packi64(unsigned char *buf, unsigned long long int i)
27 {
28 *buf++ = i>>56; *buf++ = i>>48;
29 *buf++ = i>>40; *buf++ = i>>32;
30 *buf++ = i>>24; *buf++ = i>>16;
31 *buf++ = i>>8; *buf++ = i;
32 }
33

34 /*
35 ** unpacki16() -- unpack a 16-bit int from a char buffer (like ntohs())
36 */
37 int unpacki16(unsigned char *buf)
38 {
39 unsigned int i2 = ((unsigned int)buf[0]<<8) | buf[1];
40 int i;
41

42 // change unsigned numbers to signed
43 if (i2 <= 0x7fffu) { i = i2; }
44 else { i = -1 - (unsigned int)(0xffffu - i2); }
45

46 return i;
47 }
48

49 /*
50 ** unpacku16() -- unpack a 16-bit unsigned from a char buffer (like ntohs())
51 */
52 unsigned int unpacku16(unsigned char *buf)
53 {
54 return ((unsigned int)buf[0]<<8) | buf[1];
55 }
56

57 /*
58 ** unpacki32() -- unpack a 32-bit int from a char buffer (like ntohl())
59 */
60 long int unpacki32(unsigned char *buf)
61 {
62 unsigned long int i2 = ((unsigned long int)buf[0]<<24) |
63 ((unsigned long int)buf[1]<<16) |
64 ((unsigned long int)buf[2]<<8) |
65 buf[3];
66 long int i;
67

68 // change unsigned numbers to signed
69 if (i2 <= 0x7fffffffu) { i = i2; }
70 else { i = -1 - (long int)(0xffffffffu - i2); }

Chapter 7. Slightly Advanced Techniques 65

71

72 return i;
73 }
74

75 /*
76 ** unpacku32() -- unpack a 32-bit unsigned from a char buffer (like ntohl())
77 */
78 unsigned long int unpacku32(unsigned char *buf)
79 {
80 return ((unsigned long int)buf[0]<<24) |
81 ((unsigned long int)buf[1]<<16) |
82 ((unsigned long int)buf[2]<<8) |
83 buf[3];
84 }
85

86 /*
87 ** unpacki64() -- unpack a 64-bit int from a char buffer (like ntohl())
88 */
89 long long int unpacki64(unsigned char *buf)
90 {
91 unsigned long long int i2 = ((unsigned long long int)buf[0]<<56) |
92 ((unsigned long long int)buf[1]<<48) |
93 ((unsigned long long int)buf[2]<<40) |
94 ((unsigned long long int)buf[3]<<32) |
95 ((unsigned long long int)buf[4]<<24) |
96 ((unsigned long long int)buf[5]<<16) |
97 ((unsigned long long int)buf[6]<<8) |
98 buf[7];
99 long long int i;
100

101 // change unsigned numbers to signed
102 if (i2 <= 0x7fffffffffffffffu) { i = i2; }
103 else { i = -1 -(long long int)(0xffffffffffffffffu - i2); }
104

105 return i;
106 }
107

108 /*
109 ** unpacku64() -- unpack a 64-bit unsigned from a char buffer (like ntohl())
110 */
111 unsigned long long int unpacku64(unsigned char *buf)
112 {
113 return ((unsigned long long int)buf[0]<<56) |
114 ((unsigned long long int)buf[1]<<48) |
115 ((unsigned long long int)buf[2]<<40) |
116 ((unsigned long long int)buf[3]<<32) |
117 ((unsigned long long int)buf[4]<<24) |
118 ((unsigned long long int)buf[5]<<16) |
119 ((unsigned long long int)buf[6]<<8) |
120 buf[7];
121 }
122

123 /*

Chapter 7. Slightly Advanced Techniques 66

124 ** pack() -- store data dictated by the format string in the buffer
125 **
126 ** bits |signed unsigned float string
127 ** -----+----------------------------------
128 ** 8 | c C
129 ** 16 | h H f
130 ** 32 | l L d
131 ** 64 | q Q g
132 ** - | s
133 **
134 ** (16-bit unsigned length is automatically prepended to strings)
135 */
136

137 unsigned int pack(unsigned char *buf, char *format, ...)
138 {
139 va_list ap;
140

141 signed char c; // 8-bit
142 unsigned char C;
143

144 int h; // 16-bit
145 unsigned int H;
146

147 long int l; // 32-bit
148 unsigned long int L;
149

150 long long int q; // 64-bit
151 unsigned long long int Q;
152

153 float f; // floats
154 double d;
155 long double g;
156 unsigned long long int fhold;
157

158 char *s; // strings
159 unsigned int len;
160

161 unsigned int size = 0;
162

163 va_start(ap, format);
164

165 for(; *format != '\0'; format++) {
166 switch(*format) {
167 case 'c': // 8-bit
168 size += 1;
169 c = (signed char)va_arg(ap, int); // promoted
170 *buf++ = c;
171 break;
172

173 case 'C': // 8-bit unsigned
174 size += 1;
175 C = (unsigned char)va_arg(ap, unsigned int); // promoted
176 *buf++ = C;

Chapter 7. Slightly Advanced Techniques 67

177 break;
178

179 case 'h': // 16-bit
180 size += 2;
181 h = va_arg(ap, int);
182 packi16(buf, h);
183 buf += 2;
184 break;
185

186 case 'H': // 16-bit unsigned
187 size += 2;
188 H = va_arg(ap, unsigned int);
189 packi16(buf, H);
190 buf += 2;
191 break;
192

193 case 'l': // 32-bit
194 size += 4;
195 l = va_arg(ap, long int);
196 packi32(buf, l);
197 buf += 4;
198 break;
199

200 case 'L': // 32-bit unsigned
201 size += 4;
202 L = va_arg(ap, unsigned long int);
203 packi32(buf, L);
204 buf += 4;
205 break;
206

207 case 'q': // 64-bit
208 size += 8;
209 q = va_arg(ap, long long int);
210 packi64(buf, q);
211 buf += 8;
212 break;
213

214 case 'Q': // 64-bit unsigned
215 size += 8;
216 Q = va_arg(ap, unsigned long long int);
217 packi64(buf, Q);
218 buf += 8;
219 break;
220

221 case 'f': // float-16
222 size += 2;
223 f = (float)va_arg(ap, double); // promoted
224 fhold = pack754_16(f); // convert to IEEE 754
225 packi16(buf, fhold);
226 buf += 2;
227 break;
228

229 case 'd': // float-32

Chapter 7. Slightly Advanced Techniques 68

230 size += 4;
231 d = va_arg(ap, double);
232 fhold = pack754_32(d); // convert to IEEE 754
233 packi32(buf, fhold);
234 buf += 4;
235 break;
236

237 case 'g': // float-64
238 size += 8;
239 g = va_arg(ap, long double);
240 fhold = pack754_64(g); // convert to IEEE 754
241 packi64(buf, fhold);
242 buf += 8;
243 break;
244

245 case 's': // string
246 s = va_arg(ap, char*);
247 len = strlen(s);
248 size += len + 2;
249 packi16(buf, len);
250 buf += 2;
251 memcpy(buf, s, len);
252 buf += len;
253 break;
254 }
255 }
256

257 va_end(ap);
258

259 return size;
260 }
261

262 /*
263 ** unpack() -- unpack data dictated by the format string into the buffer
264 **
265 ** bits |signed unsigned float string
266 ** -----+----------------------------------
267 ** 8 | c C
268 ** 16 | h H f
269 ** 32 | l L d
270 ** 64 | q Q g
271 ** - | s
272 **
273 ** (string is extracted based on its stored length, but 's' can be
274 ** prepended with a max length)
275 */
276 void unpack(unsigned char *buf, char *format, ...)
277 {
278 va_list ap;
279

280 signed char *c; // 8-bit
281 unsigned char *C;
282

Chapter 7. Slightly Advanced Techniques 69

283 int *h; // 16-bit
284 unsigned int *H;
285

286 long int *l; // 32-bit
287 unsigned long int *L;
288

289 long long int *q; // 64-bit
290 unsigned long long int *Q;
291

292 float *f; // floats
293 double *d;
294 long double *g;
295 unsigned long long int fhold;
296

297 char *s;
298 unsigned int len, maxstrlen=0, count;
299

300 va_start(ap, format);
301

302 for(; *format != '\0'; format++) {
303 switch(*format) {
304 case 'c': // 8-bit
305 c = va_arg(ap, signed char*);
306 if (*buf <= 0x7f) { *c = *buf;} // re-sign
307 else { *c = -1 - (unsigned char)(0xffu - *buf); }
308 buf++;
309 break;
310

311 case 'C': // 8-bit unsigned
312 C = va_arg(ap, unsigned char*);
313 *C = *buf++;
314 break;
315

316 case 'h': // 16-bit
317 h = va_arg(ap, int*);
318 *h = unpacki16(buf);
319 buf += 2;
320 break;
321

322 case 'H': // 16-bit unsigned
323 H = va_arg(ap, unsigned int*);
324 *H = unpacku16(buf);
325 buf += 2;
326 break;
327

328 case 'l': // 32-bit
329 l = va_arg(ap, long int*);
330 *l = unpacki32(buf);
331 buf += 4;
332 break;
333

334 case 'L': // 32-bit unsigned
335 L = va_arg(ap, unsigned long int*);

Chapter 7. Slightly Advanced Techniques 70

336 *L = unpacku32(buf);
337 buf += 4;
338 break;
339

340 case 'q': // 64-bit
341 q = va_arg(ap, long long int*);
342 *q = unpacki64(buf);
343 buf += 8;
344 break;
345

346 case 'Q': // 64-bit unsigned
347 Q = va_arg(ap, unsigned long long int*);
348 *Q = unpacku64(buf);
349 buf += 8;
350 break;
351

352 case 'f': // float
353 f = va_arg(ap, float*);
354 fhold = unpacku16(buf);
355 *f = unpack754_16(fhold);
356 buf += 2;
357 break;
358

359 case 'd': // float-32
360 d = va_arg(ap, double*);
361 fhold = unpacku32(buf);
362 *d = unpack754_32(fhold);
363 buf += 4;
364 break;
365

366 case 'g': // float-64
367 g = va_arg(ap, long double*);
368 fhold = unpacku64(buf);
369 *g = unpack754_64(fhold);
370 buf += 8;
371 break;
372

373 case 's': // string
374 s = va_arg(ap, char*);
375 len = unpacku16(buf);
376 buf += 2;
377 if (maxstrlen > 0 && len >= maxstrlen) count = maxstrlen - 1;
378 else count = len;
379 memcpy(s, buf, count);
380 s[count] = '\0';
381 buf += len;
382 break;
383

384 default:
385 if (isdigit(*format)) { // track max str len
386 maxstrlen = maxstrlen * 10 + (*format-'0');
387 }
388 }

Chapter 7. Slightly Advanced Techniques 71

389

390 if (!isdigit(*format)) maxstrlen = 0;
391 }
392

393 va_end(ap);
394 }

And here is a demonstration program12 of the above code that packs some data into buf and then unpacks it
into variables. Note that when calling unpack() with a string argument (format specifier “s”), it’s wise to
put a maximum length count in front of it to prevent a buffer overrun, e.g. “96s”. Be wary when unpacking
data you get over the network—a malicious user might send badly-constructed packets in an effort to attack
your system!

1 #include <stdio.h>
2

3 // various bits for floating point types--
4 // varies for different architectures
5 typedef float float32_t;
6 typedef double float64_t;
7

8 int main(void)
9 {
10 unsigned char buf[1024];
11 int8_t magic;
12 int16_t monkeycount;
13 int32_t altitude;
14 float32_t absurdityfactor;
15 char *s = "Great unmitigated Zot! You've found the Runestaff!";
16 char s2[96];
17 int16_t packetsize, ps2;
18

19 packetsize = pack(buf, "chhlsf", (int8_t)'B', (int16_t)0, (int16_t)37,
20 (int32_t)-5, s, (float32_t)-3490.6677);
21 packi16(buf+1, packetsize); // store packet size in packet for kicks
22

23 printf("packet is %" PRId32 " bytes\n", packetsize);
24

25 unpack(buf, "chhl96sf", &magic, &ps2, &monkeycount, &altitude, s2,
26 &absurdityfactor);
27

28 printf("'%c' %" PRId32" %" PRId16 " %" PRId32
29 " \"%s\" %f\n", magic, ps2, monkeycount,
30 altitude, s2, absurdityfactor);
31

32 return 0;
33 }

Whether you roll your own code or use someone else’s, it’s a good idea to have a general set of data packing
routines for the sake of keeping bugs in check, rather than packing each bit by hand each time.

When packing the data, what’s a good format to use? Excellent question. Fortunately, RFC 450613, the
External Data Representation Standard, already defines binary formats for a bunch of different types, like

12https://beej.us/guide/bgnet/source/examples/pack2.c
13https://tools.ietf.org/html/rfc4506

https://beej.us/guide/bgnet/source/examples/pack2.c
https://tools.ietf.org/html/rfc4506

Chapter 7. Slightly Advanced Techniques 72

floating point types, integer types, arrays, raw data, etc. I suggest conforming to that if you’re going to roll
the data yourself. But you’re not obligated to. The Packet Police are not right outside your door. At least, I
don’t think they are.

In any case, encoding the data somehow or another before you send it is the right way of doing things!

7.6 Son of Data Encapsulation
What does it really mean to encapsulate data, anyway? In the simplest case, it means you’ll stick a header
on there with either some identifying information or a packet length, or both.

What should your header look like? Well, it’s just some binary data that represents whatever you feel is
necessary to complete your project.

Wow. That’s vague.

Okay. For instance, let’s say you have a multi-user chat program that uses SOCK_STREAMs. When a user
types (“says”) something, two pieces of information need to be transmitted to the server: what was said and
who said it.

So far so good? “What’s the problem?” you’re asking.

The problem is that the messages can be of varying lengths. One person named “tom” might say, “Hi”, and
another person named “Benjamin” might say, “Hey guys what is up?”

So you send() all this stuff to the clients as it comes in. Your outgoing data stream looks like this:

t o m H i B e n j a m i n H e y g u y s w h a t i s u p ?

And so on. How does the client know when one message starts and another stops? You could, if you wanted,
make all messages the same length and just call the sendall() we implemented, above. But that wastes
bandwidth! We don’t want to send() 1024 bytes just so “tom” can say “Hi”.

So we encapsulate the data in a tiny header and packet structure. Both the client and server know how to
pack and unpack (sometimes referred to as “marshal” and “unmarshal”) this data. Don’t look now, but we’re
starting to define a protocol that describes how a client and server communicate!

In this case, let’s assume the user name is a fixed length of 8 characters, padded with '\0'. And then let’s
assume the data is variable length, up to a maximum of 128 characters. Let’s have a look a sample packet
structure that we might use in this situation:

1. len (1 byte, unsigned)—The total length of the packet, counting the 8-byte user name and chat data.

2. name (8 bytes)—The user’s name, NUL-padded if necessary.

3. chatdata (n-bytes)—The data itself, no more than 128 bytes. The length of the packet should be
calculated as the length of this data plus 8 (the length of the name field, above).

Why did I choose the 8-byte and 128-byte limits for the fields? I pulled them out of the air, assuming they’d
be long enough. Maybe, though, 8 bytes is too restrictive for your needs, and you can have a 30-byte name
field, or whatever. The choice is up to you.

Using the above packet definition, the first packet would consist of the following information (in hex and
ASCII):

0A 74 6F 6D 00 00 00 00 00 48 69
(length) T o m (padding) H i

And the second is similar:

Chapter 7. Slightly Advanced Techniques 73

18 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
(length) B e n j a m i n H e y g u y s w ...

(The length is stored in Network Byte Order, of course. In this case, it’s only one byte so it doesn’t matter, but
generally speaking you’ll want all your binary integers to be stored in Network Byte Order in your packets.)

When you’re sending this data, you should be safe and use a command similar to sendall(), above, so you
know all the data is sent, even if it takes multiple calls to send() to get it all out.

Likewise, when you’re receiving this data, you need to do a bit of extra work. To be safe, you should assume
that you might receive a partial packet (like maybe we receive “18 42 65 6E 6A” from Benjamin, above, but
that’s all we get in this call to recv()). We need to call recv() over and over again until the packet is
completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to be complete, since
that number is tacked on the front of the packet. We also know the maximum packet size is 1+8+128, or 137
bytes (because that’s how we defined the packet).

There are actually a couple things you can do here. Since you know every packet starts off with a length,
you can call recv() just to get the packet length. Then once you have that, you can call it again specifying
exactly the remaining length of the packet (possibly repeatedly to get all the data) until you have the complete
packet. The advantage of this method is that you only need a buffer large enough for one packet, while the
disadvantage is that you need to call recv() at least twice to get all the data.

Another option is just to call recv() and say the amount you’re willing to receive is the maximum number
of bytes in a packet. Then whatever you get, stick it onto the back of a buffer, and finally check to see if the
packet is complete. Of course, you might get some of the next packet, so you’ll need to have room for that.

What you can do is declare an array big enough for two packets. This is your work array where you will
reconstruct packets as they arrive.

Every time you recv() data, you’ll append it into the work buffer and check to see if the packet is complete.
That is, the number of bytes in the buffer is greater than or equal to the length specified in the header (+1,
because the length in the header doesn’t include the byte for the length itself). If the number of bytes in the
buffer is less than 1, the packet is not complete, obviously. You have to make a special case for this, though,
since the first byte is garbage and you can’t rely on it for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your work buffer.

Whew! Are you juggling that in your head yet? Well, here’s the second of the one-two punch: you might
have read past the end of one packet and onto the next in a single recv() call. That is, you have a work
buffer with one complete packet, and an incomplete part of the next packet! Bloody heck. (But this is why
you made your work buffer large enough to hold two packets—in case this happened!)

Since you know the length of the first packet from the header, and you’ve been keeping track of the number
of bytes in the work buffer, you can subtract and calculate how many of the bytes in the work buffer belong
to the second (incomplete) packet. When you’ve handled the first one, you can clear it out of the work buffer
and move the partial second packet down the to front of the buffer so it’s all ready to go for the next recv().

(Some of you readers will note that actually moving the partial second packet to the beginning of the work
buffer takes time, and the program can be coded to not require this by using a circular buffer. Unfortunately
for the rest of you, a discussion on circular buffers is beyond the scope of this article. If you’re still curious,
grab a data structures book and go from there.)

I never said it was easy. Ok, I did say it was easy. And it is; you just need practice and pretty soon it’ll come
to you naturally. By Excalibur I swear it!

Chapter 7. Slightly Advanced Techniques 74

7.7 Broadcast Packets—Hello, World!
So far, this guide has talked about sending data from one host to one other host. But it is possible, I insist,
that you can, with the proper authority, send data to multiple hosts at the same time!

With UDP (only UDP, not TCP) and standard IPv4, this is done through a mechanism called broadcasting.
With IPv6, broadcasting isn’t supported, and you have to resort to the often superior technique ofmulticasting,
which, sadly I won’t be discussing at this time. But enough of the starry-eyed future—we’re stuck in the 32-
bit present.

But wait! You can’t just run off and start broadcasting willy-nilly; You have to set the socket option
SO_BROADCAST before you can send a broadcast packet out on the network. It’s like a one of those little
plastic covers they put over the missile launch switch! That’s just how much power you hold in your hands!

But seriously, though, there is a danger to using broadcast packets, and that is: every system that receives
a broadcast packet must undo all the onion-skin layers of data encapsulation until it finds out what port the
data is destined to. And then it hands the data over or discards it. In either case, it’s a lot of work for each
machine that receives the broadcast packet, and since it is all of them on the local network, that could be a
lot of machines doing a lot of unnecessary work. When the game Doom first came out, this was a complaint
about its network code.

Now, there is more than one way to skin a cat… wait a minute. Is there really more than one way to skin
a cat? What kind of expression is that? Uh, and likewise, there is more than one way to send a broadcast
packet. So, to get to the meat and potatoes of the whole thing: how do you specify the destination address
for a broadcast message? There are two common ways:

1. Send the data to a specific subnet’s broadcast address. This is the subnet’s network number with all
one-bits set for the host portion of the address. For instance, at home my network is 192.168.1.0, my
netmask is 255.255.255.0, so the last byte of the address is my host number (because the first three
bytes, according to the netmask, are the network number). Somy broadcast address is 192.168.1.255.
Under Unix, the ifconfig command will actually give you all this data. (If you’re curious, the bitwise
logic to get your broadcast address is network_number OR (NOT netmask).) You can send this type
of broadcast packet to remote networks as well as your local network, but you run the risk of the packet
being dropped by the destination’s router. (If they didn’t drop it, then some random smurf could start
flooding their LAN with broadcast traffic.)

2. Send the data to the “global” broadcast address. This is 255.255.255.255, aka INADDR_BROADCAST.
Many machines will automatically bitwise AND this with your network number to convert it to a
network broadcast address, but some won’t. It varies. Routers do not forward this type of broadcast
packet off your local network, ironically enough.

So what happens if you try to send data on the broadcast address without first setting the SO_BROADCAST
socket option? Well, let’s fire up good old talker and listener and see what happens.

$ talker 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ talker 192.168.1.255 foo
sendto: Permission denied
$ talker 255.255.255.255 foo
sendto: Permission denied

Yes, it’s not happy at all…because we didn’t set the SO_BROADCAST socket option. Do that, and now you can
sendto() anywhere you want!

In fact, that’s the only difference between a UDP application that can broadcast and one that can’t. So let’s
take the old talker application and add one section that sets the SO_BROADCAST socket option. We’ll call
this program broadcaster.c14:

14https://beej.us/guide/bgnet/source/examples/broadcaster.c

https://beej.us/guide/bgnet/source/examples/broadcaster.c

Chapter 7. Slightly Advanced Techniques 75

1 /*
2 ** broadcaster.c -- a datagram "client" like talker.c, except
3 ** this one can broadcast
4 */
5

6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <unistd.h>
9 #include <errno.h>
10 #include <string.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <netinet/in.h>
14 #include <arpa/inet.h>
15 #include <netdb.h>
16

17 #define SERVERPORT 4950 // the port users will be connecting to
18

19 int main(int argc, char *argv[])
20 {
21 int sockfd;
22 struct sockaddr_in their_addr; // connector's address information
23 struct hostent *he;
24 int numbytes;
25 int broadcast = 1;
26 //char broadcast = '1'; // if that doesn't work, try this
27

28 if (argc != 3) {
29 fprintf(stderr,"usage: broadcaster hostname message\n");
30 exit(1);
31 }
32

33 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
34 perror("gethostbyname");
35 exit(1);
36 }
37

38 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
39 perror("socket");
40 exit(1);
41 }
42

43 // this call is what allows broadcast packets to be sent:
44 if (setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &broadcast,
45 sizeof broadcast) == -1) {
46 perror("setsockopt (SO_BROADCAST)");
47 exit(1);
48 }
49

50 their_addr.sin_family = AF_INET; // host byte order
51 their_addr.sin_port = htons(SERVERPORT); // short, network byte order
52 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
53 memset(their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

Chapter 7. Slightly Advanced Techniques 76

54

55 if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0,
56 (struct sockaddr *)&their_addr, sizeof their_addr)) == -1) {
57 perror("sendto");
58 exit(1);
59 }
60

61 printf("sent %d bytes to %s\n", numbytes,
62 inet_ntoa(their_addr.sin_addr));
63

64 close(sockfd);
65

66 return 0;
67 }

What’s different between this and a “normal” UDP client/server situation? Nothing! (With the exception
of the client being allowed to send broadcast packets in this case.) As such, go ahead and run the old UDP
listener program in one window, and broadcaster in another. You should be now be able to do all those
sends that failed, above.

$ broadcaster 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ broadcaster 192.168.1.255 foo
sent 3 bytes to 192.168.1.255
$ broadcaster 255.255.255.255 foo
sent 3 bytes to 255.255.255.255

And you should see listener responding that it got the packets. (If listener doesn’t respond, it could
be because it’s bound to an IPv6 address. Try changing the AF_INET6 in listener.c to AF_INET to force
IPv4.)

Well, that’s kind of exciting. But now fire up listener on another machine next to you on the same network
so that you have two copies going, one on each machine, and run broadcaster again with your broadcast
address… Hey! Both listeners get the packet even though you only called sendto() once! Cool!

If the listener gets data you send directly to it, but not data on the broadcast address, it could be that you
have a firewall on your local machine that is blocking the packets. (Yes, Pat and Bapper, thank you for
realizing before I did that this is why my sample code wasn’t working. I told you I’d mention you in the
guide, and here you are. So nyah.)

Again, be careful with broadcast packets. Since every machine on the LAN will be forced to deal with the
packet whether it recvfrom()s it or not, it can present quite a load to the entire computing network. They
are definitely to be used sparingly and appropriately.

Chapter 8

Common Questions

Where can I get those header files?

If you don’t have them on your system already, you probably don’t need them. Check the manual for your
particular platform. If you’re building for Windows, you only need to #include <winsock.h>.

What do I do when bind() reports “Address already in use”?

You have to use setsockopt()with the SO_REUSEADDR option on the listening socket. Check out the section
on bind() and the section on select() for an example.

How do I get a list of open sockets on the system?

Use the netstat. Check the man page for full details, but you should get some good output just typing:

$ netstat

The only trick is determining which socket is associated with which program. :-)

How can I view the routing table?

Run the route command (in /sbin on most Linuxes) or the command netstat -r. Or the command
ip route.

How can I run the client and server programs if I only have one computer? Don’t I need a network to
write network programs?

Fortunately for you, virtually all machines implement a loopback network “device” that sits in the kernel and
pretends to be a network card. (This is the interface listed as “lo” in the routing table.)

Pretend you’re logged into a machine named “goat”. Run the client in one window and the server in another.
Or start the server in the background (“server &”) and run the client in the same window. The upshot of
the loopback device is that you can either client goat or client localhost (since “localhost” is likely
defined in your /etc/hosts file) and you’ll have the client talking to the server without a network!

In short, no changes are necessary to any of the code to make it run on a single non-networked machine!
Huzzah!

How can I tell if the remote side has closed connection?

You can tell because recv() will return 0.

How do I implement a “ping” utility? What is ICMP? Where can I find out more about raw sockets
and SOCK_RAW?

77

Chapter 8. Common Questions 78

All your raw sockets questions will be answered inW. Richard Stevens’ UNIX Network Programming books.
Also, look in the ping/ subdirectory in Stevens’ UNIX Network Programming source code, available on-
line1.

How do I change or shorten the timeout on a call to connect()?

Instead of giving you exactly the same answer that W. Richard Stevens would give you, I’ll just refer you to
lib/connect_nonb.c in the UNIX Network Programming source code2.

The gist of it is that you make a socket descriptor with socket(), set it to non-blocking, call connect(), and
if all goes well connect()will return -1 immediately and errnowill be set to EINPROGRESS. Then you call
select() with whatever timeout you want, passing the socket descriptor in both the read and write sets. If
it doesn’t timeout, it means the connect() call completed. At this point, you’ll have to use getsockopt()
with the SO_ERROR option to get the return value from the connect() call, which should be zero if there was
no error.

Finally, you’ll probably want to set the socket back to be blocking again before you start transferring data
over it.

Notice that this has the added benefit of allowing your program to do something else while it’s connecting,
too. You could, for example, set the timeout to something low, like 500 ms, and update an indicator onscreen
each timeout, then call select() again. When you’ve called select() and timed-out, say, 20 times, you’ll
know it’s time to give up on the connection.

Like I said, check out Stevens’ source for a perfectly excellent example.

How do I build for Windows?

First, delete Windows and install Linux or BSD. };-). No, actually, just see the section on building for
Windows in the introduction.

How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!

The linker errors happen because Sun boxes don’t automatically compile in the socket libraries. See the
section on building for Solaris/SunOS in the introduction for an example of how to do this.

Why does select() keep falling out on a signal?

Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When you set up a signal
handler with sigaction(), you can set the flag SA_RESTART, which is supposed to restart the system call
after it was interrupted.

Naturally, this doesn’t always work.

My favorite solution to this involves a goto statement. You know this irritates your professors to no end, so
go for it!

1 select_restart:
2 if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
3 if (errno == EINTR) {
4 // some signal just interrupted us, so restart
5 goto select_restart;
6 }
7 // handle the real error here:
8 perror("select");
9 }

1http://www.unpbook.com/src.html
2http://www.unpbook.com/src.html

http://www.unpbook.com/src.html
http://www.unpbook.com/src.html
http://www.unpbook.com/src.html

Chapter 8. Common Questions 79

Sure, you don’t need to use goto in this case; you can use other structures to control it. But I think the goto
statement is actually cleaner.

How can I implement a timeout on a call to recv()?

Use select()! It allows you to specify a timeout parameter for socket descriptors that you’re looking to
read from. Or, you could wrap the entire functionality in a single function, like this:

1 #include <unistd.h>
2 #include <sys/time.h>
3 #include <sys/types.h>
4 #include <sys/socket.h>
5

6 int recvtimeout(int s, char *buf, int len, int timeout)
7 {
8 fd_set fds;
9 int n;
10 struct timeval tv;
11

12 // set up the file descriptor set
13 FD_ZERO(&fds);
14 FD_SET(s, &fds);
15

16 // set up the struct timeval for the timeout
17 tv.tv_sec = timeout;
18 tv.tv_usec = 0;
19

20 // wait until timeout or data received
21 n = select(s+1, &fds, NULL, NULL, &tv);
22 if (n == 0) return -2; // timeout!
23 if (n == -1) return -1; // error
24

25 // data must be here, so do a normal recv()
26 return recv(s, buf, len, 0);
27 }
28 .
29 .
30 .
31 // Sample call to recvtimeout():
32 n = recvtimeout(s, buf, sizeof buf, 10); // 10 second timeout
33

34 if (n == -1) {
35 // error occurred
36 perror("recvtimeout");
37 }
38 else if (n == -2) {
39 // timeout occurred
40 } else {
41 // got some data in buf
42 }
43 .
44 .
45 .

Notice that recvtimeout() returns -2 in case of a timeout. Why not return 0? Well, if you recall, a return

Chapter 8. Common Questions 80

value of 0 on a call to recv() means that the remote side closed the connection. So that return value is
already spoken for, and -1 means “error”, so I chose -2 as my timeout indicator.

How do I encrypt or compress the data before sending it through the socket?

One easy way to do encryption is to use SSL (secure sockets layer), but that’s beyond the scope of this guide.
(Check out the OpenSSL project3 for more info.)

But assuming you want to plug in or implement your own compressor or encryption system, it’s just a matter
of thinking of your data as running through a sequence of steps between both ends. Each step changes the
data in some way.

1. server reads data from file (or wherever)
2. server encrypts/compresses data (you add this part)
3. server send()s encrypted data

Now the other way around:

1. client recv()s encrypted data
2. client decrypts/decompresses data (you add this part)
3. client writes data to file (or wherever)

If you’re going to compress and encrypt, just remember to compress first. :-)

Just as long as the client properly undoes what the server does, the data will be fine in the end no matter how
many intermediate steps you add.

So all you need to do to use my code is to find the place between where the data is read and the data is sent
(using send()) over the network, and stick some code in there that does the encryption.

What is this “PF_INET” I keep seeing? Is it related to AF_INET?

Yes, yes it is. See the section on socket() for details.

How can I write a server that accepts shell commands from a client and executes them?

For simplicity, lets say the client connect()s, send()s, and close()s the connection (that is, there are no
subsequent system calls without the client connecting again).

The process the client follows is this:

1. connect() to server
2. send("/sbin/ls > /tmp/client.out")
3. close() the connection

Meanwhile, the server is handling the data and executing it:

1. accept() the connection from the client
2. recv(str) the command string
3. close() the connection
4. system(str) to run the command

Beware! Having the server execute what the client says is like giving remote shell access and people can do
things to your account when they connect to the server. For instance, in the above example, what if the client
sends “rm -rf ~”? It deletes everything in your account, that’s what!

So you get wise, and you prevent the client from using any except for a couple utilities that you know are
safe, like the foobar utility:

if (!strncmp(str, "foobar", 6)) {
sprintf(sysstr, "%s > /tmp/server.out", str);

3https://www.openssl.org/

https://www.openssl.org/

Chapter 8. Common Questions 81

system(sysstr);
}

But you’re still unsafe, unfortunately: what if the client enters “foobar; rm -rf ~”? The safest thing to
do is to write a little routine that puts an escape (“\”) character in front of all non-alphanumeric characters
(including spaces, if appropriate) in the arguments for the command.

As you can see, security is a pretty big issue when the server starts executing things the client sends.

I’m sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at a time. But
if I run it on my local machine, it receives all the data at the same time. What’s going on?

You’re hitting the MTU—the maximum size the physical medium can handle. On the local machine, you’re
using the loopback device which can handle 8K or more no problem. But on Ethernet, which can only handle
1500 bytes with a header, you hit that limit. Over a modem, with 576 MTU (again, with header), you hit the
even lower limit.

You have to make sure all the data is being sent, first of all. (See the sendall() function implementation
for details.) Once you’re sure of that, then you need to call recv() in a loop until all your data is read.

Read the section Son of Data Encapsulation for details on receiving complete packets of data using multiple
calls to recv().

I’m on a Windows box and I don’t have the fork() system call or any kind of struct sigaction.
What to do?

If they’re anywhere, they’ll be in POSIX libraries that may have shipped with your compiler. Since I don’t
have a Windows box, I really can’t tell you the answer, but I seem to remember that Microsoft has a POSIX
compatibility layer and that’s where fork() would be. (And maybe even sigaction.)

Search the help that came with VC++ for “fork” or “POSIX” and see if it gives you any clues.

If that doesn’t work at all, ditch the fork()/sigaction stuff and replace it with the Win32 equivalent:
CreateProcess(). I don’t know how to use CreateProcess()—it takes a bazillion arguments, but it
should be covered in the docs that came with VC++.

I’m behind a firewall—how do I let people outside the firewall knowmy IP address so they can connect
to my machine?

Unfortunately, the purpose of a firewall is to prevent people outside the firewall from connecting to machines
inside the firewall, so allowing them to do so is basically considered a breach of security.

This isn’t to say that all is lost. For one thing, you can still often connect() through the firewall if it’s doing
some kind of masquerading or NAT or something like that. Just design your programs so that you’re always
the one initiating the connection, and you’ll be fine.

If that’s not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that people can connect
to you. The firewall can forward to you either through it’s NAT software, or through a proxy or something
like that.

Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure you don’t give bad
people access to the internal network; if you’re a beginner, it’s a lot harder to make software secure than you
might imagine.

Don’t make your sysadmin mad at me. ;-)

How do I write a packet sniffer? How do I put my Ethernet interface into promiscuous mode?

For those not in the know, when a network card is in “promiscuous mode”, it will forward ALL packets to the
operating system, not just those that were addressed to this particular machine. (We’re talking Ethernet-layer
addresses here, not IP addresses–but since ethernet is lower-layer than IP, all IP addresses are effectively
forwarded as well. See the section Low Level Nonsense and Network Theory for more info.)

Chapter 8. Common Questions 82

This is the basis for how a packet sniffer works. It puts the interface into promiscuous mode, then the OS
gets every single packet that goes by on the wire. You’ll have a socket of some type that you can read this
data from.

Unfortunately, the answer to the question varies depending on the platform, but if youGoogle for, for instance,
“windows promiscuous ioctl” you’ll probably get somewhere. For Linux, there’s what looks like a useful
Stack Overflow thread4, as well.

How can I set a custom timeout value for a TCP or UDP socket?

It depends on your system. You might search the net for SO_RCVTIMEO and SO_SNDTIMEO (for use with
setsockopt()) to see if your system supports such functionality.

The Linux man page suggests using alarm() or setitimer() as a substitute.

How can I tell which ports are available to use? Is there a list of “official” port numbers?

Usually this isn’t an issue. If you’re writing, say, a web server, then it’s a good idea to use the well-known
port 80 for your software. If you’re writing just your own specialized server, then choose a port at random
(but greater than 1023) and give it a try.

If the port is already in use, you’ll get an “Address already in use” error when you try to bind(). Choose
another port. (It’s a good idea to allow the user of your software to specify an alternate port either with a
config file or a command line switch.)

There is a list of official port numbers5 maintained by the Internet Assigned Numbers Authority (IANA). Just
because something (over 1023) is in that list doesn’t mean you can’t use the port. For instance, Id Software’s
DOOM uses the same port as “mdqs”, whatever that is. All that matters is that no one else on the same
machine is using that port when you want to use it.

4https://stackoverflow.com/questions/21323023/
5https://www.iana.org/assignments/port-numbers

https://stackoverflow.com/questions/21323023/
https://stackoverflow.com/questions/21323023/
https://www.iana.org/assignments/port-numbers

Chapter 9

Man Pages

In the Unix world, there are a lot of manuals. They have little sections that describe individual functions that
you have at your disposal.

Of course, manualwould be too much of a thing to type. I mean, no one in the Unix world, including myself,
likes to type that much. Indeed I could go on and on at great length about how much I prefer to be terse
but instead I shall be brief and not bore you with long-winded diatribes about how utterly amazingly brief I
prefer to be in virtually all circumstances in their entirety.

[Applause]

Thank you. What I am getting at is that these pages are called “man pages” in the Unix world, and I have
included my own personal truncated variant here for your reading enjoyment. The thing is, many of these
functions are way more general purpose than I’m letting on, but I’m only going to present the parts that are
relevant for Internet Sockets Programming.

But wait! That’s not all that’s wrong with my man pages:

• They are incomplete and only show the basics from the guide.
• There are many more man pages than this in the real world.
• They are different than the ones on your system.
• The header files might be different for certain functions on your system.
• The function parameters might be different for certain functions on your system.

If you want the real information, check your local Unix man pages by typing man whatever, where “what-
ever” is something that you’re incredibly interested in, such as “accept”. (I’m sure Microsoft Visual Studio
has something similar in their help section. But “man” is better because it is one byte more concise than
“help”. Unix wins again!)

So, if these are so flawed, why even include them at all in the Guide? Well, there are a few reasons, but the
best are that (a) these versions are geared specifically toward network programming and are easier to digest
than the real ones, and (b) these versions contain examples!

Oh! And speaking of the examples, I don’t tend to put in all the error checking because it really increases the
length of the code. But you should absolutely do error checking pretty much any time you make any of the
system calls unless you’re totally 100% sure it’s not going to fail, and you should probably do it even then!

9.1 accept()

Accept an incoming connection on a listening socket

83

Chapter 9. Man Pages 84

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Description
Once you’ve gone through the trouble of getting a SOCK_STREAM socket and setting it up for incoming con-
nections with listen(), then you call accept() to actually get yourself a new socket descriptor to use for
subsequent communication with the newly connected client.

The old socket that you are using for listening is still there, and will be used for further accept() calls as
they come in.

Parameter Description

s The listen()ing socket descriptor.
addr This is filled in with the address of the site that’s connecting to you.
addrlen This is filled in with the sizeof() the structure returned in the addr parameter. You can

safely ignore it if you assume you’re getting a struct sockaddr_in back, which you
know you are, because that’s the type you passed in for addr.

accept() will normally block, and you can use select() to peek on the listening socket descriptor ahead
of time to see if it’s “ready to read”. If so, then there’s a new connection waiting to be accept()ed! Yay!
Alternatively, you could set the O_NONBLOCK flag on the listening socket using fcntl(), and then it will
never block, choosing instead to return -1 with errno set to EWOULDBLOCK.

The socket descriptor returned by accept() is a bona fide socket descriptor, open and connected to the
remote host. You have to close() it when you’re done with it.

Return Value
accept() returns the newly connected socket descriptor, or -1 on error, with errno set appropriately.

Example

1 struct sockaddr_storage their_addr;
2 socklen_t addr_size;
3 struct addrinfo hints, *res;
4 int sockfd, new_fd;
5

6 // first, load up address structs with getaddrinfo():
7

8 memset(&hints, 0, sizeof hints);
9 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
10 hints.ai_socktype = SOCK_STREAM;
11 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
12

13 getaddrinfo(NULL, MYPORT, &hints, &res);
14

15 // make a socket, bind it, and listen on it:

Chapter 9. Man Pages 85

16

17 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
18 bind(sockfd, res->ai_addr, res->ai_addrlen);
19 listen(sockfd, BACKLOG);
20

21 // now accept an incoming connection:
22

23 addr_size = sizeof their_addr;
24 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &addr_size);
25

26 // ready to communicate on socket descriptor new_fd!

See Also
socket(), getaddrinfo(), listen(), struct sockaddr_in

9.2 bind()

Associate a socket with an IP address and port number

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

Description
When a remote machine wants to connect to your server program, it needs two pieces of information: the IP
address and the port number. The bind() call allows you to do just that.

First, you call getaddrinfo() to load up a struct sockaddr with the destination address and port infor-
mation. Then you call socket() to get a socket descriptor, and then you pass the socket and address into
bind(), and the IP address and port are magically (using actual magic) bound to the socket!

If you don’t know your IP address, or you know you only have one IP address on the machine, or you don’t
care which of the machine’s IP addresses is used, you can simply pass the AI_PASSIVE flag in the hints
parameter to getaddrinfo(). What this does is fill in the IP address part of the struct sockaddr with a
special value that tells bind() that it should automatically fill in this host’s IP address.

What what? What special value is loaded into the struct sockaddr’s IP address to cause it to auto-
fill the address with the current host? I’ll tell you, but keep in mind this is only if you’re filling out
the struct sockaddr by hand; if not, use the results from getaddrinfo(), as per above. In IPv4,
the sin_addr.s_addr field of the struct sockaddr_in structure is set to INADDR_ANY. In IPv6,
the sin6_addr field of the struct sockaddr_in6 structure is assigned into from the global variable
in6addr_any. Or, if you’re declaring a new struct in6_addr, you can initialize it to IN6ADDR_ANY_INIT.

Lastly, the addrlen parameter should be set to sizeof my_addr.

Chapter 9. Man Pages 86

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 // modern way of doing things with getaddrinfo()
2

3 struct addrinfo hints, *res;
4 int sockfd;
5

6 // first, load up address structs with getaddrinfo():
7

8 memset(&hints, 0, sizeof hints);
9 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
10 hints.ai_socktype = SOCK_STREAM;
11 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
12

13 getaddrinfo(NULL, "3490", &hints, &res);
14

15 // make a socket:
16 // (you should actually walk the "res" linked list and error-check!)
17

18 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
19

20 // bind it to the port we passed in to getaddrinfo():
21

22 bind(sockfd, res->ai_addr, res->ai_addrlen);

1 // example of packing a struct by hand, IPv4
2

3 struct sockaddr_in myaddr;
4 int s;
5

6 myaddr.sin_family = AF_INET;
7 myaddr.sin_port = htons(3490);
8

9 // you can specify an IP address:
10 inet_pton(AF_INET, "63.161.169.137", &(myaddr.sin_addr));
11

12 // or you can let it automatically select one:
13 myaddr.sin_addr.s_addr = INADDR_ANY;
14

15 s = socket(PF_INET, SOCK_STREAM, 0);
16 bind(s, (struct sockaddr*)&myaddr, sizeof myaddr);

See Also
getaddrinfo(), socket(), struct sockaddr_in, struct in_addr

Chapter 9. Man Pages 87

9.3 connect()

Connect a socket to a server

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr,
socklen_t addrlen);

Description
Once you’ve built a socket descriptor with the socket() call, you can connect() that socket to a remote
server using the well-named connect() system call. All you need to do is pass it the socket descriptor and
the address of the server you’re interested in getting to know better. (Oh, and the length of the address, which
is commonly passed to functions like this.)

Usually this information comes along as the result of a call to getaddrinfo(), but you can fill out your own
struct sockaddr if you want to.

If you haven’t yet called bind() on the socket descriptor, it is automatically bound to your IP address and a
random local port. This is usually just fine with you if you’re not a server, since you really don’t care what
your local port is; you only care what the remote port is so you can put it in the serv_addr parameter. You
can call bind() if you really want your client socket to be on a specific IP address and port, but this is pretty
rare.

Once the socket is connect()ed, you’re free to send() and recv() data on it to your heart’s content.

Special note: if you connect() a SOCK_DGRAM UDP socket to a remote host, you can use send() and
recv() as well as sendto() and recvfrom(). If you want.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 // connect to www.example.com port 80 (http)
2

3 struct addrinfo hints, *res;
4 int sockfd;
5

6 // first, load up address structs with getaddrinfo():
7

8 memset(&hints, 0, sizeof hints);
9 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
10 hints.ai_socktype = SOCK_STREAM;
11

12 // we could put "80" instead on "http" on the next line:
13 getaddrinfo("www.example.com", "http", &hints, &res);
14

15 // make a socket:

Chapter 9. Man Pages 88

16

17 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
18

19 // connect it to the address and port we passed in to getaddrinfo():
20

21 connect(sockfd, res->ai_addr, res->ai_addrlen);

See Also
socket(), bind()

9.4 close()

Close a socket descriptor

Synopsis

#include <unistd.h>

int close(int s);

Description
After you’ve finished using the socket for whatever demented scheme you have concocted and you don’t
want to send() or recv() or, indeed, do anything else at all with the socket, you can close() it, and it’ll
be freed up, never to be used again.

The remote side can tell if this happens one of two ways. One: if the remote side calls recv(), it will return
0. Two: if the remote side calls send(), it’ll receive a signal SIGPIPE and send() will return -1 and errno
will be set to EPIPE.

Windows users: the function you need to use is called closesocket(), not close(). If you try to use
close() on a socket descriptor, it’s possible Windows will get angry… And you wouldn’t like it when it’s
angry.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 s = socket(PF_INET, SOCK_DGRAM, 0);
2 .
3 .
4 .
5 // a whole lotta stuff...*BRRRONNNN!*
6 .
7 .
8 .
9 close(s); // not much to it, really.

Chapter 9. Man Pages 89

See Also
socket(), shutdown()

9.5 getaddrinfo(), freeaddrinfo(), gai_strerror()

Get information about a host name and/or service and load up a struct sockaddr with the result.

Synopsis

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

const char *gai_strerror(int ecode);

struct addrinfo {
int ai_flags; // AI_PASSIVE, AI_CANONNAME, ...
int ai_family; // AF_xxx
int ai_socktype; // SOCK_xxx
int ai_protocol; // 0 (auto) or IPPROTO_TCP, IPPROTO_UDP

socklen_t ai_addrlen; // length of ai_addr
char *ai_canonname; // canonical name for nodename
struct sockaddr *ai_addr; // binary address
struct addrinfo *ai_next; // next structure in linked list

};

Description
getaddrinfo() is an excellent function that will return information on a particular host name (such as its IP
address) and load up a struct sockaddr for you, taking care of the gritty details (like if it’s IPv4 or IPv6).
It replaces the old functions gethostbyname() and getservbyname().The description, below, contains a
lot of information that might be a little daunting, but actual usage is pretty simple. It might be worth it to
check out the examples first.

The host name that you’re interested in goes in the nodename parameter. The address can be either a host
name, like “www.example.com”, or an IPv4 or IPv6 address (passed as a string). This parameter can also be
NULL if you’re using the AI_PASSIVE flag (see below).

The servname parameter is basically the port number. It can be a port number (passed as a string, like “80”),
or it can be a service name, like “http” or “tftp” or “smtp” or “pop”, etc. Well-known service names can be
found in the IANA Port List1 or in your /etc/services file.

1https://www.iana.org/assignments/port-numbers

https://www.iana.org/assignments/port-numbers

Chapter 9. Man Pages 90

Lastly, for input parameters, we have hints. This is really where you get to define what the getaddrinfo()
function is going to do. Zero the whole structure before use with memset(). Let’s take a look at the fields
you need to set up before use.

The ai_flags can be set to a variety of things, but here are a couple important ones. (Multiple flags can be
specified by bitwise-ORing them together with the | operator). Check your man page for the complete list
of flags.

AI_CANONNAME causes the ai_canonname of the result to the filled out with the host’s canonical (real) name.
AI_PASSIVE causes the result’s IP address to be filled out with INADDR_ANY (IPv4) or in6addr_any (IPv6);
this causes a subsequent call to bind() to auto-fill the IP address of the struct sockaddr with the address
of the current host. That’s excellent for setting up a server when you don’t want to hardcode the address.

If you do use the AI_PASSIVE, flag, then you can pass NULL in the nodename (since bind() will fill it in for
you later).

Continuing on with the input parameters, you’ll likely want to set ai_family to AF_UNSPEC which tells
getaddrinfo() to look for both IPv4 and IPv6 addresses. You can also restrict yourself to one or the other
with AF_INET or AF_INET6.

Next, the socktype field should be set to SOCK_STREAM or SOCK_DGRAM, depending on which type of socket
you want.

Finally, just leave ai_protocol at 0 to automatically choose your protocol type.

Now, after you get all that stuff in there, you can finally make the call to getaddrinfo()!

Of course, this is where the fun begins. The res will now point to a linked list of struct addrinfos, and
you can go through this list to get all the addresses that match what you passed in with the hints.

Now, it’s possible to get some addresses that don’t work for one reason or another, so what the Linux man
page does is loops through the list doing a call to socket() and connect() (or bind() if you’re setting up
a server with the AI_PASSIVE flag) until it succeeds.

Finally, when you’re done with the linked list, you need to call freeaddrinfo() to free up the memory (or
it will be leaked, and Some People will get upset).

Return Value
Returns zero on success, or nonzero on error. If it returns nonzero, you can use the function gai_strerror()
to get a printable version of the error code in the return value.

Example

1 // code for a client connecting to a server
2 // namely a stream socket to www.example.com on port 80 (http)
3 // either IPv4 or IPv6
4

5 int sockfd;
6 struct addrinfo hints, *servinfo, *p;
7 int rv;
8

9 memset(&hints, 0, sizeof hints);
10 hints.ai_family = AF_UNSPEC; // use AF_INET6 to force IPv6
11 hints.ai_socktype = SOCK_STREAM;
12

13 if ((rv = getaddrinfo("www.example.com", "http", &hints, &servinfo)) != 0) {
14 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));

Chapter 9. Man Pages 91

15 exit(1);
16 }
17

18 // loop through all the results and connect to the first we can
19 for(p = servinfo; p != NULL; p = p->ai_next) {
20 if ((sockfd = socket(p->ai_family, p->ai_socktype,
21 p->ai_protocol)) == -1) {
22 perror("socket");
23 continue;
24 }
25

26 if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
27 perror("connect");
28 close(sockfd);
29 continue;
30 }
31

32 break; // if we get here, we must have connected successfully
33 }
34

35 if (p == NULL) {
36 // looped off the end of the list with no connection
37 fprintf(stderr, "failed to connect\n");
38 exit(2);
39 }
40

41 freeaddrinfo(servinfo); // all done with this structure

1 // code for a server waiting for connections
2 // namely a stream socket on port 3490, on this host's IP
3 // either IPv4 or IPv6.
4

5 int sockfd;
6 struct addrinfo hints, *servinfo, *p;
7 int rv;
8

9 memset(&hints, 0, sizeof hints);
10 hints.ai_family = AF_UNSPEC; // use AF_INET6 to force IPv6
11 hints.ai_socktype = SOCK_STREAM;
12 hints.ai_flags = AI_PASSIVE; // use my IP address
13

14 if ((rv = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {
15 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
16 exit(1);
17 }
18

19 // loop through all the results and bind to the first we can
20 for(p = servinfo; p != NULL; p = p->ai_next) {
21 if ((sockfd = socket(p->ai_family, p->ai_socktype,
22 p->ai_protocol)) == -1) {
23 perror("socket");
24 continue;

Chapter 9. Man Pages 92

25 }
26

27 if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
28 close(sockfd);
29 perror("bind");
30 continue;
31 }
32

33 break; // if we get here, we must have connected successfully
34 }
35

36 if (p == NULL) {
37 // looped off the end of the list with no successful bind
38 fprintf(stderr, "failed to bind socket\n");
39 exit(2);
40 }
41

42 freeaddrinfo(servinfo); // all done with this structure

See Also
gethostbyname(), getnameinfo()

9.6 gethostname()

Returns the name of the system

Synopsis

#include <sys/unistd.h>

int gethostname(char *name, size_t len);

Description
Your system has a name. They all do. This is a slightly more Unixy thing than the rest of the networky stuff
we’ve been talking about, but it still has its uses.

For instance, you can get your host name, and then call gethostbyname() to find out your IP address.

The parameter name should point to a buffer that will hold the host name, and len is the size of that buffer in
bytes. gethostname() won’t overwrite the end of the buffer (it might return an error, or it might just stop
writing), and it will NUL-terminate the string if there’s room for it in the buffer.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Chapter 9. Man Pages 93

Example

1 char hostname[128];
2

3 gethostname(hostname, sizeof hostname);
4 printf("My hostname: %s\n", hostname);

See Also
gethostbyname()

9.7 gethostbyname(), gethostbyaddr()
Get an IP address for a hostname, or vice-versa

Synopsis

#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostbyname(const char *name); // DEPRECATED!
struct hostent *gethostbyaddr(const char *addr, int len, int type);

Description
PLEASE NOTE: these two functions are superseded by getaddrinfo() and getnameinfo()! In particular,
gethostbyname() doesn’t work well with IPv6.

These functions map back and forth between host names and IP addresses. For instance, if you have
“www.example.com”, you can use gethostbyname() to get its IP address and store it in a struct in_addr.

Conversely, if you have a struct in_addr or a struct in6_addr, you can use gethostbyaddr() to
get the hostname back. gethostbyaddr() is IPv6 compatible, but you should use the newer shinier
getnameinfo() instead.

(If you have a string containing an IP address in dots-and-numbers format that you want to look up the
hostname of, you’d be better off using getaddrinfo() with the AI_CANONNAME flag.)

gethostbyname() takes a string like “www.yahoo.com”, and returns a struct hostent which contains
tons of information, including the IP address. (Other information is the official host name, a list of aliases,
the address type, the length of the addresses, and the list of addresses—it’s a general-purpose structure that’s
pretty easy to use for our specific purposes once you see how.)

gethostbyaddr() takes a struct in_addr or struct in6_addr and brings you up a corresponding
host name (if there is one), so it’s sort of the reverse of gethostbyname(). As for parameters, even
though addr is a char*, you actually want to pass in a pointer to a struct in_addr. len should be
sizeof(struct in_addr), and type should be AF_INET.

So what is this struct hostent that gets returned? It has a number of fields that contain information about
the host in question.

Chapter 9. Man Pages 94

Field Description

char *h_name The real canonical host name.
char **h_aliases A list of aliases that can be accessed with arrays—the last element is

NULL
int h_addrtype The result’s address type, which really should be AF_INET for our

purposes.
int length The length of the addresses in bytes, which is 4 for IP (version 4)

addresses.
char **h_addr_list A list of IP addresses for this host. Although this is a char**, it’s really

an array of struct in_addr*s in disguise. The last array element is
NULL.

h_addr A commonly defined alias for h_addr_list[0]. If you just want any
old IP address for this host (yeah, they can have more than one) just use
this field.

Return Value
Returns a pointer to a resultant struct hostent on success, or NULL on error.

Instead of the normal perror() and all that stuff you’d normally use for error reporting, these functions have
parallel results in the variable h_errno, which can be printed using the functions herror() or hstrerror().
These work just like the classic errno, perror(), and strerror() functions you’re used to.

Example

1 // THIS IS A DEPRECATED METHOD OF GETTING HOST NAMES
2 // use getaddrinfo() instead!
3

4 #include <stdio.h>
5 #include <errno.h>
6 #include <netdb.h>
7 #include <sys/types.h>
8 #include <sys/socket.h>
9 #include <netinet/in.h>
10 #include <arpa/inet.h>
11

12 int main(int argc, char *argv[])
13 {
14 int i;
15 struct hostent *he;
16 struct in_addr **addr_list;
17

18 if (argc != 2) {
19 fprintf(stderr,"usage: ghbn hostname\n");
20 return 1;
21 }
22

23 if ((he = gethostbyname(argv[1])) == NULL) { // get the host info
24 herror("gethostbyname");
25 return 2;
26 }
27

Chapter 9. Man Pages 95

28 // print information about this host:
29 printf("Official name is: %s\n", he->h_name);
30 printf(" IP addresses: ");
31 addr_list = (struct in_addr **)he->h_addr_list;
32 for(i = 0; addr_list[i] != NULL; i++) {
33 printf("%s ", inet_ntoa(*addr_list[i]));
34 }
35 printf("\n");
36

37 return 0;
38 }

1 // THIS HAS BEEN SUPERSEDED
2 // use getnameinfo() instead!
3

4 struct hostent *he;
5 struct in_addr ipv4addr;
6 struct in6_addr ipv6addr;
7

8 inet_pton(AF_INET, "192.0.2.34", &ipv4addr);
9 he = gethostbyaddr(&ipv4addr, sizeof ipv4addr, AF_INET);
10 printf("Host name: %s\n", he->h_name);
11

12 inet_pton(AF_INET6, "2001:db8:63b3:1::beef", &ipv6addr);
13 he = gethostbyaddr(&ipv6addr, sizeof ipv6addr, AF_INET6);
14 printf("Host name: %s\n", he->h_name);

See Also
getaddrinfo(), getnameinfo(), gethostname(), errno, perror(), strerror(), struct in_addr

9.8 getnameinfo()

Look up the host name and service name information for a given struct sockaddr.

Synopsis

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags);

Description
This function is the opposite of getaddrinfo(), that is, this function takes an already loaded
struct sockaddr and does a name and service name lookup on it. It replaces the old gethostbyaddr()
and getservbyport() functions.

Chapter 9. Man Pages 96

You have to pass in a pointer to a struct sockaddr (which in actuality is probably a struct sockaddr_in
or struct sockaddr_in6 that you’ve cast) in the sa parameter, and the length of that struct in the salen.

The resultant host name and service name will be written to the area pointed to by the host and serv param-
eters. Of course, you have to specify the max lengths of these buffers in hostlen and servlen.

Finally, there are several flags you can pass, but here a a couple good ones. NI_NOFQDN will cause the host
to only contain the host name, not the whole domain name. NI_NAMEREQD will cause the function to fail if
the name cannot be found with a DNS lookup (if you don’t specify this flag and the name can’t be found,
getnameinfo() will put a string version of the IP address in host instead).

As always, check your local man pages for the full scoop.

Return Value
Returns zero on success, or non-zero on error. If the return value is non-zero, it can be passed to
gai_strerror() to get a human-readable string. See getaddrinfo for more information.

Example

1 struct sockaddr_in6 sa; // could be IPv4 if you want
2 char host[1024];
3 char service[20];
4

5 // pretend sa is full of good information about the host and port...
6

7 getnameinfo(&sa, sizeof sa, host, sizeof host, service, sizeof service, 0);
8

9 printf(" host: %s\n", host); // e.g. "www.example.com"
10 printf("service: %s\n", service); // e.g. "http"

See Also
getaddrinfo(), gethostbyaddr()

9.9 getpeername()

Return address info about the remote side of the connection

Synopsis

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *addr, socklen_t *len);

Description
Once you have either accept()ed a remote connection, or connect()ed to a server, you now have what is
known as a peer. Your peer is simply the computer you’re connected to, identified by an IP address and a
port. So…

Chapter 9. Man Pages 97

getpeername() simply returns a struct sockaddr_in filled with information about the machine you’re
connected to.

Why is it called a “name”? Well, there are a lot of different kinds of sockets, not just Internet Sockets like
we’re using in this guide, and so “name” was a nice generic term that covered all cases. In our case, though,
the peer’s “name” is it’s IP address and port.

Although the function returns the size of the resultant address in len, you must preload len with the size of
addr.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 // assume s is a connected socket
2

3 socklen_t len;
4 struct sockaddr_storage addr;
5 char ipstr[INET6_ADDRSTRLEN];
6 int port;
7

8 len = sizeof addr;
9 getpeername(s, (struct sockaddr*)&addr, &len);
10

11 // deal with both IPv4 and IPv6:
12 if (addr.ss_family == AF_INET) {
13 struct sockaddr_in *s = (struct sockaddr_in *)&addr;
14 port = ntohs(s->sin_port);
15 inet_ntop(AF_INET, &s->sin_addr, ipstr, sizeof ipstr);
16 } else { // AF_INET6
17 struct sockaddr_in6 *s = (struct sockaddr_in6 *)&addr;
18 port = ntohs(s->sin6_port);
19 inet_ntop(AF_INET6, &s->sin6_addr, ipstr, sizeof ipstr);
20 }
21

22 printf("Peer IP address: %s\n", ipstr);
23 printf("Peer port : %d\n", port);

See Also
gethostname(), gethostbyname(), gethostbyaddr()

9.10 errno

Holds the error code for the last system call

Chapter 9. Man Pages 98

Synopsis

#include <errno.h>

int errno;

Description
This is the variable that holds error information for a lot of system calls. If you’ll recall, things like socket()
and listen() return -1 on error, and they set the exact value of errno to let you know specifically which
error occurred.

The header file errno.h lists a bunch of constant symbolic names for errors, such as EADDRINUSE, EPIPE,
ECONNREFUSED, etc. Your local man pages will tell you what codes can be returned as an error, and you can
use these at run time to handle different errors in different ways.

Or, more commonly, you can call perror() or strerror() to get a human-readable version of the error.

One thing to note, for you multithreading enthusiasts, is that on most systems errno is defined in a threadsafe
manner. (That is, it’s not actually a global variable, but it behaves just like a global variable would in a single-
threaded environment.)

Return Value
The value of the variable is the latest error to have transpired, which might be the code for “success” if the
last action succeeded.

Example

1 s = socket(PF_INET, SOCK_STREAM, 0);
2 if (s == -1) {
3 perror("socket"); // or use strerror()
4 }
5

6 tryagain:
7 if (select(n, &readfds, NULL, NULL) == -1) {
8 // an error has occurred!!
9

10 // if we were only interrupted, just restart the select() call:
11 if (errno == EINTR) goto tryagain; // AAAA! goto!!!
12

13 // otherwise it's a more serious error:
14 perror("select");
15 exit(1);
16 }

See Also
perror(), strerror()

Chapter 9. Man Pages 99

9.11 fcntl()

Control socket descriptors

Synopsis

#include <sys/unistd.h>
#include <sys/fcntl.h>

int fcntl(int s, int cmd, long arg);

Description
This function is typically used to do file locking and other file-oriented stuff, but it also has a couple socket-
related functions that you might see or use from time to time.

Parameter s is the socket descriptor you wish to operate on, cmd should be set to F_SETFL, and arg can be
one of the following commands. (Like I said, there’s more to fcntl() than I’m letting on here, but I’m
trying to stay socket-oriented.)

cmd Description

O_NONBLOCK
Set the socket to be non-blocking. See the section on blocking for more details.

O_ASYNC
Set the socket to do asynchronous I/O. When data is ready to be recv()’d on the
socket, the signal SIGIO will be raised. This is rare to see, and beyond the scope of
the guide. And I think it’s only available on certain systems.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Different uses of the fcntl() system call actually have different return values, but I haven’t covered them
here because they’re not socket-related. See your local fcntl() man page for more information.

Example

1 int s = socket(PF_INET, SOCK_STREAM, 0);
2

3 fcntl(s, F_SETFL, O_NONBLOCK); // set to non-blocking
4 fcntl(s, F_SETFL, O_ASYNC); // set to asynchronous I/O

See Also
Blocking, send()

9.12 htons(), htonl(), ntohs(), ntohl()
Convert multi-byte integer types from host byte order to network byte order

Chapter 9. Man Pages 100

Synopsis

#include <netinet/in.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Description
Just tomake you really unhappy, different computers use different byte orderings internally for their multibyte
integers (i.e. any integer that’s larger than a char). The upshot of this is that if you send() a two-byte
short int from an Intel box to a Mac (before they became Intel boxes, too, I mean), what one computer
thinks is the number 1, the other will think is the number 256, and vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree that Motorola
and IBM had it right, and Intel did it the weird way, and so we all convert our byte orderings to “big-endian”
before sending them out. Since Intel is a “little-endian” machine, it’s far more politically correct to call our
preferred byte ordering “Network Byte Order”. So these functions convert from your native byte order to
network byte order and back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do nothing because
the bytes are already in Network Byte Order. But you should always use them in your code anyway, since
someone might want to build it on an Intel machine and still have things work properly.)

Note that the types involved are 32-bit (4 byte, probably int) and 16-bit (2 byte, very likely short) numbers.
64-bit machines might have a htonll() for 64-bit ints, but I’ve not seen it. You’ll just have to write your
own.

Anyway, the way these functions work is that you first decide if you’re converting from host (your machine’s)
byte order or from network byte order. If “host”, the the first letter of the function you’re going to call is “h”.
Otherwise it’s “n” for “network”. The middle of the function name is always “to” because you’re converting
from one “to” another, and the penultimate letter shows what you’re converting to. The last letter is the size
of the data, “s” for short, or “l” for long. Thus:

Function Description

htons() host to network short
htonl() host to network long
ntohs() network to host short
ntohl() network to host long

Return Value
Each function returns the converted value.

Example

1 uint32_t some_long = 10;
2 uint16_t some_short = 20;
3

4 uint32_t network_byte_order;
5

Chapter 9. Man Pages 101

6 // convert and send
7 network_byte_order = htonl(some_long);
8 send(s, &network_byte_order, sizeof(uint32_t), 0);
9

10 some_short == ntohs(htons(some_short)); // this expression is true

9.13 inet_ntoa(), inet_aton(), inet_addr

Convert IP addresses from a dots-and-number string to a struct in_addr and back

Synopsis

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

// ALL THESE ARE DEPRECATED! Use inet_pton() or inet_ntop() instead!!

char *inet_ntoa(struct in_addr in);
int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);

Description
These functions are deprecated because they don’t handle IPv6! Use (inet_ntop())[#inet_ntopman] or
(inet_pton())[#inet_ntopman] instead! They are included here because they can still be found in the wild.

All of these functions convert from a struct in_addr (part of your struct sockaddr_in, most likely) to
a string in dots-and-numbers format (e.g. “192.168.5.10”) and vice-versa. If you have an IP address passed
on the command line or something, this is the easiest way to get a struct in_addr to connect() to, or
whatever. If you need more power, try some of the DNS functions like gethostbyname() or attempt a coup
d’État in your local country.

The function inet_ntoa() converts a network address in a struct in_addr to a dots-and-numbers format
string. The “n” in “ntoa” stands for network, and the “a” stands for ASCII for historical reasons (so it’s
“Network To ASCII”—the “toa” suffix has an analogous friend in the C library called atoi()which converts
an ASCII string to an integer).

The function inet_aton() is the opposite, converting from a dots-and-numbers string into a in_addr_t
(which is the type of the field s_addr in your struct in_addr).

Finally, the function inet_addr() is an older function that does basically the same thing as inet_aton().
It’s theoretically deprecated, but you’ll see it a lot and the police won’t come get you if you use it.

Return Value
inet_aton() returns non-zero if the address is a valid one, and it returns zero if the address is invalid.

inet_ntoa() returns the dots-and-numbers string in a static buffer that is overwritten with each call to the
function.

Chapter 9. Man Pages 102

inet_addr() returns the address as an in_addr_t, or -1 if there’s an error. (That is the same result as if
you tried to convert the string “255.255.255.255”, which is a valid IP address. This is why inet_aton()
is better.)

Example

1 struct sockaddr_in antelope;
2 char *some_addr;
3

4 inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in antelope
5

6 some_addr = inet_ntoa(antelope.sin_addr); // return the IP
7 printf("%s\n", some_addr); // prints "10.0.0.1"
8

9 // and this call is the same as the inet_aton() call, above:
10 antelope.sin_addr.s_addr = inet_addr("10.0.0.1");

See Also
inet_ntop(), inet_pton(), gethostbyname(), gethostbyaddr()

9.14 inet_ntop(), inet_pton()
Convert IP addresses to human-readable form and back.

Synopsis

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src,
char *dst, socklen_t size);

int inet_pton(int af, const char *src, void *dst);

Description
These functions are for dealing with human-readable IP addresses and converting them to their binary rep-
resentation for use with various functions and system calls. The “n” stands for “network”, and “p” for “pre-
sentation”. Or “text presentation”. But you can think of it as “printable”. “ntop” is “network to printable”.
See?

Sometimes you don’t want to look at a pile of binary numbers when looking at an IP address. You want it in
a nice printable form, like 192.0.2.180, or 2001:db8:8714:3a90::12. In that case, inet_ntop() is for
you.

inet_ntop() takes the address family in the af parameter (either AF_INET or AF_INET6). The src param-
eter should be a pointer to either a struct in_addr or struct in6_addr containing the address you wish
to convert to a string. Finally dst and size are the pointer to the destination string and the maximum length
of that string.

Chapter 9. Man Pages 103

What should the maximum length of the dst string be? What is the maximum length for IPv4 and
IPv6 addresses? Fortunately there are a couple of macros to help you out. The maximum lengths are:
INET_ADDRSTRLEN and INET6_ADDRSTRLEN.

Other times, you might have a string containing an IP address in readable form, and you want to pack it into
a struct sockaddr_in or a struct sockaddr_in6. In that case, the opposite function inet_pton() is
what you’re after.

inet_pton() also takes an address family (either AF_INET or AF_INET6) in the af parameter. The src
parameter is a pointer to a string containing the IP address in printable form. Lastly the dst parameter points
to where the result should be stored, which is probably a struct in_addr or struct in6_addr.

These functions don’t do DNS lookups—you’ll need getaddrinfo() for that.

Return Value
inet_ntop() returns the dst parameter on success, or NULL on failure (and errno is set).

inet_pton() returns 1 on success. It returns -1 if there was an error (errno is set), or 0 if the input isn’t a
valid IP address.

Example

1 // IPv4 demo of inet_ntop() and inet_pton()
2

3 struct sockaddr_in sa;
4 char str[INET_ADDRSTRLEN];
5

6 // store this IP address in sa:
7 inet_pton(AF_INET, "192.0.2.33", &(sa.sin_addr));
8

9 // now get it back and print it
10 inet_ntop(AF_INET, &(sa.sin_addr), str, INET_ADDRSTRLEN);
11

12 printf("%s\n", str); // prints "192.0.2.33"

1 // IPv6 demo of inet_ntop() and inet_pton()
2 // (basically the same except with a bunch of 6s thrown around)
3

4 struct sockaddr_in6 sa;
5 char str[INET6_ADDRSTRLEN];
6

7 // store this IP address in sa:
8 inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &(sa.sin6_addr));
9

10 // now get it back and print it
11 inet_ntop(AF_INET6, &(sa.sin6_addr), str, INET6_ADDRSTRLEN);
12

13 printf("%s\n", str); // prints "2001:db8:8714:3a90::12"

1 // Helper function you can use:
2

3 //Convert a struct sockaddr address to a string, IPv4 and IPv6:

Chapter 9. Man Pages 104

4

5 char *get_ip_str(const struct sockaddr *sa, char *s, size_t maxlen)
6 {
7 switch(sa->sa_family) {
8 case AF_INET:
9 inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
10 s, maxlen);
11 break;
12

13 case AF_INET6:
14 inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
15 s, maxlen);
16 break;
17

18 default:
19 strncpy(s, "Unknown AF", maxlen);
20 return NULL;
21 }
22

23 return s;
24 }

See Also
getaddrinfo()

9.15 listen()

Tell a socket to listen for incoming connections

Synopsis

#include <sys/socket.h>

int listen(int s, int backlog);

Description
You can take your socket descriptor (made with the socket() system call) and tell it to listen for incoming
connections. This is what differentiates the servers from the clients, guys.

The backlog parameter can mean a couple different things depending on the system you on, but loosely it
is how many pending connections you can have before the kernel starts rejecting new ones. So as the new
connections come in, you should be quick to accept() them so that the backlog doesn’t fill. Try setting it
to 10 or so, and if your clients start getting “Connection refused” under heavy load, set it higher.

Before calling listen(), your server should call bind() to attach itself to a specific port number. That port
number (on the server’s IP address) will be the one that clients connect to.

Chapter 9. Man Pages 105

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 struct addrinfo hints, *res;
2 int sockfd;
3

4 // first, load up address structs with getaddrinfo():
5

6 memset(&hints, 0, sizeof hints);
7 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
8 hints.ai_socktype = SOCK_STREAM;
9 hints.ai_flags = AI_PASSIVE; // fill in my IP for me
10

11 getaddrinfo(NULL, "3490", &hints, &res);
12

13 // make a socket:
14

15 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
16

17 // bind it to the port we passed in to getaddrinfo():
18

19 bind(sockfd, res->ai_addr, res->ai_addrlen);
20

21 listen(sockfd, 10); // set s up to be a server (listening) socket
22

23 // then have an accept() loop down here somewhere

See Also
accept(), bind(), socket()

9.16 perror(), strerror()
Print an error as a human-readable string

Synopsis

#include <stdio.h>
#include <string.h> // for strerror()

void perror(const char *s);
char *strerror(int errnum);

Description
Since so many functions return -1 on error and set the value of the variable errno to be some number, it
would sure be nice if you could easily print that in a form that made sense to you.

Chapter 9. Man Pages 106

Mercifully, perror() does that. If you want more description to be printed before the error, you can point
the parameter s to it (or you can leave s as NULL and nothing additional will be printed).

In a nutshell, this function takes errno values, like ECONNRESET, and prints them nicely, like “Connection
reset by peer.”

The function strerror() is very similar to perror(), except it returns a pointer to the error message string
for a given value (you usually pass in the variable errno).

Return Value
strerror() returns a pointer to the error message string.

Example

1 int s;
2

3 s = socket(PF_INET, SOCK_STREAM, 0);
4

5 if (s == -1) { // some error has occurred
6 // prints "socket error: " + the error message:
7 perror("socket error");
8 }
9

10 // similarly:
11 if (listen(s, 10) == -1) {
12 // this prints "an error: " + the error message from errno:
13 printf("an error: %s\n", strerror(errno));
14 }

See Also
errno

9.17 poll()

Test for events on multiple sockets simultaneously

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Description
This function is very similar to select() in that they both watch sets of file descriptors for events, such as
incoming data ready to recv(), socket ready to send() data to, out-of-band data ready to recv(), errors,
etc.

Chapter 9. Man Pages 107

The basic idea is that you pass an array of nfds struct pollfds in ufds, along with a timeout in millisec-
onds (1000 milliseconds in a second). The timeout can be negative if you want to wait forever. If no event
happens on any of the socket descriptors by the timeout, poll() will return.

Each element in the array of struct pollfds represents one socket descriptor, and contains the following
fields:

struct pollfd {
int fd; // the socket descriptor
short events; // bitmap of events we're interested in
short revents; // when poll() returns, bitmap of events that occurred

};

Before calling poll(), load fd with the socket descriptor (if you set fd to a negative number, this
struct pollfd is ignored and its revents field is set to zero) and then construct the events field by
bitwise-ORing the following macros:

Macro Description

POLLIN Alert me when data is ready to recv() on this socket.
POLLOUT Alert me when I can send() data to this socket without blocking.
POLLPRI Alert me when out-of-band data is ready to recv() on this socket.

Once the poll() call returns, the revents field will be constructed as a bitwise-OR of the above fields,
telling you which descriptors actually have had that event occur. Additionally, these other fields might be
present:

Macro Description

POLLERR An error has occurred on this socket.
POLLHUP The remote side of the connection hung up.
POLLNVAL Something was wrong with the socket descriptor fd—maybe it’s uninitialized?

Return Value
Returns the number of elements in the ufds array that have had event occur on them; this can be zero if the
timeout occurred. Also returns -1 on error (and errno will be set accordingly).

Example

1 int s1, s2;
2 int rv;
3 char buf1[256], buf2[256];
4 struct pollfd ufds[2];
5

6 s1 = socket(PF_INET, SOCK_STREAM, 0);
7 s2 = socket(PF_INET, SOCK_STREAM, 0);
8

9 // pretend we've connected both to a server at this point
10 //connect(s1, ...)...
11 //connect(s2, ...)...
12

13 // set up the array of file descriptors.

Chapter 9. Man Pages 108

14 //
15 // in this example, we want to know when there's normal or out-of-band
16 // data ready to be recv()'d...
17

18 ufds[0].fd = s1;
19 ufds[0].events = POLLIN | POLLPRI; // check for normal or out-of-band
20

21 ufds[1].fd = s2;
22 ufds[1].events = POLLIN; // check for just normal data
23

24 // wait for events on the sockets, 3.5 second timeout
25 rv = poll(ufds, 2, 3500);
26

27 if (rv == -1) {
28 perror("poll"); // error occurred in poll()
29 } else if (rv == 0) {
30 printf("Timeout occurred! No data after 3.5 seconds.\n");
31 } else {
32 // check for events on s1:
33 if (ufds[0].revents & POLLIN) {
34 recv(s1, buf1, sizeof buf1, 0); // receive normal data
35 }
36 if (ufds[0].revents & POLLPRI) {
37 recv(s1, buf1, sizeof buf1, MSG_OOB); // out-of-band data
38 }
39

40 // check for events on s2:
41 if (ufds[1].revents & POLLIN) {
42 recv(s1, buf2, sizeof buf2, 0);
43 }
44 }

See Also
select()

9.18 recv(), recvfrom()
Receive data on a socket

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

Chapter 9. Man Pages 109

Description
Once you have a socket up and connected, you can read incoming data from the remote side using the recv()
(for TCP SOCK_STREAM sockets) and recvfrom() (for UDP SOCK_DGRAM sockets).

Both functions take the socket descriptor s, a pointer to the buffer buf, the size (in bytes) of the buffer len,
and a set of flags that control how the functions work.

Additionally, the recvfrom() takes a struct sockaddr*, from that will tell you where the data came from,
and will fill in fromlen with the size of struct sockaddr. (You must also initialize fromlen to be the size
of from or struct sockaddr.)

So what wondrous flags can you pass into this function? Here are some of them, but you should check your
local man pages for more information and what is actually supported on your system. You bitwise-or these
together, or just set flags to 0 if you want it to be a regular vanilla recv().

Macro Description

MSG_OOB
Receive Out of Band data. This is how to get data that has been sent to you with
the MSG_OOB flag in send(). As the receiving side, you will have had signal
SIGURG raised telling you there is urgent data. In your handler for that signal, you
could call recv() with this MSG_OOB flag.

MSG_PEEK
If you want to call recv() “just for pretend”, you can call it with this flag. This
will tell you what’s waiting in the buffer for when you call recv() “for real”
(i.e. without the MSG_PEEK flag. It’s like a sneak preview into the next recv() call.

MSG_WAITALL
Tell recv() to not return until all the data you specified in the len parameter. It
will ignore your wishes in extreme circumstances, however, like if a signal
interrupts the call or if some error occurs or if the remote side closes the
connection, etc. Don’t be mad with it.

When you call recv(), it will block until there is some data to read. If you want to not block, set the socket
to non-blocking or check with select() or poll() to see if there is incoming data before calling recv()
or recvfrom().

Return Value
Returns the number of bytes actually received (which might be less than you requested in the len parameter),
or -1 on error (and errno will be set accordingly).

If the remote side has closed the connection, recv()will return 0. This is the normal method for determining
if the remote side has closed the connection. Normality is good, rebel!

Example

1 // stream sockets and recv()
2

3 struct addrinfo hints, *res;
4 int sockfd;
5 char buf[512];
6 int byte_count;
7

8 // get host info, make socket, and connect it
9 memset(&hints, 0, sizeof hints);
10 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
11 hints.ai_socktype = SOCK_STREAM;

Chapter 9. Man Pages 110

12 getaddrinfo("www.example.com", "3490", &hints, &res);
13 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
14 connect(sockfd, res->ai_addr, res->ai_addrlen);
15

16 // all right! now that we're connected, we can receive some data!
17 byte_count = recv(sockfd, buf, sizeof buf, 0);
18 printf("recv()'d %d bytes of data in buf\n", byte_count);

1 // datagram sockets and recvfrom()
2

3 struct addrinfo hints, *res;
4 int sockfd;
5 int byte_count;
6 socklen_t fromlen;
7 struct sockaddr_storage addr;
8 char buf[512];
9 char ipstr[INET6_ADDRSTRLEN];
10

11 // get host info, make socket, bind it to port 4950
12 memset(&hints, 0, sizeof hints);
13 hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
14 hints.ai_socktype = SOCK_DGRAM;
15 hints.ai_flags = AI_PASSIVE;
16 getaddrinfo(NULL, "4950", &hints, &res);
17 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
18 bind(sockfd, res->ai_addr, res->ai_addrlen);
19

20 // no need to accept(), just recvfrom():
21

22 fromlen = sizeof addr;
23 byte_count = recvfrom(sockfd, buf, sizeof buf, 0, &addr, &fromlen);
24

25 printf("recv()'d %d bytes of data in buf\n", byte_count);
26 printf("from IP address %s\n",
27 inet_ntop(addr.ss_family,
28 addr.ss_family == AF_INET?
29 ((struct sockaddr_in *)&addr)->sin_addr:
30 ((struct sockaddr_in6 *)&addr)->sin6_addr,
31 ipstr, sizeof ipstr);

See Also
send(), sendto(), select(), poll(), Blocking

9.19 select()

Check if sockets descriptors are ready to read/write

Chapter 9. Man Pages 111

Synopsis

#include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

Description
The select() function gives you a way to simultaneously check multiple sockets to see if they have data
waiting to be recv()d, or if you can send() data to themwithout blocking, or if some exception has occurred.

You populate your sets of socket descriptors using the macros, like FD_SET(), above. Once you have the
set, you pass it into the function as one of the following parameters: readfds if you want to know when any
of the sockets in the set is ready to recv() data, writefds if any of the sockets is ready to send() data to,
and/or exceptfds if you need to know when an exception (error) occurs on any of the sockets. Any or all of
these parameters can be NULL if you’re not interested in those types of events. After select() returns, the
values in the sets will be changed to show which are ready for reading or writing, and which have exceptions.

The first parameter, n is the highest-numbered socket descriptor (they’re just ints, remember?) plus one.

Lastly, the struct timeval, timeout, at the end—this lets you tell select() how long to check these
sets for. It’ll return after the timeout, or when an event occurs, whichever is first. The struct timeval
has two fields: tv_sec is the number of seconds, to which is added tv_usec, the number of microseconds
(1,000,000 microseconds in a second).

The helper macros do the following:

Macro Description

FD_SET(int fd, fd_set *set);
Add fd to the set.

FD_CLR(int fd, fd_set *set);
Remove fd from the set.

FD_ISSET(int fd, fd_set *set);
Return true if fd is in the set.

FD_ZERO(fd_set *set);
Clear all entries from the set.

Note for Linux users: Linux’s select() can return “ready-to-read” and then not actually be ready to read,
thus causing the subsequent read() call to block. You can work around this bug by setting O_NONBLOCK flag
on the receiving socket so it errors with EWOULDBLOCK, then ignoring this error if it occurs. See the fcntl()
man page for more info on setting a socket to non-blocking.

Return Value
Returns the number of descriptors in the set on success, 0 if the timeout was reached, or -1 on error (and
errno will be set accordingly). Also, the sets are modified to show which sockets are ready.

Chapter 9. Man Pages 112

Example

1 int s1, s2, n;
2 fd_set readfds;
3 struct timeval tv;
4 char buf1[256], buf2[256];
5

6 // pretend we've connected both to a server at this point
7 //s1 = socket(...);
8 //s2 = socket(...);
9 //connect(s1, ...)...
10 //connect(s2, ...)...
11

12 // clear the set ahead of time
13 FD_ZERO(&readfds);
14

15 // add our descriptors to the set
16 FD_SET(s1, &readfds);
17 FD_SET(s2, &readfds);
18

19 // since we got s2 second, it's the "greater", so we use that for
20 // the n param in select()
21 n = s2 + 1;
22

23 // wait until either socket has data ready to be recv()d (timeout 10.5 secs)
24 tv.tv_sec = 10;
25 tv.tv_usec = 500000;
26 rv = select(n, &readfds, NULL, NULL, &tv);
27

28 if (rv == -1) {
29 perror("select"); // error occurred in select()
30 } else if (rv == 0) {
31 printf("Timeout occurred! No data after 10.5 seconds.\n");
32 } else {
33 // one or both of the descriptors have data
34 if (FD_ISSET(s1, &readfds)) {
35 recv(s1, buf1, sizeof buf1, 0);
36 }
37 if (FD_ISSET(s2, &readfds)) {
38 recv(s2, buf2, sizeof buf2, 0);
39 }
40 }

See Also
poll()

9.20 setsockopt(), getsockopt()
Set various options for a socket

Chapter 9. Man Pages 113

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int s, int level, int optname, const void *optval,
socklen_t optlen);

Description
Sockets are fairly configurable beasts. In fact, they are so configurable, I’m not even going to cover it all
here. It’s probably system-dependent anyway. But I will talk about the basics.

Obviously, these functions get and set certain options on a socket. On a Linux box, all the socket information
is in the man page for socket in section 7. (Type: “man 7 socket” to get all these goodies.)

As for parameters, s is the socket you’re talking about, level should be set to SOL_SOCKET. Then you set the
optname to the name you’re interested in. Again, see your man page for all the options, but here are some
of the most fun ones:

optname Description

SO_BINDTODEVICE
Bind this socket to a symbolic device name like eth0 instead of using
bind() to bind it to an IP address. Type the command ifconfig under Unix
to see the device names.

SO_REUSEADDR
Allows other sockets to bind() to this port, unless there is an active listening
socket bound to the port already. This enables you to get around those
“Address already in use” error messages when you try to restart your server
after a crash.

SOCK_DGRAM
Allows UDP datagram (SOCK_DGRAM) sockets to send and receive packets
sent to and from the broadcast address. Does nothing—NOTHING!!—to
TCP stream sockets! Hahaha!

As for the parameter optval, it’s usually a pointer to an int indicating the value in question. For booleans,
zero is false, and non-zero is true. And that’s an absolute fact, unless it’s different on your system. If there
is no parameter to be passed, optval can be NULL.

The final parameter, optlen, should be set to the length of optval, probably sizeof(int), but varies de-
pending on the option. Note that in the case of getsockopt(), this is a pointer to a socklen_t, and it speci-
fies themaximum size object that will be stored in optval (to prevent buffer overflows). And getsockopt()
will modify the value of optlen to reflect the number of bytes actually set.

Warning: on some systems (notably Sun and Windows), the option can be a char instead of an int, and is
set to, for example, a character value of '1' instead of an int value of 1. Again, check your own man pages
for more info with “man setsockopt” and “man 7 socket”!

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Chapter 9. Man Pages 114

Example

1 int optval;
2 int optlen;
3 char *optval2;
4

5 // set SO_REUSEADDR on a socket to true (1):
6 optval = 1;
7 setsockopt(s1, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof optval);
8

9 // bind a socket to a device name (might not work on all systems):
10 optval2 = "eth1"; // 4 bytes long, so 4, below:
11 setsockopt(s2, SOL_SOCKET, SO_BINDTODEVICE, optval2, 4);
12

13 // see if the SO_BROADCAST flag is set:
14 getsockopt(s3, SOL_SOCKET, SO_BROADCAST, &optval, &optlen);
15 if (optval != 0) {
16 print("SO_BROADCAST enabled on s3!\n");
17 }

See Also
fcntl()

9.21 send(), sendto()
Send data out over a socket

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);
ssize_t sendto(int s, const void *buf, size_t len,

int flags, const struct sockaddr *to,
socklen_t tolen);

Description
These functions send data to a socket. Generally speaking, send() is used for TCP SOCK_STREAM connected
sockets, and sendto() is used for UDP SOCK_DGRAM unconnected datagram sockets. With the unconnected
sockets, you must specify the destination of a packet each time you send one, and that’s why the last param-
eters of sendto() define where the packet is going.

With both send() and sendto(), the parameter s is the socket, buf is a pointer to the data you want to send,
len is the number of bytes you want to send, and flags allows you to specify more information about how
the data is to be sent. Set flags to zero if you want it to be “normal” data. Here are some of the commonly
used flags, but check your local send() man pages for more details:

Chapter 9. Man Pages 115

Macro Description

MSG_OOB
Send as “out of band” data. TCP supports this, and it’s a way to tell the
receiving system that this data has a higher priority than the normal data. The
receiver will receive the signal SIGURG and it can then receive this data without
first receiving all the rest of the normal data in the queue.

MSG_DONTROUTE
Don’t send this data over a router, just keep it local.

MSG_DONTWAIT
If send() would block because outbound traffic is clogged, have it return
EAGAIN. This is like a “enable non-blocking just for this send.” See the section
on blocking for more details.

MSG_NOSIGNAL
If you send() to a remote host which is no longer recv()ing, you’ll typically
get the signal SIGPIPE. Adding this flag prevents that signal from being raised.

Return Value
Returns the number of bytes actually sent, or -1 on error (and errno will be set accordingly). Note that the
number of bytes actually sent might be less than the number you asked it to send! See the section on handling
partial send()s for a helper function to get around this.

Also, if the socket has been closed by either side, the process calling send() will get the signal SIGPIPE.
(Unless send() was called with the MSG_NOSIGNAL flag.)

Example

1 int spatula_count = 3490;
2 char *secret_message = "The Cheese is in The Toaster";
3

4 int stream_socket, dgram_socket;
5 struct sockaddr_in dest;
6 int temp;
7

8 // first with TCP stream sockets:
9

10 // assume sockets are made and connected
11 //stream_socket = socket(...
12 //connect(stream_socket, ...
13

14 // convert to network byte order
15 temp = htonl(spatula_count);
16 // send data normally:
17 send(stream_socket, &temp, sizeof temp, 0);
18

19 // send secret message out of band:
20 send(stream_socket, secret_message, strlen(secret_message)+1, MSG_OOB);
21

22 // now with UDP datagram sockets:
23 //getaddrinfo(...
24 //dest = ... // assume "dest" holds the address of the destination
25 //dgram_socket = socket(...
26

27 // send secret message normally:
28 sendto(dgram_socket, secret_message, strlen(secret_message)+1, 0,

Chapter 9. Man Pages 116

29 (struct sockaddr*)&dest, sizeof dest);

See Also
recv(), recvfrom()

9.22 shutdown()

Stop further sends and receives on a socket

Synopsis

#include <sys/socket.h>

int shutdown(int s, int how);

Description
That’s it! I’ve had it! No more send()s are allowed on this socket, but I still want to recv() data on it! Or
vice-versa! How can I do this?

When you close() a socket descriptor, it closes both sides of the socket for reading and writing, and frees
the socket descriptor. If you just want to close one side or the other, you can use this shutdown() call.

As for parameters, s is obviously the socket you want to perform this action on, and what action that is can
be specified with the how parameter. how can be SHUT_RD to prevent further recv()s, SHUT_WR to prohibit
further send()s, or SHUT_RDWR to do both.

Note that shutdown() doesn’t free up the socket descriptor, so you still have to eventually close() the
socket even if it has been fully shut down.

This is a rarely used system call.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

1 int s = socket(PF_INET, SOCK_STREAM, 0);
2

3 // ...do some send()s and stuff in here...
4

5 // and now that we're done, don't allow any more sends()s:
6 shutdown(s, SHUT_WR);

See Also
close()

Chapter 9. Man Pages 117

9.23 socket()

Allocate a socket descriptor

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description
Returns a new socket descriptor that you can use to do sockety things with. This is generally the first call
in the whopping process of writing a socket program, and you can use the result for subsequent calls to
listen(), bind(), accept(), or a variety of other functions.

In usual usage, you get the values for these parameters from a call to getaddrinfo(), as shown in the
example below. But you can fill them in by hand if you really want to.

Parameter Description

domain domain describes what kind of socket you’re interested in. This can, believe me, be a
wide variety of things, but since this is a socket guide, it’s going to be PF_INET for
IPv4, and PF_INET6 for IPv6.

type Also, the type parameter can be a number of things, but you’ll probably be setting it to
either SOCK_STREAM for reliable TCP sockets (send(), recv()) or SOCK_DGRAM for
unreliable fast UDP sockets (sendto(), recvfrom()). (Another interesting socket
type is SOCK_RAW which can be used to construct packets by hand. It’s pretty cool.)

protocol Finally, the protocol parameter tells which protocol to use with a certain socket type.
Like I’ve already said, for instance, SOCK_STREAM uses TCP. Fortunately for you, when
using SOCK_STREAM or SOCK_DGRAM, you can just set the protocol to 0, and it’ll use the
proper protocol automatically. Otherwise, you can use getprotobyname() to look up
the proper protocol number.

Return Value
The new socket descriptor to be used in subsequent calls, or -1 on error (and errno will be set accordingly).

Example

1 struct addrinfo hints, *res;
2 int sockfd;
3

4 // first, load up address structs with getaddrinfo():
5

6 memset(&hints, 0, sizeof hints);
7 hints.ai_family = AF_UNSPEC; // AF_INET, AF_INET6, or AF_UNSPEC
8 hints.ai_socktype = SOCK_STREAM; // SOCK_STREAM or SOCK_DGRAM
9

10 getaddrinfo("www.example.com", "3490", &hints, &res);
11

Chapter 9. Man Pages 118

12 // make a socket using the information gleaned from getaddrinfo():
13 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

See Also
accept(), bind(), getaddrinfo(), listen()

9.24 struct sockaddr and pals
Structures for handling internet addresses

Synopsis

#include <netinet/in.h>

// All pointers to socket address structures are often cast to pointers
// to this type before use in various functions and system calls:

struct sockaddr {
unsigned short sa_family; // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

};

// IPv4 AF_INET sockets:

struct sockaddr_in {
short sin_family; // e.g. AF_INET, AF_INET6
unsigned short sin_port; // e.g. htons(3490)
struct in_addr sin_addr; // see struct in_addr, below
char sin_zero[8]; // zero this if you want to

};

struct in_addr {
unsigned long s_addr; // load with inet_pton()

};

// IPv6 AF_INET6 sockets:

struct sockaddr_in6 {
u_int16_t sin6_family; // address family, AF_INET6
u_int16_t sin6_port; // port number, Network Byte Order
u_int32_t sin6_flowinfo; // IPv6 flow information
struct in6_addr sin6_addr; // IPv6 address
u_int32_t sin6_scope_id; // Scope ID

};

struct in6_addr {

Chapter 9. Man Pages 119

unsigned char s6_addr[16]; // load with inet_pton()
};

// General socket address holding structure, big enough to hold either
// struct sockaddr_in or struct sockaddr_in6 data:

struct sockaddr_storage {
sa_family_t ss_family; // address family

// all this is padding, implementation specific, ignore it:
char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;
char __ss_pad2[_SS_PAD2SIZE];

};

Description
These are the basic structures for all syscalls and functions that deal with internet addresses. Often you’ll use
getaddrinfo() to fill these structures out, and then will read them when you have to.

In memory, the struct sockaddr_in and struct sockaddr_in6 share the same beginning structure as
struct sockaddr, and you can freely cast the pointer of one type to the other without any harm, except the
possible end of the universe.

Just kidding on that end-of-the-universe thing…if the universe does endwhen you cast a struct sockaddr_in*
to a struct sockaddr*, I promise you it’s pure coincidence and you shouldn’t even worry about it.

So, with that in mind, remember that whenever a function says it takes a struct sockaddr* you can cast
your struct sockaddr_in*, struct sockaddr_in6*, or struct sockaddr_storage* to that type with
ease and safety.

struct sockaddr_in is the structure used with IPv4 addresses (e.g. “192.0.2.10”). It holds an address
family (AF_INET), a port in sin_port, and an IPv4 address in sin_addr.

There’s also this sin_zero field in struct sockaddr_in which some people claim must be set to zero.
Other people don’t claim anything about it (the Linux documentation doesn’t even mention it at all), and
setting it to zero doesn’t seem to be actually necessary. So, if you feel like it, set it to zero using memset().

Now, that struct in_addr is a weird beast on different systems. Sometimes it’s a crazy union with all
kinds of #defines and other nonsense. But what you should do is only use the s_addr field in this structure,
because many systems only implement that one.

struct sockaddr_in6 and struct in6_addr are very similar, except they’re used for IPv6.

struct sockaddr_storage is a struct you can pass to accept() or recvfrom() when you’re trying
to write IP version-agnostic code and you don’t know if the new address is going to be IPv4 or IPv6.
The struct sockaddr_storage structure is large enough to hold both types, unlike the original small
struct sockaddr.

Example

1 // IPv4:
2

3 struct sockaddr_in ip4addr;
4 int s;

Chapter 9. Man Pages 120

5

6 ip4addr.sin_family = AF_INET;
7 ip4addr.sin_port = htons(3490);
8 inet_pton(AF_INET, "10.0.0.1", &ip4addr.sin_addr);
9

10 s = socket(PF_INET, SOCK_STREAM, 0);
11 bind(s, (struct sockaddr*)&ip4addr, sizeof ip4addr);

1 // IPv6:
2

3 struct sockaddr_in6 ip6addr;
4 int s;
5

6 ip6addr.sin6_family = AF_INET6;
7 ip6addr.sin6_port = htons(4950);
8 inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &ip6addr.sin6_addr);
9

10 s = socket(PF_INET6, SOCK_STREAM, 0);
11 bind(s, (struct sockaddr*)&ip6addr, sizeof ip6addr);

See Also
accept(), bind(), connect(), inet_aton(), inet_ntoa()

Chapter 10

More References

You’ve come this far, and now you’re screaming for more! Where else can you go to learn more about all
this stuff?

10.1 Books
For old-school actual hold-it-in-your-hand pulp paper books, try some of the following excellent books.
These redirect to affiliate links with a popular bookseller, giving me nice kickbacks. If you’re merely feeling
generous, you can paypal a donation to beej@beej.us. :-)

Unix Network Programming, volumes 1-2 by W. Richard Stevens. Published by Addison-Wesley Profes-
sional and Prentice Hall. ISBNs for volumes 1-2: 978-01314115551, 978-01308108162.

Internetworking with TCP/IP, volume I by Douglas E. Comer. Published by Pearson. ISBN 978-
01360853003.

TCP/IP Illustrated, volumes 1-3 by W. Richard Stevens and Gary R. Wright. Published by Addison
Wesley. ISBNs for volumes 1, 2, and 3 (and a 3-volume set): 978-02016334674, 978-02016335425, 978-
02016349526, (978-02017763177).

TCP/IP Network Administration by Craig Hunt. Published by O’Reilly & Associates, Inc. ISBN 978-
05960029788.

Advanced Programming in the UNIXEnvironment byW. Richard Stevens. Published byAddisonWesley.
ISBN 978-03216377349.

10.2 Web References
On the web:

BSD Sockets: A Quick And Dirty Primer10 (Unix system programming info, too!)
1https://beej.us/guide/url/unixnet1
2https://beej.us/guide/url/unixnet2
3https://beej.us/guide/url/intertcp1
4https://beej.us/guide/url/tcpi1
5https://beej.us/guide/url/tcpi2
6https://beej.us/guide/url/tcpi3
7https://beej.us/guide/url/tcpi123
8https://beej.us/guide/url/tcpna
9https://beej.us/guide/url/advunix
10https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.html

121

mailto:beej@beej.us
https://beej.us/guide/url/unixnet1
https://beej.us/guide/url/unixnet2
https://beej.us/guide/url/intertcp1
https://beej.us/guide/url/intertcp1
https://beej.us/guide/url/tcpi1
https://beej.us/guide/url/tcpi2
https://beej.us/guide/url/tcpi3
https://beej.us/guide/url/tcpi3
https://beej.us/guide/url/tcpi123
https://beej.us/guide/url/tcpna
https://beej.us/guide/url/tcpna
https://beej.us/guide/url/advunix
https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.html

Chapter 10. More References 122

The Unix Socket FAQ11

TCP/IP FAQ12

The Winsock FAQ13

And here are some relevant Wikipedia pages:

Berkeley Sockets14

Internet Protocol (IP)15

Transmission Control Protocol (TCP)16

User Datagram Protocol (UDP)17

Client-Server18

Serialization19 (packing and unpacking data)

10.3 RFCs
RFCs20—the real dirt! These are documents that describe assigned numbers, programming APIs, and pro-
tocols that are used on the Internet. I’ve included links to a few of them here for your enjoyment, so grab a
bucket of popcorn and put on your thinking cap:

RFC 121 —The First RFC; this gives you an idea of what the “Internet” was like just as it was coming to
life, and an insight into how it was being designed from the ground up. (This RFC is completely obsolete,
obviously!)

RFC 76822 —The User Datagram Protocol (UDP)

RFC 79123 —The Internet Protocol (IP)

RFC 79324 —The Transmission Control Protocol (TCP)

RFC 85425 —The Telnet Protocol

RFC 95926 —File Transfer Protocol (FTP)

RFC 135027 —The Trivial File Transfer Protocol (TFTP)

RFC 145928 —Internet Relay Chat Protocol (IRC)

RFC 191829 —Address Allocation for Private Internets
11https://developerweb.net/?f=70
12http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/
13https://tangentsoft.net/wskfaq/
14https://en.wikipedia.org/wiki/Berkeley_sockets
15https://en.wikipedia.org/wiki/Internet_Protocol
16https://en.wikipedia.org/wiki/Transmission_Control_Protocol
17https://en.wikipedia.org/wiki/User_Datagram_Protocol
18https://en.wikipedia.org/wiki/Client-server
19https://en.wikipedia.org/wiki/Serialization
20https://www.rfc-editor.org/
21https://tools.ietf.org/html/rfc1
22https://tools.ietf.org/html/rfc768
23https://tools.ietf.org/html/rfc791
24https://tools.ietf.org/html/rfc793
25https://tools.ietf.org/html/rfc854
26https://tools.ietf.org/html/rfc959
27https://tools.ietf.org/html/rfc1350
28https://tools.ietf.org/html/rfc1459
29https://tools.ietf.org/html/rfc1918

https://developerweb.net/?f=70
http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/
https://tangentsoft.net/wskfaq/
https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/Serialization
https://www.rfc-editor.org/
https://tools.ietf.org/html/rfc1
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc854
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc1350
https://tools.ietf.org/html/rfc1459
https://tools.ietf.org/html/rfc1918

Chapter 10. More References 123

RFC 213130 —Dynamic Host Configuration Protocol (DHCP)

RFC 261631 —Hypertext Transfer Protocol (HTTP)

RFC 282132 —Simple Mail Transfer Protocol (SMTP)

RFC 333033 —Special-Use IPv4 Addresses

RFC 349334 —Basic Socket Interface Extensions for IPv6

RFC 354235 —Advanced Sockets Application Program Interface (API) for IPv6

RFC 384936 —IPv6 Address Prefix Reserved for Documentation

RFC 392037 —Extensible Messaging and Presence Protocol (XMPP)

RFC 397738 —Network News Transfer Protocol (NNTP)

RFC 419339 —Unique Local IPv6 Unicast Addresses

RFC 450640 —External Data Representation Standard (XDR)

The IETF has a nice online tool for searching and browsing RFCs41.

30https://tools.ietf.org/html/rfc2131
31https://tools.ietf.org/html/rfc2616
32https://tools.ietf.org/html/rfc2821
33https://tools.ietf.org/html/rfc3330
34https://tools.ietf.org/html/rfc3493
35https://tools.ietf.org/html/rfc3542
36https://tools.ietf.org/html/rfc3849
37https://tools.ietf.org/html/rfc3920
38https://tools.ietf.org/html/rfc3977
39https://tools.ietf.org/html/rfc4193
40https://tools.ietf.org/html/rfc4506
41https://tools.ietf.org/rfc/

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc3330
https://tools.ietf.org/html/rfc3493
https://tools.ietf.org/html/rfc3542
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3920
https://tools.ietf.org/html/rfc3977
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4506
https://tools.ietf.org/rfc/

Index

10.x.x.x, 18
192.168.x.x, 18
255.255.255.255, 74, 102

accept() function, 28, 29, 83
Address already in use, 27, 77
AF_INET macro, 15, 25, 80
AF_INET6 macro, 15

Bapper, 76
bind() function, 25, 27, 77, 85

implicit, 28
Blah blah blah, 9
Blocking, 44
Broadcast, 74
BSD, 2
Byte ordering, 12, 15, 59, 100

Client
datagram, 41–43
stream, 37–39

Client/Server, 34–43
close() function, 32, 88
closesocket() function, 3, 32, 88
Compilers

GCC, 1
Compression, 80
connect(), 25

on datagram sockets, 87
connect() function, 6, 27, 87

on datagram sockets, 32, 43
Connection refused, 39
CreateProcess() function, 3, 81
CreateThread() function, 4
CSocket class, 3
Cygwin, 2

Data enacapsulation
header, 8

Data encapsulation, 8, 58
footer, 8

Datagram sockets, 6–7
DHCP, 122
Donkeys, 58

EAGAIN macro, 44, 115

Emailing Beej, 4
Encryption, 80
EPIPE macro, 88
errno variable, 97, 105
Ethernet, 8
EWOULDBLOCK macro, 44
Excalibur, 73

F_SETFL macro, 99
fcntl() function, 44, 84, 99
FD_CLR() macro, 52, 111
FD_ISSET() macro, 52, 111
FD_SET() macro, 52, 111
FD_ZERO() macro, 52, 111
File descriptor, 6
Firewall, 17, 76, 81

poking holes in, 81
fork() function, 3, 34, 81
freeaddrinfo() function, 89
FTP, 122

gai_strerror() function, 89
getaddrinfo() function, 14, 19, 21, 33, 89
gethostbyaddr() function, 33, 93
gethostbyname() function, 92, 93
gethostname() function, 33, 92
getnameinfo() function, 20, 33, 95
getpeername() function, 32, 96
getprotobyname() function, 117
getsockopt() function, 112
gettimeofday() function, 53
Goat, 77
goto statement, 78

Header files, 77
herror() function, 94
hstrerror() function, 94
htonl() function, 13, 99
htons() function, 13, 15, 59, 99
HTTP protocol, 7, 123

ICMP, 77
IEEE-754, 60
INADDR_BROADCAST macro, 74
inet_addr() function, 16, 101
inet_aton() function, 16, 101

124

INDEX 125

inet_ntoa() function, 17, 101
inet_ntop() function, 17, 33, 102
inet_pton() function, 16, 102
ioctl() function, 82
IP, 7, 8, 122
IP address, 10, 16, 26, 31, 33
ip route command, 77
IPv4, 10
IPv6, 11, 15, 18, 19
IRC, 59, 122
ISO/OSI, 8

Layered network model, 8
Linux, 2
listen() function, 25, 28, 104

backlog, 28
with select(), 53

localhost, 77
Loopback device, 77

man pages, 83
Mirroring the Guide, 4
MSG_DONTROUTE macro, 115
MSG_DONTWAIT macro, 115
MSG_NOSIGNAL macro, 115
MSG_OOB macro, 109, 115
MSG_PEEK macro, 109
MSG_WAITALL macro, 109
MTU, 81

NAT, 17
netstat command, 77
NNTP, 123
Non-blocking sockets, 44, 115
ntohl() function, 13, 99
ntohs() function, 13, 99

O_ASYNC macro, 99
O_NONBLOCK macro, 57, 84, 99, 111
OpenSSL, 80
Out-of-band data, 109, 115

Packet sniffer, 81
Pat, 76
perror() function, 98, 105
PF_INET macro, 80, 117
ping command, 77
poll(), 45–51
poll() function, 44, 57, 106
Port, 25, 27, 31
Private network, 17
Promiscuous mode, 81

Raw sockets, 6, 77
read() function, 6

recv() function, 6, 31, 108
timeout, 79

recvfrom() function, 31, 108
recvtimeout() function, 79
References

books, 121
FRFCs, 122–123
web-based, 121–122

RFCs, 122–123
route command, 77

SA_RESTART macro, 78
Security, 80
select() function, 3, 51–57, 77, 79, 110

with listen(), 53
send() function, 6, 8, 30, 114
sendall() function, 57–58, 72
sendto() function, 8, 114
Serialization, 58–72
Server

datagram, 39–41
stream, 34–37

setsockopt() function, 27, 74, 77, 82, 112
SHUT_RD macro, 116
SHUT_RDWR macro, 116
SHUT_WR macro, 116
shutdown() function, 32, 116
sigaction() function, 37, 78
SIGIO signal, 99
SIGPIPE macro, 88, 115
SIGURG macro, 109, 115
SMTP, 123
SO_BINDTODEVICE macro, 113
SO_BROADCAST macro, 74, 113
SO_RCVTIMEO macro, 82
SO_REUSEADDR macro, 27, 77, 113
SO_SNDTIMEO macro, 82
SOCK_DGRAM macro, 6, 8, 31, 109, 117
SOCK_RAW macro, 77, 117
SOCK_STREAM macro, 6, 109, 117
Socket descriptor, 6, 14
socket() function, 6, 24, 117
SOL_SOCKET macro, 113
Solaris, 2, 113
SSL, 80
Stream sockets, 6
strerror() function, 98, 105
struct addrinfo type, 14
struct hostent type, 93
struct in6_addr type, 118
struct in_addr type, 118
struct pollfd type, 45, 107
struct sockaddr type, 14, 15, 31, 109, 118
struct sockaddr_in type, 118

INDEX 126

struct sockaddr_in6 type, 118
struct sockaddr_storage type, 118
struct timeval type, 52–53, 111
SunOS, 2, 113

TCP, 7, 122
telnet, 7, 122
TFTP, 8, 122
Timeout

setting, 82
Translating the Guide, 4
TRON, 27

UDP, 7, 8, 74, 122

Vint Cerf, 10

Windows, 2, 32, 77, 88, 113
Windows Subsystem For Linux, 2
Winsock, 2, 32
write() function, 6
WSACleanup() function, 3
WSAStartup() function, 3
WSL, 2

XDR, 71, 123
XMPP, 123

Zombie process, 37

	Intro
	Audience
	Platform and Compiler
	Official Homepage and Books For Sale
	Note for Solaris/SunOS Programmers
	Note for Windows Programmers
	Email Policy
	Mirroring
	Note for Translators
	Copyright, Distribution, and Legal
	Dedication
	Publishing Information

	What is a socket?
	Two Types of Internet Sockets
	Low level Nonsense and Network Theory

	IP Addresses, structs, and Data Munging
	IP Addresses, versions 4 and 6
	Subnets
	Port Numbers

	Byte Order
	structs
	IP Addresses, Part Deux
	Private (Or Disconnected) Networks

	Jumping from IPv4 to IPv6
	System Calls or Bust
	getaddrinfo()—Prepare to launch!
	socket()—Get the File Descriptor!
	bind()—What port am I on?
	connect()—Hey, you!
	listen()—Will somebody please call me?
	accept()—``Thank you for calling port 3490.''
	send() and recv()—Talk to me, baby!
	sendto() and recvfrom()—Talk to me, DGRAM-style
	close() and shutdown()—Get outta my face!
	getpeername()—Who are you?
	gethostname()—Who am I?

	Client-Server Background
	A Simple Stream Server
	A Simple Stream Client
	Datagram Sockets

	Slightly Advanced Techniques
	Blocking
	poll()—Synchronous I/O Multiplexing
	select()—Synchronous I/O Multiplexing, Old School
	Handling Partial send()s
	Serialization—How to Pack Data
	Son of Data Encapsulation
	Broadcast Packets—Hello, World!

	Common Questions
	Man Pages
	accept()
	bind()
	connect()
	close()
	getaddrinfo(), freeaddrinfo(), gai_strerror()
	gethostname()
	gethostbyname(), gethostbyaddr()
	getnameinfo()
	getpeername()
	errno
	fcntl()
	htons(), htonl(), ntohs(), ntohl()
	inet_ntoa(), inet_aton(), inet_addr
	inet_ntop(), inet_pton()
	listen()
	perror(), strerror()
	poll()
	recv(), recvfrom()
	select()
	setsockopt(), getsockopt()
	send(), sendto()
	shutdown()
	socket()
	struct sockaddr and pals

	More References
	Books
	Web References
	RFCs

