

Explore Software Defined
Radio

Use SDR to Receive Satellite Images
and Space Signals

by Wolfram Donat

Version: P1.0 (February 2021)

Copyright © 2021 The Pragmatic Programmers, LLC. This book is licensed to the
individual who purchased it. We don't copy-protect it because that would limit your ability
to use it for your own purposes. Please don't break this trust—you can use this across
all of your devices but please do not share this copy with other members of your team,
with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
The Pragmatic Programmers, LLC was aware of a trademark claim, the designations
have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want
to improve the lives of developers. We do this by creating timely, practical titles, written
by programmers for programmers.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been
DRM-free. We pioneered the beta book concept, where you can purchase and read a
book while it’s still being written, and provide feedback to the author to help make a
better book for everyone. Free resources for all purchasers include source code
downloads (if applicable), errata and discussion forums, all available on the book's
home page at pragprog.com. We’re here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers?
Just create an account on pragprog.com (an email address and a password is all it
takes) and select the checkbox to receive newsletters. You can also follow us on twitter
as @pragprog.

About Ebook Formats
If you buy directly from pragprog.com, you get ebooks in all available formats for one
price. You can synch your ebooks amongst all your devices (including iPhone/iPad,
Android, laptops, etc.) via Dropbox. You get free updates for the life of the edition. And,
of course, you can always come back and re-download your books when needed.
Ebooks bought from the Amazon Kindle store are subject to Amazon's polices.
Limitations in Amazon's file format may cause ebooks to display differently on different
devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To
learn more about this book and access the free resources, go to
https://pragprog.com/book/wdradio, the book's homepage.

Thanks for your continued support,

Andy Hunt
The Pragmatic Programmers

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/wdradio

The team that produced this book includes: Andy Hunt (Publisher),
Janet Furlow (VP of Operations), Dave Rankin (Executive Editor),
Patrick DiJusto (Development Editor), L. Sakhi MacMillan (Copy Editor),
Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Introduction
Materials Needed

1. Installing the Required Bits and Pieces
Hardware
Software

2. Your First SDR Reception
Attaching the Antenna
Windows
Linux
Troubleshooting
Try This

3. Antenna Theory and Design
How Antennas Transmit
How Antennas Receive
Antenna Design for SDR Hobbyists

4. Digital Speech Decoding
Hardware

Software
Things to Try

5. Listening to Satellites
Hardware
Software
Troubleshooting
Try This
Conclusion

A1. Running SDR on the Raspberry Pi
Try This

Copyright © 2021, The Pragmatic Bookshelf.

Early praise for Getting Started
with Software Defined Radio

This book serves as a great introduction to beginners because it
collates all the requisite hardware and software tools. It also
helps you walk through the SDSharp and play with the tool.

→ Sai Yamanoor
IoT Applications Engineer, Buffalo, NY

The manuscript was very well written, and I’ve been having fun
playing with the AIRSPY software tuning in stations and
listening to digital police scanners in my county in Georgia.

→ Michael J. Lewis
Technology Enablement Consultant, Slalom Consulting LLC

I could recommend the book to someone who is interested in a
practical approach to radio signals but has little to no experience
on them. The book is an approachable introduction with step-by-
step instructions for installing and running software.

→ Oona Räisänen
C++ Programmer, Founder of windytan.com

Well written and very comprehensive, it is a good introduction to
a hard topic.

→ Gianluigi Spagnuolo
Reverse Engineer, Exein

Acknowledgments

The offspring suggested I make a few acknowledgments: "I’d like to
thank my arms for always being at my side, and my legs for always
supporting me..."

I’d like to think I’m not quite that dorky, though I may be close.
Instead, I’d like to thank:

Chloe, for ensuring that all projects built are equipped with evasive
maneuvering capabilities.

Oliver, for making sure that the office door hinges work well.

Loki, for ensuring that I’m able to hear in case of an emergency and
for making sure I’m not forgotten in the office.

Smudge, for emotional support (both giving and receiving).

Sai Yamanoor, Mike Lewis, Oona Räisänen, Gianluigi Spagnuolo,
and Youssef Touil for tech editing the book, spotting errors, and
ensuring that the projects worked for everybody. What errors may
remain in this book are mine and mine alone.

Everyone at The Pragmatic Bookshelf for taking a chance with this
book.

Patrick Di Justo, for doing an awesome job, as always, of making my
stuff sound the way I wanted it to sound.

Rebecca and Reed, as always, for putting up with my
disappearances and weird projects, sometimes with little or no
explanation.

Copyright © 2021, The Pragmatic Bookshelf.

Introduction

For several years in my travels online, I kept hearing and reading
about SDR, or software-defined radio. It seemed interesting, but (at
least at first) I didn’t have the time or motivation or learn more about
it.

I gradually picked up a news item here or a Reddit post there, but I
still didn’t know the details of SDR. All I knew for sure was that the
topic was complicated and it allowed you to use your computer to
pick up radio signals. Instead, I concentrated on more easily learned
things like partial differential equations and making the perfect
soufflé.

Then, not too long ago, I got an email from my editor. “Hey Wolf,” he
wrote. “How would you like to do a book on SDR? Ever heard of it?”
It was time to jump into the pool again, and this time I didn’t come
out until I figured out just what the heck was going on in this weird
mix of hardware, software, Internet, and radio waves and wrote it all
down.

This book is the result. It’s all about how to use your computer or
laptop to pick up radio signals from the earth and space using a fairly
recent technology called SDR.

On the surface, receiving radio signals doesn’t seem like a big deal.
After all, everyone’s familiar with satellite TV, right? Even before Dish
Network and DirecTV made it commonplace, anyone with a few

grand and a good view of the sky could erect a 2-meter satellite dish
in their backyard, hook it up to their TV with an esoteric jumble of
electronic bits and pieces, and enjoy watching Japanese television in
their living room. The radio waves are there; it’s just a matter of
receiving and decoding them.

In 1901 Marconi showed everyone how to communicate across the
Atlantic using a high-powered device that produced electromagnetic
waves—the first radio transmitter—and a huge antenna. Ham radio
operators (named because professional radio operators thought
these amateurs were so bad at tapping out Morse code, they must
have hams where their fists should be) have been listening to signals
for more than a hundred years. You can listen to NOAA’s Weather
Radio on any FM radio that can access the lower end of the VHF
(Very High Frequency) band, as well as any marine VHF
transceivers and a number of weather radios sold commercially. You
can tune into local police frequencies and hear everything from
standard police chatter to forest fire information to breaking
emergencies. You can listen to FM and AM broadcasts in your local
area. I have a shortwave radio in my garage that can pick up stations
around the world if the weather is right. And satellite TV receivers
are now commonplace, to the extent that they compete with cable
television in many areas.

But in our world, inexpensive commercial radio receivers are usually
limited to one or two segments of the radio spectrum. I can purchase
a police scanner, and learn how to use it and what frequencies are
being used by law enforcement agencies in my local area, but the
police scanner may not be able to pick up the NOAA weather
broadcasts. And the weather radio probably can’t tune in the ham
radio frequencies. And a ham radio probably can’t get my local Top
40 station. Wouldn’t it be great if there was an electronic device you
already owned that could be trained—dare we use the word

programmed—to tune into different frequencies all across the radio
spectrum?

Enter SDR.

SDR, or software-defined radio, is the technique of using a small
receiver—most often a repurposed USB TV device—to tune in and
listen to radio broadcasts at various frequencies. Advances in
microcircuitry and software make it possible for many of the
functions of multi-band radios to be handled programmatically. The
result? You can use your laptop to listen to the police scanner, or
local radio stations, or even (and this is where it gets really cool)
download and see satellite images from various satellites, including
some of the NOAA weather satellites.

What exactly is needed to do all of this cool stuff? At the bare
minimum, you’ll need a computer with a sound card or other ADC
(analog-to-digital converter), an SDR unit (usually a USB dongle),
and an antenna. Thanks to advances in technology, assuming you
already have a desktop or laptop computer with fairly standard
capabilities, you can pick up the necessary SDR equipment that will
enable you to listen to quite a wide range of signals for less than
$50. You can also use a Raspberry Pi to do all of this, meaning that
an entire SDR setup can be built for under $100.

Most computers and laptops have an onboard sound card, and
higher-end ones may have a stand-alone ADC board, depending on
what the computer is being used for. In my experience, the standard
integrated sound card on even a low-end laptop is perfectly capable
of processing the signals correctly.

The USB dongles used are usually those designed to receive and
decode high-definition digital television broadcasts, though the
slowly rising popularity of SDR and its growing number of

enthusiasts has led to several of these devices being specifically
made for—and marketed to—the software-radio crowd.

The antenna is the final piece in the SDR puzzle that can cause
some headaches: which antenna do you use? What shape does it
have to be? How big? And where do you point it? I’ll go through each
of these questions and a few of the possibilities available to you
when it comes to picking out or building an antenna in the chapter on
antenna theory, but you may be comforted by the fact that you can
use an old-school set of rabbit ear antennas without too much
modification being necessary.

Software-defined radio itself is pretty easy with today’s technology; in
fact, I think that the most difficult thing about it is figuring out exactly
what you can do and what you can’t based on the equipment you
may happen to have. Because so much of each SDR installation is
custom made—you select the software you will use, which antenna,
which USB dongle, and so on and so forth—it can be difficult to
match your configuration to a known-good working configuration. If
your setup matches another exactly except for the version of
software being used, it’s entirely possible that your setup will fail
while the other one will receive all sorts of signals without a problem.
A lot of information is available on the Internet, but there seems to be
a scarcity of getting-started guides that walk you through the process
from start to finish. In addition, the information that is out there is
widely scattered. If you’re interested in getting started with this
interesting hobby, you’re stuck reading five-year-old blog posts,
poring through subreddits, and trying to interpret poorly written
documentation for software packages that stopped being actively
supported back in 2013.

I hope this book helps you, the reader, to find your way through the
maze of information out there, figure out what exactly you want to

do, and show you how to do it with a minimum of fuss and cursing—I
did that part for you, at least. Ready? Let’s get started!

Materials Needed
In this book, aside from technology and software, I use a few
different bits and pieces. I thought a list of the things I use in one
place might be useful to you before you get halfway down the rabbit
hole and realize you’re missing two important things you need right
now to finish a project. To that end, here’s what I use in the book:

An SDR USB dongle,
https://www.amazon.com/gp/product/B009U7WZCA/

An extra antenna for said dongle,
https://www.amazon.com/gp/product/B013S8B234/

Extra long antenna cable,
https://www.amazon.com/gp/product/B00685RFC2/

Coax cable adapters,
https://www.amazon.com/gp/product/B072JCR57H/

A pair of rabbit ears (an antenna, that is—no rabbits were harmed in
the making of this book),
https://www.amazon.com/gp/product/B000EIMKYC/

A flower pot

Some PVC pipe

Copyright © 2021, The Pragmatic Bookshelf.

https://www.amazon.com/gp/product/B009U7WZCA/
https://www.amazon.com/gp/product/B013S8B234/
https://www.amazon.com/gp/product/B00685RFC2/
https://www.amazon.com/gp/product/B072JCR57H/
https://www.amazon.com/gp/product/B000EIMKYC/

Chapter 1

Installing the Required Bits and
Pieces

So you’ve decided to explore the wonderful world of software-
defined radio, the world of virtual transistors, analog-to-digital and
digital-to-analog converters, and homemade antennas. For that, I
say congratulations and welcome! I also say good luck and
Godspeed, for here be dragons. I have buckled my armor and girded
my loins for the express purpose of guiding you through the turbulent
waters of turning your computer into a radio receiver. And if that isn’t
a mishmash of metaphors, I don’t know what is. Anyway...

With the proper SDR tools, including software, tuning device, and
antenna, you can use your computer to tune into a large swath of the
radio spectrum, from 64 MHz—the lower part of the VHF bands—all
the way up to the 1700 MHz UHF bands and beyond. There are
tools (Airspy HF+, for instance) that will tune into the spectrum all the
way down to 1 KHz, and still others, such as HackRF and LimeSDR,
that will go higher than 1700 MHz. These are a bit on the expensive
side and perhaps beyond the scope of this introductory book, but
know that they do exist should you want to explore more of the
fringes of the radio spectrum. Instead of turning a tuning dial to
change radio stations, as you do with your car radio, with SDR you
merely tell the software to tune the device to a specific frequency.

This can be done with astonishing levels of precision; some software
will allow you to increment or decrement your scan in units of
0.00001 MHz. That’s well beyond what even the most precise,
steady-handed person can achieve with a manual tuner. As you can
see in the image from http://www.transportation.gov, SDR doesn’t
cover a huge portion of the radio spectrum, but having one device
able to tune into that many frequencies is very impressive.

Given the right antenna and software, it’s often possible to use the
same USB dongle to listen to FM radio stations, CB radio (see
sidebar), police and fire scanners, the International Space Station,
and even to tune into and visualize the signals from NOAA weather
satellites.

Once the signal is acquired, it’s routed from the antenna, through the
tuning hardware (most often a USB dongle of some sort) into your
computer’s sound card. The sound card acts as a digital-to-analog
converter, taking the analog signals and converting them to digital
signals which your computer can pipe to the speakers. Some
signals, such as those from weather satellites, have an image
embedded into the signal being transmitted. With the correct
software, you can extract and view those images.

http://www.transportation.gov/

Citizens Band Radio Service
In the United States, Citizen’s Band, or CB, is a two-way, short-distance voice
communications service operating near 27 MHz in the shortwave band. It can
be used for both personal and business messages. It probably reached its
height of usage in the 1970s and early 1980s, but the availability of pagers
and, later, cell phones have returned the service to its original users, long-
haul truck drivers and hobbyists. Younger readers may not be familiar with it,
but just watching an old movie like Smokey and the Bandit may introduce you
to nostalgic phrases like “10-4, good buddy” and “chicken lights” and “There
was a plain brown wrapper at the 60-yard stick, a bear in the air, and a wreck
at the 405. The coops were workin’ hard on your side going west.”

The original CB specs called for AM transmission, but over time channels 36
through 40 became used for SSB communication. To listen to CB
conversations, tune to one of the MHz frequencies below on AM. From
27.365 MHz and up, use either LSB or USB.

26.965 | 26.975 | 26.985 | 27.005

27.015 | 27.025 | 27.035 | 27.055

27.165 | 27.175 | 27.185 | 27.205

27.215 | 27.225 | 27.235 | 27.245

27.255 | 27.265 | 27.275 | 27.285

27.295 | 27.305 | 27.315 | 27.325

27.335 | 27.345 | 27.355 | 27.365

27.375 | 27.385 | 27.395 | 27.405

When you’re comfortable with the tools discussed in the book, try listening in
and see if there’s any CB traffic in your local area!

Getting started with software-defined radio can be a challenging
experience. The SDR world is still a fledgling area with little
documentation, despite numerous subreddits, websites

(http://www.rtl-sdr.com, for instance), and online/Facebook groups.
As I write this, Hackaday is even hosting an online chat with SDR
guru Harold Giddings, who goes by the call sign KR0SIV. SDR may
be growing in popularity, but it’s still kind of hackerish.

As such, what few SDR software programs exist are often buggy,
platform-specific, and—most of all—poorly documented. Dozens of
hours of research can lead to nothing but confusion and frustration.
When I was getting started, the frustration was often palpable;
there’s nothing like following a long set of instructions, step by step,
for over an hour, only to find when you finish that it doesn’t work and
it’s anyone’s guess as to why.

One thing I learned through my travails and experiments is that it’s
important to be pragmatic when it comes to the tools—including the
operating system—you decide to use to play with SDR. I’m primarily
a Linux guy, for example; if you’ve read any of my other works, you’ll
know that I am most comfortable in Ubuntu and Raspbian. I do,
however, use both Mac and Windows as well, as I’m not a purist and
will happily switch to whatever tool is best for the particular job I’m
doing. And I almost always try to keep my books OS-independent,
giving instructions for all three major OSes.

However, when it comes to SDR, Windows is still the OS of choice,
so we’ll often be using that when it comes to the projects in the book.
Linux definitely has some software out there, and I had great
success with some of it, but unfortunately, it seems that many of the
Linux tools are very hardware dependent; the same piece of
software may work fine on your desktop system, but switch to one
with a different USB chip and it all may fail. In addition, some tools
are just easier to download and use in Windows than in Linux.

As for you Mac junkies, OSX (or MacOS) now has many of the same
tools available that Linux has, including rtl-sdr, airpsy, and hackrf.

http://www.rtl-sdr.com/

GQRX, the main Linux tool I use in this book, is also available from
either its website or via homebrew or macports. However, while I
was writing this book, I stayed firmly in the Linux and Windows
arenas, so I don’t know how much success you may have with these
tools or how easy they may (or may not) be to install. Just know that
they exist, and if you try them out and they work well, please let me
know!

Hardware
Let’s talk about the hardware that’s necessary for any software-
defined radio experimentation. The first thing you’re going to need,
obviously, is a radio—or its equivalent in the SDR world: a USB
dongle. Most dongles in the SDR space have been originally
designed as TV tuners, to allow the user to receive HD TV signals
out of the air. As their popularity has grown (for both tuning into
television signals and for software-defined radio enthusiasts) they’ve
come down significantly in price, and many of them can be used to
detect all sorts of signals, given the right antenna. Repurposing
these dongles fits one definition of hacking: making a device do
something it wasn’t built to do.

The most common SDR dongles you’re likely to see use the
RTL28xx interface and the Realtek R82xx tuner chipsets, housed in
a variety of different packages. The dongle I’m currently using (see
the image that follows) is from NooElec and is available from your
favorite online retailer for around $20
(https://www.amazon.com/gp/product/B009U7WZCA/).

Others are available, of course, from various retailers, so don’t feel
any pressure to purchase one over another. That being said,
however, remember my earlier warnings about getting different
setups to work? If you’re completely new to the SDR world, it may
behoove you to duplicate my efforts here exactly, starting with the

https://www.amazon.com/gp/product/B009U7WZCA/

hardware I’m using. I would hate for you to duplicate my steps
exactly but have the project not work because of some vague
mismatch between your hardware and your software, or because
your USB device isn’t readable by your SDR software.

The next piece of hardware you’ll need is an antenna, to grab all of
those beautiful signals out of the air and funnel them into your SDR
dongle. Chapter 4 is all about antenna design and theory and which
antennas will do the best job for particular projects and signals, but
when you’re just getting started and getting familiar with the
processes involved, you just need any old antenna.

The NooElec dongle in the previous link comes with an antenna; my
experience is that the included antenna is worth about as much as a
snowblower in the Mojave. Two hours spent trying to listen to the
local radio station and failing to get anything convinced me to try
another antenna I had picked up when I was still unsure as to what I
needed. Don’t be afraid to switch antennas, as switching antennas
can make all the difference, along with placement (which we’ll get
into later as well). When you’re first getting started and are just trying
to pick up some signals—any signals—you may have good luck with
this one: https://www.amazon.com/1090Mhz-Antenna-Connector-2-
5dbi-Adapter/dp/B013S8B234/ (see the following image). I certainly
did. Out of all of the pieces in the SDR puzzle, the antenna may
make the most difference. You may get your setup to work perfectly,
but if your antenna is wrong (such as being the wrong design or
having the wrong placement), you may have no luck picking up
signals. Feel free to experiment.

https://www.amazon.com/1090Mhz-Antenna-Connector-2-5dbi-Adapter/dp/B013S8B234/

We’ll be switching up our antenna for our later projects, but this is a
good one to start with. Whichever one you choose, make sure that
the connector matches the connector on your dongle, which is most
likely an SMA (the first of the two images that follow) or an MCX (the
second image). Happily, many add-on antennas come with an array
of adapters to fit most any radio device.

You will most likely want to get a longer cable. The stand-alone
antenna I bought, for instance, comes with a 1-meter cable, which is
plenty for some simple experimentation—picking up your local radio
station, for instance. However, success with SDR depends not only
on the antenna but the antenna placement. Getting the antenna far
away from your computer and other noisy devices is crucial,
especially as the strength of the signal you’re trying to receive
decreases. As I said, we’ll get into antenna design a bit later on, but
a longer cable is almost guaranteed to be a necessity. Again, make
sure the extension cable you choose fits not only the antenna but the
connector on your USB dongle. Also make sure your genders are
correct on each end of the cable; you may want to purchase a
selection of gender-changing adapters to go with your SDR toolbox.

That’s the bare minimum of hardware you’ll need to start
experimenting. Read on for an introduction to the software we’ll be
using.

Software
Ah, the software. Here’s where things can get a bit sticky, so bear
with me while I attempt to lead you through the jungle. In a nutshell,
you’ll be finding and installing a new device driver and a tuning
program. Sounds simple, right?

Using your USB dongle for SDR experiments requires, at a minimum,
a device driver that is more adaptable than the standard
manufacturer’s or Windows or Linux drivers. Once you get the new
driver(s) installed and working, you’ll also need software that enables
you to tune the dongle to your choice of frequency. This is often
called RTL-SDR software. Windows users most often use a program
called SDRSharp, while Linux users tend to use a package called
GQRX.

Windows
For simplicity’s sake, all the Windows work you see here will be done
on the latest build of Windows 10. It’s likely, though not guaranteed,
that the packages you see will also work with Windows 7 and 8. A
newer computer is also a good idea, but anything as powerful as a
dual-processor or better should be fine.

SDRSharp, the most common Windows program, requires Microsoft’s
.NET version 4.6 or newer to be installed. If you’re using Windows 10,
this may already be installed, but don’t count on it—I tested this
process using a brand new install of Windows 10 Home edition and
.NET 4.6 was missing. You may also need the Visual C++ runtime.
(Don’t worry—you won’t be doing any C++ or .NET programming;
those libraries are just necessary to compile and run the software.)

To install .NET, go to https://www.microsoft.com/en-
us/download/details.aspx?id=55167 and choose your language from
the pull-down menu. Click the big red Download button and follow the
instructions to install it. The Visual C++ package is very similar; go to
https://www.microsoft.com/en-us/download/details.aspx?id=8328 and
again choose your language. Click the Download button and follow
the instructions to install the package.

When the installation is finished, you should now have all of the
operating system tools you’ll need. Now, point your browser to
https://airspy.com/download. Click the Download button next to
Windows SDR Software Package (as shown in the image).

When the download is finished, you’ll have a file named sdrsharp.zip in
your Downloads folder. Move that file to a directory of your choosing
and extract it by right-clicking and selecting Extract Here. You’ll end

https://www.microsoft.com/en-us/download/details.aspx?id=55167%20
https://www.microsoft.com/en-us/download/details.aspx?id=8328
https://airspy.com/download

up with a new directory called sdrsharp-x86. (Don’t worry if you’re
running a 64-bit system; the software will install and run just fine.)

Navigate inside that directory and run install-rtlsdr.bat. Make sure you’re
connected to the Internet before you run the bat file. A command
prompt should open, which will then attempt to download two new
files to your directory: rtlsdr.dll and zadig.exe. Both of these files are
necessary to proceed. The file rtlsdr.dll is the modified driver for your
SDR dongle, and zadig.exe is a handy tool for telling Windows to use
the new driver instead of the old one (because the old one won’t work
for SDR experiments).

Although zadig.exe downloaded for me without any problems, rtlsdr.dll
did not. If this happens to you, you’ll need to download that file
manually. Point your browser to
http://osmocom.org/attachments/download/2242/RelWithDebInfo.zip,
which will put a new RelWithDebInfo.zip file in your Downloads folder.
Unzip the file the same way you did the sdrsharp.zip folder, and you
should have a new directory named rtl-sdr-release.

Navigate inside that folder to either the x32 or x64 directory, depending
on what version of Windows you’re running (most likely 64-bit). Copy
this new rtlsdr.dll file into the sdrsharp-x86 directory.

If by chance the zadig.exe file didn’t download correctly, enter
https://github.com/pbatard/libwdi/releases/download/b730/zadig-
2.5.exe into your browser window and copy the resulting exe file into
your sdrsharp-x86 directory.

That finishes off the software you need to download. Now you need
to run everything. Plug in your dongle and wait for Windows to try to
find or install drivers for it. Don’t worry whether it succeeds or not,
since you’ll be replacing those drivers in a moment.

http://osmocom.org/attachments/download/2242/RelWithDebInfo.zip
https://github.com/pbatard/libwdi/releases/download/b730/zadig-2.5.exe

When it’s finished, open your sdrsharp-x86 directory, right-click the
zadig.exe file, and select Run as Administrator. This will open the
following window:

Zadig is a nifty little tool that lets you choose what drivers you want to
use for a particular device—in our case, the SDR dongle. In the menu
bar, select Options and make sure that there’s a check mark next to
List All Devices. Also, uncheck Ignore Hubs or Composite Parents to
make sure that you can see everything connected to your computer.

Now, in the main drop-down menu, you’ll need to select your dongle.
It should appear in one of two ways: as Bulk-In, Interface (Interface
0), or as something like RTL2832UHIDIR or RTL2832U. Choose
whichever one shows up in your menu. You’ll know you have the right
device when the USB ID showing is 0BDA 2838 00. Oddly enough,
every tuner dongle will have this USB ID, no matter the manufacturer.
Do not select anything else, because this can severely screw up your
USB drivers.

Underneath the drop-down menu, you’ll see a box labeled Driver,
which is prepopulated with whatever driver Windows happened to
select for your dongle. In the box next to it (which the big green arrow
is pointing to), make sure WinUSB (vX.X.XXXX.XXXXX) is selected.
This is the driver you’re going to use to replace the Windows default.
Click the big blue Replace Driver button.

You’re almost guaranteed to get a warning about unverified
publishers and unsigned drivers; just ignore it and install the software
anyway.

You should now have the drivers necessary for your SDR dongle to
work. It’s possible that if you unplug your dongle or move it to another
USB port, you may need to run zadig.exe again, so don’t delete it from
your sdrsharp folder.

On to the next chapter for your first radio reception.

Linux
If you prefer working with the penguin, you’re in luck, since there is
SDR software out there for you, though it’s not as easy to install and
use as AirSpy is for Windows. I’m using Ubuntu, because it’s what I’m
most familiar with and its distribution is most widely supported in the
SDR community. If you’re using Fedora, RedHat, Debian, or
something else, your results may vary. I’m using Ubuntu 16.04, but
feel free to use the most recent release which, as of this writing, is
19.10.

We’ll be using both the rtl-sdr package from the Ubuntu repos and a
program called GQRX. To install the rtl drivers, simply open a terminal
and enter

sudo apt-get update

sudo apt-get install rtl-sdr

After installing the package, you’ll need to see if your distribution is
using the DVB-T drivers, which some have loaded by default. To
check, enter

sudo rmmod dvb_usb_rtl28xxu

in your terminal. If you get the response rmmod: ERROR: Module
dvb_usb_rtl28xxu is not currently loaded, you’re golden. If, on the other
hand, you get a different response stating that the command was
successful (or no response at all, which also means it was
successful), you’ll need to permanently disable the drivers, since
you’ll be replacing them with something else and the rmmod command
is only temporary until you plug in the dongle again or reboot.

To disable them, create a file called rtlsdr.conf inside the /etc/modprobe.d
directory (you’ll have to do it as sudo). In that file, enter

blacklist dvb_usb_rtl28xxu

and save it. Reboot your computer and you should be good to go.

To test that everything is working so far, open your terminal and enter

rtl_test

at the prompt. You should be greeted by something similar to the
terminal screen.

If you’re unable to get the rtl_sdr packages working, you may need to
install the drivers from source. To do that, first install the necessary
dependencies:

sudo apt-get install libusb-1.0.0-dev git cmake

Then clone the rtl-sdr repo:

git clone git://git.osmocom.org/rtl-sdr.git

Once it’s cloned, make a build directory, build it, and install it:

cd rtl-sdr

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON

make

sudo make install

sudo cp ../rtl-sdr.rules /etc/udev/rules.d

sudo ldconfig

When it’s finished, follow the preceding instructions about the Linux
DVB-T drivers and then test with the rtl_test command.

Now you can install GQRX. As I said, I’m using Ubuntu, and the
easiest way to install it is using the aptitude package manager (apt-
get. However, you’ll have to add the correct repositories to your
sources.list file first. To do that, enter the following in your terminal:

sudo add-apt-repository -y ppa:bladerf/bladerf

sudo add-apt-repository -y ppa:myriadrf/drivers

sudo add-apt-repository -y ppa:myriadrf/gnuradio

sudo add-apt-repository -y ppa:gqrx/gqrx-sdr

sudo apt-get update

Follow that with

sudo apt-get install gqrx-sdr

You should now be able to open it by typing

gqrx

in your terminal. Assuming everything installed without issue, you
should now optimize it by installing the libvolk1-bin package and
running the volk_profile tool by entering

sudo apt-get install libvolk1-bin

volk_profile

It’ll take a few minutes to run. When it’s finished, on to the next
chapter for your first radio reception.

Copyright © 2021, The Pragmatic Bookshelf.

Chapter 2

Your First SDR Reception

Now that you’ve got all of the software and drivers installed, it’s time
to connect your dongle to your antenna, open up the software, and
see what signals you can receive. Again, I’ll split the reception part
into two sections—one for Windows and one for Linux.

Attaching the Antenna
Once your USB dongle is plugged into your computer and the drivers
are installed, you can connect the antenna. Using either the cable
that came with your antenna or the extension cable that you got,
attach it to the SMA or MCX connector on the dongle, making sure
it’s secure. Then run the cable to the antenna, placing the antenna
as far from your computer as you can (remember, even for your first
experiments, you’re trying to eliminate as much noise as possible,
and your laptop or computer is quite noisy, radio-wise). If you can
place the antenna near a window, so much the better. I had
problems keeping the antenna upright, but a little double-stick tape
on the base of the antenna solved that problem quickly.

Once the antenna is attached and secure, go back to your computer
and start the software.

Volume versus Gain
In the following sections we’re going to talk a lot about gain and volume. So
what exactly is the difference between the two? If you increase the gain on a
device that has a knob for it, you probably notice that the sound gets louder,
which is exactly what happens when you increase the volume.

In a nutshell, volume adjusts the output level in decibels of your device. Gain,
on the other hand, adjusts the input level decibels of whatever channel you
have selected. Gain controls how loud something is before it goes through
any preprocessing, preamplifying, or any other pre- something or other. It will
affect how loud the signal comes through the speakers, but in the case of
SDR or other similar processes, you’re amplifying the signal as much as you
can to isolate it from the background noise. RF gain is adjusted in the
hardware before the signal is even digitized and is independent of the
operating system.

There’s little difference in how the Windows and Linux platforms handle gain
and volume, with one notable exception: the noise floor. The noise floor is the

level of the background noise around the signal—the background static that
forms the “floor” of the spectrum that you’re seeing on the graph. In my
experience, a value of about 1.5 dB seems to work pretty well in the Linux
configuration. On Windows, a gain of around 30 dB is what works best.

Windows
Windows users are going to use the SDRSharp application to tune the
dongle to different frequencies. It’s in the sdrsharp-exe directory you
created and modified earlier in the book, so if you don’t have that
directory open already, open it now.

Double-click SDRSharp, and you should be greeted with the window
shown here:

There’s a lot of stuff in this window, so let’s take a moment to
familiarize ourselves with it. At the top center, as you’ve probably
guessed, is the frequency in megahertz to which the program is
currently tuned. Underneath the frequency label are two graphic
representations of the frequency spectrum in the general
neighborhood of the current frequency. You’ll see those in action
shortly. The sliders along the right side of the window allow you to

adjust what you see in those windows, including the contrast of the
displays and how much of the spectrum appears in the window.

The left side of the window contains the fine-tuning settings you’ll be
playing with as you experiment. You can choose the source of the
signals, what form they’re in, and play with things like gain, filters,
bandwidth, and any number of other settings that we won’t be getting
into at the moment.

For our first experiments, we’re just going to try to pick up a nearby
FM radio station. First, you need to tell SDRSharp where the signals
are coming from. At the top left of the window you’ll see a drop-down
that allows you to select the source. Select RTL-SDR (USB) from the
choices. The first time you choose it, you may get a warning from
your computer about how Windows is protecting you from evil files
and devices. If this happens, click the More Info button and then
choose Run Anyway.

Next you’ll want to adjust the gain of the signal, because if it’s too low
you won’t be able to receive anything but static. Click the gear icon at
the top left, above the Source selection drop-down, and you’ll see the
small menu like that in the following image.

You can leave the other selections at their default settings, but move
the RF Gain slider to somewhere around 30 dB, and then click Close.
For those of you following along with both Windows and Linux tools,
SDRSharp’s RF Gain slider is a bit different from the Gain slider in
GQRX. In SDRSharp, this slider changes the RF hardware setting, while
the slider in GQRX changes the volume within the software.

With your gain adjusted, you’re ready to tune in. Click the Play button
(the triangle) next to the gear icon at the top left of the window, and
you should be greeted with the sound of static coming through your
computer speakers and what looks like a seismograph scrolling
toward the bottom of the screen (see the following image).

As we stated earlier, the numbers across the top of the window are
the frequency to which you’re currently tuned; in the case of the
previous image, it’s tuned to 103.1 FM. This happens to be a station
in my local area, and you can tell there is a decently strong signal
because of the “hump” in the background frequency graph. Also in

the window pictured, you can see that there’s another strong signal
between 103.75 and 104.0 FM. As you may have guessed, there’s
another local station at 103.9 FM in my area. This is a good
illustration of how the top graph shows the relative signal strengths of
the local “neighborhood” in the RF spectrum; strong signals show up
as peaks above the surrounding static. The stronger the signal, the
higher—and most likely the broader—the peak will be.

Of course, it’s unlikely that you’re tuned to a local station when you
first bring up SDRSharp, so you’ll need to look around in your local
spectrum—the equivalent of spinning the tuning dial on your old FM
radio. There are a few ways of doing that. For larger tuning
adjustments, you can click the individual digits in the frequency
display; clicking the upper half of the digit will increase it by one, and
clicking the lower half will decrease it.

Once you’re in the neighborhood of the frequency you’re looking for,
you can fine tune your adjustments by either individually adjusting the
digits (changing 103.100.000 to 103.101.000, for example), or by
clicking the vertical red line in the center of the frequency graph and
dragging it to the left or right.

As you scan through the spectrum, I’d suggest two things to keep in
mind when you’re looking for signals. First, don’t overlook the sliders
to the right of the frequency window, especially the Zoom slider. You
can use it to navigate precisely within the section of frequencies that
you’re scanning.

Second, experiment with the strange-looking icon directly to the right
of the frequency display in digits (it looks like two triangles pointing at
each other). When the icon looks like that, it’s in Center tuning mode,
which means that the red tuner line will always be in the center of the
window. Clicking it again will put it in Free tuning mode, which will
allow you to move the red line within the window, rather than keeping

it in the center. This can be useful if you’re trying to zero in on and
investigate a particularly small or elusive frequency spike.

Before you know it, you should be tuning in to your local radio
stations and even picking up some that are further away. Experiment
with your antenna as well; try moving it around and pointing it in
different directions. If you’re having difficulties, skip to the
Troubleshooting section after the Linux section of this chapter.

Linux
Hopefully you had no problems getting the rtl-sdr drivers and GQRX
installed. Once your antenna is connected, you can start receiving
signals by opening a terminal and entering

gqrx

You may get a crash-warning window, which states that the current
settings are not optimal and may cause the program to crash. Click
Open Anyway. You should be greeted by the window shown.

Like Windows’ SDRSharp, there’s a lot of info here, so take a moment
to look around before you blindly start clicking and dragging (unless
you’re like me and that’s just how you do things). The main part of the
window, on the left, displays the current frequency in megahertz to
which you’re tuned, with a gain meter just to the right. Below that are
the graphic representations of the surrounding neighborhood of the
RF spectrum.

The top of the window contains the standard File menu options, like
Preferences, Open, Save, and so forth. The right side of the window
is where you perform all of your advanced settings and tunings, like
antenna selection, choosing hardware, adjusting gain, and choosing
filters.

The first thing you’ll need to do is choose your receiver as the input
device. Click the icon on the top row—directly above the spectrum
image—that looks like a PCI-E board or a circuit board.

In the resulting window, select Realtek RTL2838UHIDIR
SN:00000001 (or the device most similar to that, depending on your
hardware) from the Device selection menu. Leave the other options
as their defaults and click OK.

Next, you’ll probably want to adjust your gain (see previous sidebar),
because otherwise it’s very easy to lose your signal in the noise floor.
In my experience, a value of about 1.5 dB seems to work pretty well.
In GQRX, the LNA slider is equivalent to the RF Gain slider in
SDRSharp, so play with both of these sliders until you’re comfortable
with the results.

Finally, choose the frequency to which to tune your device. Similar to
Windows’ SDRSharp, you can tune the frequency window by clicking
the individual digits in the shown frequency; clicking the upper part of
the digit increases it, clicking the lower part decreases it. You can

also click and drag the vertical red tuner line in the middle of the
spectrum graph to adjust it by hand. You can also zoom into the
frequency using the Frequency Zoom slider in the FFT Settings tab.

When everything is set, click the triangle-shaped Play button in the
top row. Before you know it, you should be tuning into your local radio
stations and even picking up some that are further away. Experiment
with your antenna as well; try moving it around and pointing it in
different directions. If you’re having difficulties, check out
Troubleshooting in the next section.

Troubleshooting
If you’re having issues, hopefully this section can help you narrow
down the possible causes and fix the problem.

You’re not hearing anything, or you’re hearing nothing but static,
even at frequencies where there should be a signal (like your favorite
local radio station).

This is the most common issue people seem to have. The answer to
this is probably the antenna. First, make sure it’s firmly connected to
the dongle. If that doesn’t fix things, either move the antenna further
away from your computer (which may require a longer cable) or
switch to a different or better antenna. If you only have the one
antenna, try simply picking it up and pointing it in different directions.
If you start picking up a signal, even a very faint one, you’ll know the
problem (and solution) is the antenna.

You’re getting a No Device Selected or No Compatible Devices
Found message when you start SDRSharp.

This is a common problem in Windows. These messages can
sometimes be caused by low-quality USB cables or hubs. You can
try moving the dongle to another USB port, or removing it from a hub
and plugging it directly into the computer. You may also try plugging
it into a USB 2.0 port rather than a USB 3.0 port. I had the best luck
in this case with simply starting over and reinstalling all of the
drivers.

It’s still not working.

Starting over seems to be a viable option. If you decide to go this
route, uninstall or delete everything you’ve done so far. If you’re

using Linux, this will include the command apt-get remove and all of the
packages you had to install via apt-get previously. As I said, these
programs can be touchy, and if the wind is blowing in the wrong
direction or your socks are the wrong color, the installation may fail
completely. Keep trying and I guarantee it will eventually work.

When it does, turn to the next chapter for some antenna theory, and
then to the first project!

Try This
Some things to try when you’ve had some successes and are feeling
comfortable/cocky:

1. Try using a new antenna setup to receive commercial radio
stations outside your general geographic area. Do you have
better luck during the day or at night? How does the weather
affect reception?

2. If you’re using a laptop, try making your setup portable and
travel for a bit to a different area, preferably one with a different
geography (for example, if you live in a valley, try going up a
mountain). Do you have better luck? Does altitude affect
reception?

Copyright © 2021, The Pragmatic Bookshelf.

Chapter 3

Antenna Theory and Design

It’s an amazing kind of sorcery that you can point a piece of metal at
the sky, attach it to some various electronic bits and pieces, and
suddenly listen to a radio broadcast from the other side of the planet.

That piece of metal pointed at the sky is the antenna. As you may
have guessed, when it comes to receiving radio signals from space
(or from anywhere else, for that matter) the kind of antenna—the
shape and size, and the direction in which you point the antenna—is
very important. Before we get into the various types of antennas that
work best for SDR, I’d like to briefly discuss how antennas work.

We could talk about the physics of antennas for an entire book, and
there are entire textbooks and courses of study about the subject.
But that would be way outside the scope of this book, and
unnecessary. This chapter is just meant to give you an introduction
to how antennas operate for both sending and receiving. We’ll briefly
discuss how antennas transmit a signal, why you need different
kinds of antennas to receive those signals, and what kinds might
work best for the particular projects in this book.

How Antennas Transmit
To begin with, all radio transmissions are electromagnetic (EM)
waves. To transmit a radio wave, a moving magnetic field induces a
current and a voltage in a length of wire. You can test this yourself by
connecting a sensitive voltmeter to a loop of wire and wiggling a
strong magnet back and forth within the confines of the loop. You’ll
see a small voltage and current appear on the voltmeter. It’s a small
current—on the order of several microamps—but that’s because
you’re not wiggling the magnet fast enough. If you increase the
frequency of your magnet-wiggling, the voltage and current will
increase in the wire, which in turn will increase the power of the
transmission (remember your electrical equations— , or power
equals current times voltage).

Now, let’s pretend that your transmitter is just wiggling a magnet
really fast around some wire. This creates an oscillating electric
dipole (a dipole is a system where the positive and negative charges
are separated by a distance). The oscillation creates an
electromagnetic wave that emanates from the antenna (or the wire, in
this case). The following image shows a dipole antenna emitting an
electromagnetic wave in the same plane as the two antenna wires.

As the magnet wiggles, electrons in the wire are moved from one end
of the dipole to the other, creating a wave. That wave travels through
three-dimensional space in pulses that can be displayed in two-
dimensional form as a sine wave.

Since all electromagnetic waves travel at the speed of light in a
vacuum, or 3x108 m/s, the frequency of the pulses distinguishes one

type of wave from another. (Yes, the speed of light is sliiiiiightly slower
in air than in a vacuum, but I don’t think the difference between
299,792,458 m/s and 299,702,547 m/s is worth fixing, do you?)
Frequency is measured in cycles per second; one cycle per second is
called one Hertz (named after the German physicist Heinrich Hertz).
The frequency of those waves varies according to the kind of
transmission; the color blue—specifically, blue light—has a frequency
of around 630 THz (terahertz), while the radio station just down the
road from me transmits at a frequency of 103.1 MHz (megahertz).

As you might infer from the examples I just gave, there’s really no
difference between a color of light and a Top 40 radio station
transmission, electromagnetically speaking. They’re both just different
frequencies of EM waves. Higher, faster frequencies may manifest as
visible light; lower frequencies can manifest as television signals,
radio signals, or even sound.

The other side of the frequency coin is wavelength. As you can see in
the first image above, the wavelength of a wave is the distance
between peaks (or troughs) of that wave. Since all EM waves travel
at the same speed, the frequency of their pulses determines their
wavelength. Higher frequency pulses mean a shorter wavelength;
slower frequencies mean longer wavelengths. The equation that
combines the two is pretty simple: electromagnetic wavelength is
defined as the speed of light divided by the frequency of the wave.
This means that for an FM radio broadcast of around 100 MHz, the
wavelength is about 3 meters. A broadcast frequency of 10 GHz, on
the other hand, has a wavelength of about 3 centimeters.

You may also hear or read things about the bandwidth of a signal.
The bandwidth of a particular signal is the difference between its
highest and lowest frequencies. For instance, if a signal is transmitted
between 100 MHz and 120 MHz, its bandwidth is 20 MHz. Signals
with a tight (small) bandwidth often have more power but are more

difficult to “catch” out of the air, as you have to more finely tune your
receiver.

Another difference between different signals is the concept of a
waveform. You may wonder, if two signals share the same range of
frequencies in the electromagnetic band, what keeps them separate
and distinguishable from each other? The answer is waveforms.
Waveforms are definitely outside the scope of this book, but in
general, think of waveforms as different frequencies of waves added
together to make a unique shape. Thus, one signal may have a
certain range of frequencies included within it, while another
neighboring signal may look totally different. This keeps them unique
within a part of the EM spectrum, while allowing a certain type of
antenna to capture both. The top image shown illustrates this
concept; the bottom right of the image is an example of two waves
“added” together to form a new waveform.

The final piece of the transmission puzzle (that interests us, anyway)
is the polarization of a signal. If you have a single piece of wire as
your transmitter, also called a monopole, then the electromagnetic
wave emitted from the antenna is matched in orientation, or
polarization, to the orientation of the antenna. (A monopole is a single
piece of wire, while a dipole is two separate pieces of wire that are
parallel and lie almost end-to-end with each other.) What this means
is that if your transmission antenna is sticking straight up and down,
your receiving antenna (assuming it’s also a monopole) needs to also
be straight up and down to get the best reception. Linear polarization,
such as in this example, isn’t very useful; what good does it do to
transmit a signal if receivers have to be oriented the exact same way
in order to receive it? A good example of this is shown in the image
that follows, where the blue (horizontal) wave is polarized 90 degrees
from the red (vertical) wave. In this instance, a horizontally oriented
antenna would be unable to receive the red signal, while a vertically
oriented antenna would be unable to "see" the blue wave.

So what do you do to ensure that receivers can always receive the
transmission, no matter what direction their antenna is oriented? In
the case of linear polarized signals, one way is to use two antennas
oriented at 90-degree angles to each other. This ensures that no
matter how the receiver is positioned, one of the antennas will be

getting a strong signal. (One could also argue that you could mount a
series of single antenna wires around a single base, each slightly out
of phase with the previous one, so that all angles are covered.)

While this will work, and will cover your bases when it comes to
orienting the antenna, this method isn’t normally used, because the
additional weight of all of those added antenna wires would make the
end product unwieldy and unstable. Instead, a better way to combat
this problem is to change the polarity of your transmission signal. The
most common types of signal polarity are horizontal, vertical, right-
hand circular, and left-hand circular. It’s a well-known fact among
radio enthusiasts that vertically oriented signals often travel better
than horizontally oriented ones when it comes to local
communication. However, circular polarity is often used to fix the
orientation problem, because most circular-polarized signals are
broadcast in all directions at once (depending on the broadcast
pattern), making the antenna orientation irrelevant. This type of signal
is often used for satellite communications, as it’s impossible to make
sure that the satellite’s broadcast antenna is in the same orientation
as the receiving antenna. In addition, the antenna on a spacecraft is
often rotating around the axis of the craft, constantly changing
direction and orientation. The terms right-hand and left-hand refer to
the direction of the helical turns as viewed from the receiver. The
wave in this image is right-hand polarized:

How Antennas Receive
This brings us to talking about how to receive signals, and this is
where we look at antenna shapes and sizes. As you probably figured
out, shapes and sizes of antennas are determined by the frequency
and polarization of the signal you’re trying to catch.

Let’s look at how to receive horizontal and vertical polarization first
(the simplest). Just like the broadcasting antenna, these are best
received by monopole or dipole antennas.

You may notice that the length of the antenna is explicitly depicted in
both figures; this is because in both cases, the length of the antenna
poles has a specific relationship to the wavelength of the received
signal. A monopole antenna will experience the best reception if the
antenna is one-quarter the length of the signal wavelength. A dipole,
being really nothing more than two monopoles stuck together, will
get the best reception if the total length of the antenna (both
monopoles measured together) is one-half the signal’s wavelength.

Obviously, the length requirement is not a hard-and-fast rule,
otherwise the whip antenna on your car (or the one built into your
windshield) would be able to pick up only one station—the one
whose signal frequency matched the antenna’s length. Rather, it
means that antenna performance will be optimized at a particular
length, and if you are designing an antenna to pick up one particular
signal, then taking this rule into account will be to your advantage.
An interesting experiment for a budding antenna physicist would be
to use a handheld FM radio with a variable-length antenna and see if
changing the length of the antenna affects the reception of different
local stations. Following the equations given earlier, a monopole
antenna should be set to about 75 cm to best pick up an FM station
transmitting at 100.1 MHz, and making it longer should optimize
reception of lower-frequency broadcasts (99.9, for example).
Meanwhile, making it shorter (remember, higher frequencies mean
shorter wavelengths) should optimize receiving stations at 101.1 and
above.

The final antenna shapes that we’ll talk about are those tuned to
circularly polarized signals. And what shape is used for that type of
reception? Not surprisingly, it hearkens back to the series of
antennas mounted circularly around a central mast I mentioned
earlier, but in this case it’s more of a DNA shape: the helix antenna.

The simplest helix antenna is the monofilar helix in the image that
follows. We don’t want to get too deep into antenna physics, again,
so just know that things like the radius of the turns, the distance
between them, the total length of the antenna, and the pitch angle
affect the reception power. At its core, however, the monofilar helix is
just a monopole antenna like the whip antenna we discussed earlier,
only with an omnidirectional radiation/reception pattern.

The type of circular polarization of the signal directly affects the
shape of the antenna. A helix antenna can be either right- or left-
hand polarized, and that polarization must match the signal
polarization, otherwise the antenna won’t receive anything. The next
step in the antenna complexity stepladder is the double-helical
design, which—just as it sounds—imitates the DNA helix and makes
the antenna a bit more effective at capturing signals.

Another, more complex antenna design you may find in your antenna
design quest is the skew-planar wheel antenna. It’s not used very
often—mostly in radio control (RC) designs—but it has the unique
characteristic of receiving linearly polarized signals no matter its
orientation. It’s why it’s used in RC scenarios; the airplane can still
receive signals from the RC transmitter, no matter what direction or
orientation it’s in.

Although it’s a pretty interesting design, it’s relatively rare, so I won’t
go into it any more here.

Antenna Design for SDR Hobbyists
So how does all of this theory affect us SDR hobbyists? The answer,
of course, depends on how far down the rabbit hole you wish to go
and what sort of results you’re expecting. If you’ve already
experimented with the projects in Chapter 2 and Chapter 3, you’ve
most likely been successful with the simple whip antenna that
connects to your SDR dongle. You may have also noticed that some
of those basic monopoles are built with a small coil in the middle of
the antenna. This is simply a way of making the antenna’s effective
length a bit longer without making it too unwieldy. Luckily, it doesn’t
affect the antenna’s effectiveness (though I have seen some
advertisements attempt to market the coil as a reception enhancer—
make of that what you will).

Those simple whip antennas will work fine for the digital signal
decoding in Chapter 5, as well, but you’ll have to switch it up a bit to
get a hold of the NOAA satellite signals in Chapter 6. That’s because
they, like most satellites, broadcast using a circular polarity—a right-
hand circular polarity, in their case. Ideally, you should use a right-
hand circular polarized antenna to pick up their signals, but luckily
some genius in the SDR world discovered some time ago that a pair
of rabbit ear antennas could also be used, given that they were
spread apart this far and oriented just like that. I’ve got more info
about how to set up the antenna in that chapter.

In the meantime, I hope this chapter gives you an introduction to just
how these magical pieces of metal actually grab sound and pictures
out of the sky. Though it’s not an in-depth study on antenna physics,
it should give you enough of an intro so that if you find a signal
you’re interested in, you can decide what sort of antenna to build or
buy to have the best chance of receiving it. I highly recommend you
search for it on YouTube, as I’ve discovered that videos and gifs

make a huge difference when trying to understand some of the
concepts, especially the electromagnetic radiation patterns.

If you’re comfortable with the concepts, let’s move on to decoding
some digital speech encoding.

Copyright © 2021, The Pragmatic Bookshelf.

Chapter 4

Digital Speech Decoding

Let’s revisit, for a moment, the old days before silicon integrated
circuits and software packages and newfangled computing
machines. Back then, an enterprising hobbyist could use some
transistors, a few variable resistors, a diode or two, and a tunable
crystal and, with the right antenna and a healthy dose of skill and
talent, receive and listen to almost any signal on the air. Back then,
all broadcast radio signals were analog. While UHF broadcasting
existed, there was almost nothing transmitting in that area of the
spectrum, and satellite radio was unheard of.

Nowadays, analog signals are gradually being replaced by digital
ones. The day may not be far in the future when all signals on the
airwaves are digital. Back in 2009, all U.S. analog television signals
were shifted to digital, and in early 2019 the nation of Norway shut
off all their national analog FM radio stations in favor of digital audio
broadcasting. If and when that happens in your location, the type of
radio set shown in the preceding image will no longer be useful. It
will still pick up the signals, but they will be unintelligible to the
listener.

The difference between those older signals and the newer digital
ones is just like the difference between old cassette tapes
(remember those?) and CDs. Cassette players work by transforming
audio waves back and forth into analog electrical signals, usually by
way of a microphone or a speaker. Similarly, analog radio broadcasts
work by changing electrical signals into radio waves that are
transmitted. The signal directly represents the transmitted sound (or
picture) by varying voltages and frequencies.

Digital music storage, such as CDs, on the other hand, works by
storing the sound as patterns of ones and zeros, the same way a
computer stores data. To listen to a CD, you have to read the pattern
of ones and zeros with a laser and then decode them. Likewise,
digital radio broadcasts transmit patterns of numbers rather than
analog waves. While your SDR dongle can pick up both types of
signals, if someone is broadcasting via a digital signal, you won’t be
able to understand it—at least not without using some special
software to convert digital to analog.

A perfect example of this digital encoding is found on the public
safety and law enforcement bands. First of all, you should know that
contrary to popular belief, it’s not illegal to own and operate a police
scanner—at least in the United States. (Check with your local laws if
you’re not reading this in the U.S.) You can purchase them on
Amazon. However, should you decide to get yourself such a
scanner, you may be disappointed, because many of these public
departments have made the switch to digital broadcasting.

The reason many public departments have switched to digital is
often because it’s much cheaper to broadcast a digital signal than an
analog one, and this is mainly for two reasons. First, digital radio
offers better resistance to interference from other signals nearby on
the spectrum. This means it can be broadcast with less power
behind it, since you don’t have to worry about having to overpower
neighboring signals. And second, since it avoids the necessary
physical imperfections of analog transmitters, more of the power you
put into the broadcast gets translated into the signal rather than into
heat energy loss in the broadcast equipment. So less power is
needed to broadcast, and you get more bang for the buck with the
power you utilize.

What all of this means is that if you’re interested in listening to your
local fire department or sheriff’s station, you’ll need to be able to
decode the digital signal. Luckily, you can do this by adding some
free digital decoding software to your SDR suite of programs.

One thing I find necessary to mention: digital speech or signal
encoding is a completely different animal than signal encrypting.
Digitally encoded speech signals can be decoded and listened to
pretty easily with free software. Encrypted signals, on the other
hand, are often official channels and frequencies that are not meant
to be decoded or listened to by the general public. While software
exists to decrypt these signals, it’s often illegal for civilians to use. In
other words, stick to your local police department broadcasts and
stay away from broadcasts by the NSA or the CIA.

Finally, a word of notice from your author: although I managed to get
digital speech decoding up and running on Windows, it was tricky. I
had much more luck with my Linux installation, though it may have to
do with the difficulty I had in locating suitable DSD-encoded
broadcasts. If you’re trying this on a Windows box and are having
absolutely no luck, you may want to consider taking the leap (if you
haven’t already) and transitioning to a Linux system, at least for your
SDR experimentation.

Hardware
Luckily, no matter which operating system you’re using, no additional
hardware is required beyond what you were using to listen to
standard FM radio signals. That being said, however, you stand a
much better chance of receiving some good signals if you have a
good antenna. In preparation for listening to weather satellites, it
might be a good idea to find or purchase an old TV rabbit ear
antenna setup.

These are available on Amazon or your local big box store for
around ten dollars. I would suggest that you choose a set that
terminates to a coax connection. You can then follow up your
antenna purchase with two things: a longer cable for your dongle
and an adapter to connect that longer cable to the coax cable on the
antenna. Both of these are available on Amazon—look for an MCX
male-to-female extension cable (often used for GPS systems) and
an MCX-to-coax adapter. Once you’ve got your antenna and cable
setup, you’re ready to receive digital signals, as well as the older
analog signals.

Software
Once again, I’ve separated instructions for Windows and Linux. If
you’re using Linux, feel free to skip ahead.

Windows
In addition to SDRSharp, you’ll need both a program called dsd (which
stands for digital speech decoding) and a way of sending the output
from SDRSharp to the dsd application, via software running inside your
computer.

Ordinarily, when you tune your dongle and listen to the radio
frequencies with a program like SDRSharp, the output is being piped
(obviously) to your computer’s speakers. It’s really no different than
listening to the radio in your car. If you want to decode digital speech
signals, however, you need a way of sending the output of SDRSharp
to a digital speech decoding program instead, and then sending that
output to your speakers.

This is where a device called a virtual audio cable comes in. Picture it
as connecting a cable to the "output" of SDRSharp and plugging it into
the "input" of dsd—except that it’s all happening virtually, completely in
software. Two commonly used programs for Windows users are Virtual
Audio Cable and VB Cable. Virtual Audio Cable has both a free and a paid
version, while VB Cable is completely free.

Virtual Audio Cable can be found at
http://software.muzychenko.net/eng/vac.htm, and VB Cable can be
downloaded from https://www.vb-audio.com/Cable/index.htm. I
experimented extensively with both programs, and while I had no luck
at all with Virtual Audio Cable, I had no problems with VB Cable. I must

http://software.muzychenko.net/eng/vac.htm
https://www.vb-audio.com/Cable/index.htm

specify here that I didn’t try the paid version of Virtual Audio Cable, so
it’s possible that the paid version works just fine. Thus, your results
may vary if you decide to try it, but my instructions going forward will
be for VB Cable.

Once you’ve downloaded VB Cable, extract everything from the
downloaded zip file. Navigate inside the resulting folder and you
should see, among a bunch of other files, a VBCABLESetup and a
VBCABLESetupx64 application.

Choose the version right for your architecture, right-click it and
choose Run as Administrator. All of the drivers should install, and if
you check your Windows settings, you should see a new device,
Cable Input, listed under your sound playback devices, and a Cable
Output device under the recording tab.

While you have these settings open to check, set the VB-Audio
Virtual Cable as your default recording device. This is because dsd—
the program we’re installing next—will automatically use the default
recording device as its input.

Once VB Audio is installed, you’ll need to download and install dsd.
Ordinarily, this might be a tricky situation because the program is
designed to run on Linux, and to run it on a Windows machine it
needs to be compiled and installed using a Windows-based Linux
emulator called Cygwin. Installing and running Cygwin can be
instructive if you’re interested in compiling and running dsd yourself,
but it can also be problematic if you don’t install it with all of the
correct libraries, extensions, and compilers. It’s a rabbit hole that
many hobbyists may not want to follow.

We’re fortunate that there are enough enthusiasts around that
someone has done the hard work for us by compiling all of the

necessary libraries and dsd itself, and then releasing the resulting
Windows binary. This allows you to avoid the entire Cygwin-based
rigamarole. You can download the binary from my github repo here:
https://github.com/wdonat/jumpstarting_sdr.

Once you’ve downloaded the zip file, extract the contents, which will
give you a directory called dsd-1.7.0. Inside that folder you’ll find the
dsd application; don’t open it just yet, as it’s not something you just
double-click and open. Just remember where you put it.

Now, open up SDRSharp and tune to a digitally encoded channel. In
my experience, this can be one of the most problematic portions of
the project, as there doesn’t seem to be a central listing of broadcast
frequencies—digital or otherwise—sorted by area. Try Googling your
local police department and public safety organizations, or
http://www.radioreference.com has a pretty comprehensive database.
If all else fails, you may need to (as I did) simply start scrolling
through the frequency dial and looking for a digital signal. They’re
pretty easy to distinguish, as they tend to be a digital “hum” sound
and they’re often broadcast either sporadically or in regularly spaced
bursts. However, it’s a large spectrum, and scrolling through it can
take a long time, so you may want to save this option as a last resort.
I wish there was a way to narrow it down, but all of my research up to
now hasn’t revealed a general area of the spectrum where these
frequencies tend to reside. If you’re aware of any such area, please
let me know! I can say that in my area of southern California, I had
my best results around 500 MHz. Obviously, your results may vary
greatly.

Once you’ve found a digitally broadcasting candidate frequency, you’ll
need to adjust your SDRSharp settings. First, set the audio output to VB
Audio. Then set the receiving mode to NFM (Narrow Band FM), and

https://github.com/wdonat/jumpstarting_sdr
http://www.radioreference.com/

then set the bandwidth to about 12 KHz. When you’ve tuned to the
strongest part of the signal, press the Play button.

Of course, you shouldn’t hear anything, because instead of sending
the output to your speakers as you did before, you’re piping the
output to your VB Audio installation, which in turn is piping to the dsd
application (which hasn’t started yet). Open a windows command
prompt, and in that window, navigate to your extracted dsd-1.7.0
directory. Once you’re inside that folder, enter

dsd -i /dev/dsp -o /dev/dsp -fa

This command tells dsd to listen to the default audio recording device,
which you’ve set to be the VB Audio output, and pipe it to the default
audio output device, which is most likely your speakers. Finally, the -fa
flag tells it not to discriminate and to scan for all sorts of encodings.

If you’ve found a dsd-encoded frequency, the terminal window should
begin scrolling text, which will change when speech is detected. The
text scrolls (adds an additional line) every time the signal updates; for
example, when a user presses their TALK button, that will show as a
status update of text.

If nothing happens, there are two options: either the frequency you’re
listening to is not dsd-encoded or your settings are wrong. Double-
check your settings and keep trying, including scanning the dial for
likely signals.

One of the most important settings to play with is your gain—both in
SDRSharp and in your Windows sound settings. Try different values in
your SDRSharp output, and then open your Windows sound recording
settings and adjust the microphone sensitivity. Once you’ve found a
good digital speech frequency, it’s unmistakable, and you’ll really be
able to hear a difference when you adjust either one of those settings.

Linux
Linux users will be using the same software as Windows users, but
it’s a bit more involved to build and install the program in Linux since

there are no precompiled binaries to use.

That software is called dsd (for digital speech decoder), and in
addition to your GQRX software, you’ll need it and the packages it
relies on. Windows users need to either install it using Cygwin or to
download a pre-compiled binary, but Linux users will compile it for
their particular platform. Start by visiting
https://github.com/szechyjs/dsd and cloning the repository to your
computer with the git clone command. Then visit
https://github.com/szechyjs/mbelib and clone that repository as well.

Starting with the mbelib library, cd into the source folder and enter the
following commands in your terminal:

mkdir build

cd build

cmake ..

make

sudo make install

This will install the mbelib application to your computer, which dsd
depends on. When it’s done, install the other needed precursors for
dsd with the following command:

sudo apt-get install libitpp-dev libsndfile1-dev portaudio19-dev

When those are finished installing, go to the dsd directory in your
terminal and type in the following:

mkdir build

https://github.com/szechyjs/dsd
https://github.com/szechyjs/mbelib

cd build

cmake ..

make

sudo make install

That should install all of the necessary dependencies to your
machine.

Now, unlike Windows, you will not need a virtual audio cable to pipe
the output of GQRX to dsd. Instead, you’ll need to use a program
called Pulseaudio. It should be installed on most recent Linux
distributions, but if it’s not,

sudo apt-get install pavucontrol

will install it.

After installing these three applications—dsd, mbelib, and Pulseaudio,
you’re finally ready to start. Start up GQRX by typing gqrx in your
terminal.

You’ll need some specific settings to give dsd the sort of signal it can
read, so set GQRX with the following parameters.

In the Receiver Options tab, set the mode to Narrow FM, choose the
AGC setting of Fast, and set Squelch to about 60.

In the FFT Options tab, set your FFT size to 2048 and the sampling
rate to 15 fps. You can increase these values if you have a
particularly fast machine, but you shouldn’t have any problems
decoding with these settings.

Then open the options window in GQRX by clicking the settings icon
(the one that looks like an IC just to the right of the Start button). Set
your audio output to Default and click OK.

Finally, before you start GQRX, open another terminal window,
navigate to the dsd/build/bin directory and enter the following

command:

padsp -- dsd -i /dev/dsp -o /dev/dsp -fa -ma

This starts dsd, using as input (and output) the /dev/dsp device, which
is a virtual device being written to by the Pulseaudio program. If you
would like to see what other options are available to you, enter

./dsd -h

in your terminal to see the manual page.

Back in the dsd terminal, you should be greeted with the following
text:

Digital Speech Decoder 1.7.0-dev (build:v1.6.0-xx-xxxxxx)

mbelib version 1.3.0

Audio In/Out Device: /dev/dsp

After that, the terminal window should remain empty, since you’re not
actually piping anything into it yet.

To start doing that, go back to your gqrx window. The main thing left to
do is to find a digital voice signal, which is actually where I had the
most trouble. You can search for dsd frequencies in your area, or
http://www.radioreference.com has a pretty comprehensive database.
If all else fails, you may need to (as I did) simply start scrolling
through the frequency dial and looking for a digital signal. As you may
have read previously in the Windows section, they’re easy to
distinguish, as they tend to be a digital “hum” sound and they’re often
broadcast either sporadically or in regularly spaced bursts. However,
it’s a large spectrum, and scrolling through it can take a long time, so
you may want to save this option as a last resort.

http://www.radioreference.com/

You’ll know when you find one because the terminal window in which
dsd is running will suddenly start to scroll text as signals come in and
are decoded.

It will, however, only scroll when digital voice data is being received;
that is, if you’re listening to an active channel, you’re likely to hear
only silence until someone actively presses the Send button on their
radio. At that point, you’ll see the word Voice in the dsd window and
will hear the voice coming through your speakers.

Congratulations! You’re now listening to digital voice signals, which
should greatly expand your SDR horizons! Once you’ve found a

channel, it becomes easier to find others, as you know what you’re
looking for.

For our final project, in the next chapter we’ll track some weather
satellites and grab some images sent over the airwaves.

Things to Try
1. Try to find all of your local government channels, including Fire,

Police, Sheriff (if you have one), and even Forestry officials (so
you can listen for forest fires in your area). Is there a particular
band of the spectrum in which they tend to cluster?

2. See if there are digital speech channels within range of
reception that are not affiliated with a government agency.
Anything interesting? Pretend you’re a private investigator; see
what you can find out about any channels you come across.

Copyright © 2021, The Pragmatic Bookshelf.

Chapter 5

Listening to Satellites

Being able to tune into NOAA satellites while they pass overhead
and download the images they’re broadcasting is probably one of the
coolest things about using an SDR setup. It’s old-school technology
that’s been around since the 1960s but is now becoming easily
accessible to hobbyists and enthusiasts, thanks to the SDR dongle
and the software that you’re now familiar with.

NOAA currently has quite a few weather satellites orbiting the Earth,
keeping track of data worldwide, but there are only three that are
broadcasting signals that are easy to receive. They broadcast
around 137 MHz, and the signal can only be received when the
satellite is passing overhead. Due to their orbital parameters, you
can download the satellite’s transmission and decode it about twice
a day, depending on where you live.

The satellites—NOAA-15, 18, and 19—were launched in 1998,
2005, and 2009, respectively. They each broadcast a signal called
Automatic Picture Transmission, or APT. APT was developed in the
1960s and is composed of two image channels, telemetry, and
synchronization data, all transmitted as one horizontal scan line. You
can use one of the programs we’ve already installed and used, GQRX
or SDRSharp, to tune into each satellite’s particular frequency. You
can then either record the transmission and send the audio recording

to another application for decoding or you can decode the
transmission on the fly and display it as it’s sent by the satellite
overhead.

As it happens, just before this writing, NOAA released an official
statement: “As of ~0000 UTC July 30, 2019 (DOY 211), the NOAA-
15’s AVHRR motor current has once again started spiking, becoming
saturated above 302mA at ~0600 UTC. The instrument is once
again no longer producing data and may be stalled.” What this
means for you is that if you happen to be trying to listen to 15’s pass
overhead and come up with nothing, give the other two satellites a
try before giving up. I was able to tune into the satellite’s signal, but I
had no luck receiving an image, and I even got an error message I’d
never seen before about missing telemetry data. So just be aware
that NOAA-15 might be out of order when you read this.

The Doppler Effect
As a weather satellite passes overhead, you’re dealing with the Doppler
effect as it moves. What exactly is the Doppler effect?

The Doppler effect is the change in the frequency of a signal as you and the
source move relative to each other. We experience it when we hear the siren
on a moving ambulance rise in pitch as the vehicle speeds toward us,
compressing the sound waves. If the ambulance doesn’t hit us, we hear the
siren decrease in pitch as the vehicle moves away, stretching the sound
waves of the siren.

The same principle applies to light—and, as it happens, radio waves.
Astronomers were first able to determine that certain stars and galaxies were
moving away from us by seeing that the color of their light was shifted red.
Likewise, a satellite moving at only 0.0025% the speed of light can have a
frequency shift of a few kilohertz as it moves from horizon to overhead to
horizon again.

We can even calculate the Doppler shift of each satellite, based on some
easily researched numbers. NOAA 15 has an orbital semi-major axis of

4464.32 miles and an orbital period of 101 minutes. That works out to
(4464.32 × 2 × pi)/(101/60) = 16,663 miles per hour. Call it 16,666 to make
the math easier. The speed of light is 186,282 miles per second, which
multiplied by 60 seconds and by 60 minutes equals 670,615,200 miles per
hour. 1/(670,615,200/16,666) = 0.000025, or 0.0025 percent the speed of
light. The Doppler equation is (c/c+v) × f. In this case that works out to
(1/1.000025) × 137 MHz = 137,003,425, or a shift of 3.4 kilohertz. Speaking
from experience, that’s about the amount you’ll have to adjust the tuning over
the course of the satellite’s pass overhead.

Hardware
The signal these satellites broadcast is right-hand circular-polarized,
which means you won’t be able to pick it up using the little antenna
that came with your SDR dongle. A few antenna options are
available to you, including a turnstile antenna, a quadrifilar helix
antenna, or a V-dipole antenna. (For a more in-depth discussion of
these and a few other antenna designs, make sure you check out
the chapter on antenna theory and design.)

Although all of these options will work without any problems, it turns
out that the easiest option to build and use is actually a set of old TV
rabbit ears, mentioned earlier in the book.

To pick up the APT transmissions using these rabbit ears, there are
three requirements for the antenna that will most likely require you to

modify those rabbit ears slightly.

1. The two antennas must be spaced 120 degrees apart. Most sets
that are currently available only spread to about 90 degrees, so
you’ll have to make some small modifications. This may mean
simply removing and remounting some screws so that you can
spread the two antennas further apart. In some cases, you may
have to cut or completely destroy the plastic base that holds the
two antennas to spread them apart. Make sure that when you’re
remounting the two pieces, you use a protractor or something
similar to get as close to a 120-degree angle between the two
as you can.

2. The pair must be mounted horizontally rather than vertically.
Again, this may mean simply mounting the plastic base on a
vertical surface rather than a horizontal one, or you may have to
use screws or adhesive to achieve it. It doesn’t have to be
perfectly flat—you don’t have to use a level—but it does have to
be close to horizontal.

3. Finally, the antenna structure must be oriented north-south. By
that, I mean that if you picture the two antennas as the two parts
of the capital letter V, and you lay the V horizontally, then the
open end of the V should be pointing north. (Or, to look at it
another way, the point of the V should point directly south.)

When it comes to placing your rabbit ears in the right orientation and
direction, there are a few possibilities; my first attempt was simply
some duct tape and a tall piece of PVC pipe.

It wasn’t pretty, but it worked. My next attempt (shown in the next
three images) was a bit more sophisticated—I used PVC again, but
this time I also used a plastic flowerpot in which I cut out pieces of
the plastic in order to set the antenna in it correctly. Finally, if you
have access to some 3D-design software and a 3D printer you can
probably come up with a fairly elegant solution. Luckily, the look of
your design doesn’t matter, only the results.

And some other views…

Once you’ve built your antenna, you have to find where to place it.
All the antenna needs is a clear view of the sky, so a backyard or a
rooftop is probably going to be your best bet. Again, this is where the
cable extension and adapters I spoke about in Chapter 3 will come in
handy, as it’s nice to be able to place the antenna in your backyard
and be able to work on the software portion of things in your living
room.

Once you’ve got your antenna set up, it’s time to configure the
software. Unlike the signal decoding in the digital speech chapter, I

had equal success receiving and decoding NOAA signals with both
Linux and Windows.

Software
As always, I’ve divided the software section into Windows and Linux.
In both operating systems, you’ll be using another freeware program
called WXtoImg to convert the received signals to images.
Unfortunately, the developer who created it suddenly stopped
supporting and updating it and sort of vanished, but a group of
enthusiasts managed to resurrect the code and the site so that it may
continue to be used. Point your browser to
https://wxtoimgrestored.xyz/downloads/ and get the correct version
for your platform.

Windows
In Windows, you’ll also be using your SDRSharp program as well as VB
Audio again to pipe the output to your WXtoImg software.

Start by getting the WXtoImg application. The installation package for
Windows works fine on the latest Windows 10.

Once it’s installed, double-click to open it and you should see a blank
screen with multiple tabs: Image, Audio Files, Raw Images, Saved
Images, Composites, and Animation.

The first thing you need to do is to tell the program where you’re
located. Click on Options -> Ground Station Location and enter either
your city name or your latitude and longitude if you happen to know it.
When that’s done, go to Options -> Update Keplers to download the
latest updates of the satellite orbital parameters. This will tell you
what satellites will be passing in range, when, and for how long.
When the Kepler updates have finished downloading, click on
Options -> Satellite Pass List, and you should see a screen like the
one in the picture.

https://wxtoimgrestored.xyz/downloads/

Choose a satellite from the three available; it doesn’t really matter
which one, as your results should be the same. When you have a

satellite picked out, take note of the time it will be passing overhead,
and its broadcast frequency.

Next, go to Options -> Recording Options and set the soundcard to
CABLE Output (VB-Audio), and make sure the sample rate is set to
11025. Now go to Options -> Auto Processing Options. Make sure
Record and Auto Process is selected, and check the Create Image(s)
box.

Finally, go to File -> Record and click the Auto Record button at the
bottom of the screen. This will activate WXtoImg automatically when
the next satellite is in range. This is a pretty nice feature of the
program that I think is overlooked; you can schedule the recording so
that you don’t have to worry about starting the program.

That completes the WXtoImg setup, so let’s open SDRSharp. Tune to
the frequency at which your chosen satellite will be broadcasting. In
the Radio tab, set the Receive mode to WFM and the Bandwidth to
about 37 KHz. In the Audio tab below that, make sure that Filter
Audio is unchecked. Finally, set the Output in that same tab to
CABLE Input (VB-Audio Virtual Cable) or the closest alternative you
have in your menu.

That finishes setup. It seems like a lot of settings, and you may be
tempted to skip one or two, but don’t do that. All of these settings
have been carefully curated by SDR priests and priestesses, guarded
closely and handed down among the faithful. I now pass them off to
you.

Now you just have to wait until the satellite’s pass-over time. When
you’re about a minute or so away from that time, start up SDRSharp
and start looking for the satellite’s broadcasting signal. Make sure
your frequency matches the one listed in the satellite pass list, but be
prepared to adjust it quickly and on the fly; the cheaper SDR dongles

can sometimes be 10 s of KHz out of adjustment, so a satellite
broadcasting at 137.1 MHz may show up as 137.2 or 136.9 when the
signal starts to come through. You’re looking for a tightly grouped
batch of peaks on the frequency graph. At first the display will look
like the first image shown, but as you zoom in and the satellite comes
into range, it’ll look like the second picture shown.

At the same time, WXtoImg will come to life and start recording, and
you should see it filling in the image, line by line. Keep adjusting the
gain control in SDRSharp, and keep actively tuning as the pass
progresses. You want to keep the tuning bar right in the center of the
peaks, and this center will move because the signal will drift due to
the Doppler effect as the satellite passes overhead.

When it’s done, your WXtoImg window should show something like the
first image, which is the raw capture.

Now, allow WXtoImg to perform its automatic processing, and then
click the Saved Images tab. With any luck, you should have
something like this:

If so, congratulations! You’ve successfully captured and decoded a
weather satellite image!

Linux
Like Windows, Linux uses a freeware application called WXtoImg to
convert received signals to images. I used the deb package for my
Ubuntu 16.04 installation and had no problems with using it; just
double-click the file and allow Ubuntu to open and install it with the
native software installation application.

Once it’s installed, open the program by entering

xwxtoimg

in a terminal window (it’s the GUI version of the software, which is
much easier to use). You’ll be greeted by a blank screen with multiple
tabs: Image, Audio Files, Raw Images, Saved Images, Composites,
and Animation.

The first thing you need to do is to tell the program where you’re
located. Click Options -> Ground Station Location and enter either
your city name or your latitude and longitude if you happen to know it.
When that’s done, go to File -> Update Keplers to download the latest
updates of the satellite orbital parameters. This will tell you what
satellites will be passing in range, when, and for how long. When the
Kepler updates have finished downloading, click File -> Satellite Pass
List, and you’ll be greeted by a list of satellites that are passing, when
they’ll be overhead, how long the pass will last, and what frequency
they’re broadcasting on.

Now you’re ready to open Gqrx from a terminal with

gqrx

Choose a satellite from the three available; it doesn’t really matter
which one, as your results should be the same. When you have a

satellite picked out, take note of the time when it will be passing
overhead and its frequency.

You’ll have some settings to adjust in order to receive the satellite’s
automatic picture transmission (APT) signal correctly. In the Input
Controls tab, turn off Hardware AGC, Swap I/Q, and No Limits, and
turn on DC Remove and IQ Balance. Set LNA to about 20 dB to start,
but be prepared to revisit this, because I had to increase this to
around 40 to hear the signal when it passed. Set your frequency
correction to 0.

In the Receiver Options tab, choose Normal for both Filter Width and
Filter Shape, set the mode to Narrow FM, and AGC to Fast.

In the FFT Settings tab, set your FFT size to 2048 and the rate to 15
fps, which should be plenty fast enough to catch the signal without
taxing your processor, even if it’s a slow one.

Set your tuning frequency to the one listed in the satellite pass list for
your chosen satellite, but be prepared to adjust it; the SDR dongles
can sometimes be 10 s of KHz out of adjustment, so a satellite
broadcasting at 137.1 MHz may show up as 137.2 or 136.9 when it
starts to come through.

Lastly, in Audio Options, select a recording folder by clicking the
button with three dots to the right of the UDP, Rec, and Play buttons.
Click the Recording tab and select a folder. This way you can click
Rec when the satellite begins its pass. The sound file will be placed in
the directory you choose, and you can analyze it later if WXtoImg
doesn’t work.

That finishes your GQRX setup, so go back to WXtoImg. Click Options -
> Recording Options and make sure that the soundcard selected is
Default Audio and the sample rate is at 11025.

Now click Options -> Auto Processing Options and make sure that
Record and Auto Process is selected, along with Create Image(s),
(as shown), which will let the software create the appropriate images
as the satellite passes.

That completes your setup. It may seem like a lot of settings, and you
may be tempted to skip one or two, but don’t do that. All of these
settings have been carefully curated by SDR priests and priestesses,
guarded closely and handed down among the faithful. I now pass
them off to you.

Finally, to get ready, go to File -> Record and click the Auto Record
button at the bottom. WXtoImg will now wait until the next scheduled
satellite pass; at that time, it’ll start recording and processing the
incoming data. This is a pretty nice feature of the program that I think
is overlooked; you can schedule the recording so that you don’t have
to worry about starting the program while you’re worried about the
time, whether your antenna is pointed correctly, or any number of
other issues to worry about. At least you’ll know that your image-
processing software is coming online at the right time.

All you have to do, then, is start the Gqrx feed a minute or two before
the pass is scheduled, and make sure your frequency is correct and
that you’re receiving. On Linux, you can pipe the output of the sound
to your speakers; it’s pretty easy to hear when you’ve locked onto the
signal—it’s a high-pitched beeping noise. On the frequency plot, it’ll
look like a tightly grouped patch of symmetric peaks broadcasting
regularly.

Your WXtoImg software should flicker to life (possibly before you even
recognize the signal) and begin showing the image as it is
transmitted, line by line. Of course, it’ll be nothing but static at first,
but an image will slowly appear as the signal gets stronger.

Back in Gqrx, you should be staying busy. Keep your tuning bar in the
middle of the patch of peaks, and be prepared to change the tuning,
because the Doppler effect will move the frequency of the signal as
the satellite passes. Keep playing with the Gain slider as well. The
bottom right corner of the WXtoImg window has a Volume indicator
showing the strength of the signal coming in; you want it to be green,

showing 50 percent signal strength. As the picture comes into focus,
you’ll start to pick up on what to adjust and how it affects the picture.

If all goes well, you should end up with a picture like this in your
pictureWXtoImg window.

The static bands will come and go as you play with the tuning. When
the satellite is finished passing overhead, WXtoImg will stop recording
automatically and begin processing the images it received. Wait until
it’s finished, and then check the Saved Images tab. You should see a
host of different images, color-corrected and cleaned up for you,
including one that may look similar to this:

If so, congratulations! You’ve successfully received and decoded your
first NOAA satellite image!

Troubleshooting
Don’t be too frustrated or disappointed if it doesn’t work well the first
time. Check the satellite pass list and prepare for the next pass,
which may come anywhere from two to twelve hours later. It
becomes easier to recognize the signal each time you see it, and
when you know what you’re looking for, it becomes easier to tune to
it as well. You’ll get better each time you try it, and you may end up
with some truly stunning results. You may consider switching
satellites as well; you may have different results on a different
frequency, and since the orbital parameters differ, you may not have
to wait that long for the next pass of a different satellite. It didn’t take
me long to know exactly what I was looking for, signal-wise, and I
started watching for it like a hawk when the pass time got close. If
you’re like me, you’ll definitely experience a thrill as the signal starts
to coalesce, and it’s pretty darn cool when WXtoImg kicks on and you
start to see an image slowly appear.

Try This
1. The International Space Station transmits radio signals at

145.80 MHz. Do some online research to determine when the
ISS will be passing over your location and see if you can use
one of your existing antenna setups to tune in.
http://www.n2yo.com and http://www.heavens-above.com both
have tools that allow you to track the ISS and determine when it
will next pass over your current location.

2. Pulsars emit radio waves as well, often around 400MHz. Is it
possible to use your setup to capture the signal from a pulsar?
How much amplification would you need to use? What would it
even sound like?

3. If, after reading this book, you’re hooked on the possibilities
inherent in using SDR to listen to radio frequencies, try stepping
it up in terms of the quality of the equipment you’re using.
SDRPlay is a unit that many people have had success with,
costs around $100, and comes with some good-quality software
to play with.

http://www.n2yo.com/
http://www.heavens-above.com/

Conclusion
I hope this book has given you some idea of the incredible number of
possibilities that SDR offers to the casual hobbyist. For just a few
dollars in parts, you can investigate all parts of the radio frequency
spectrum and even decode some truly beautiful images from space.

It can be a little confusing to get started, but once you do, I think it’s
well worth the time and brain power spent figuring everything out.
Good luck with your reception, and please feel free to send me some
of your results. I can be reached at wolframdonat@gmail.com or on
twitter: @wolfram_donat. Happy tuning!

Copyright © 2021, The Pragmatic Bookshelf.

Appendix 1

Running SDR on the Raspberry
Pi

After playing with all of this stuff, you probably started thinking, “Why
can’t I make this portable? What prevents me from creating an on-
the-go package that lets me take my SDR setup to the middle of
Death Valley and seeing what RF signals I can pick up?” Or even
“Why can’t I make an SDR boombox?”

Well, dear reader, I’ve got you covered. As it happens, GQRX will run
on the Raspberry Pi, and I’ve gone through the headaches and
dependency-chasing rigamarole for you. I now offer to you the hidden
knowledge of how to get your SDR setup working on a Raspberry Pi.
Add the official 7-inch touchscreen and a battery pack, and you’re
ready to take your setup anywhere on the planet.

As I write this, the Pi v4 has been out for a few months. I haven’t
tested this with the very latest 64-bit OS, but everything you’re
reading from here forward has been tested to work successfully on
both a Pi 3B+ and a first-edition (32-bit) Pi 4. The Pi 3B+ was running
Stretch, and the Pi 4 was running the Buster version of the Raspberry
Pi OS with a kernel version of at least 4.14. (To check, run

uname -a

and

cat /etc/os-release.)

As you can probably imagine, getting SDR to work on the Pi is almost
identical to getting it to work on any other Linux installation, especially
Ubuntu, since Rasbpian is a Debian derivative. It turns out that the
hardest part of getting GQRX to run on the Pi is chasing dependencies
and making sure you don’t have conflicts between installed programs.
GQRX was created and is maintained by Alexandru Csete, and he has
released a package that should run on your Pi.

To start with, create a folder for your SDR experiments with

mkdir SDR

Then, cd into the SDR directory and download everything from here:

https://github.com/csete/gqrx/releases/download/v2.11.5/gqrx-sdr-
2.11.5-linux-rpi3.tar.xz

The easiest way to do this, in my opinion, is to use wget, but you can
also enter that link into your browser’s address bar.

Once it’s downloaded, unzip the tar using

tar xvf gqrx-sdr-2.11.5-linux-rpi3.tar.xz

and then cd into the resulting folder.

The readme.txt in the directory is very helpful, but my experience was
that it wasn’t complete. It’s possible that because this is an older build
of GQRX, it requires dependencies that aren’t installed by default in
newer versions of Raspbian. To make sure you’ve got everything you
need, do the following in your terminal:

https://github.com/csete/gqrx/releases/download/v2.11.5/gqrx-sdr-2.11.5-linux-rpi3.tar.xz

sudo apt-get install cmake build-essential git

sudo apt-get install gnuradio gnuradio-dev

sudo apt-get install qt5-default qttools5-dev qttools5-dev-tools qtmultimedia5-dev

sudo apt-get install libqt5svg5-dev libqt5webkit5-dev libsdl2-dev libasound2 libxmu-
dev

sudo apt-get install pavucontrol libportaudio2

sudo apt-get install libvolk1-bin libusb-1.0.0 gr-iqbal

Then, following the instructions in the readme, from the gqrx-sdr, enter

sudo cp udev/*.rules /etc/udev/rules.d/

to enable your Pi to access USB devices.

Next, just as in Ubuntu, you’ll need to see if the DVB-T drivers are
loaded, though they probably are. Enter

sudo rmmod dvb_usb_rtl28xxu

in your terminal. If you don’t get a response, that means that the
drivers were loaded and your command was successful. In that case,
you’ll need to disable the drivers permanently. Using sudo, create the
file /etc/modprobe.d/rtlsdr.conf

In that file, enter

blacklist dvb_usb_rtl28xxu

Save the file and reboot.

Finally, you’ll definitely want to run the volk optimizations. Volk (which
is Linux for “vector optimized library of kernels”) is a library profiler. It
tests various software on your computer to find the versions that best
match your processor:

volk_profile

It’ll take a while to run, but the optimizations it performs should make
a difference in your Pi’s SDR performance. Now you should be ready.
Just like the Ubuntu setup earlier, connect your antenna to your
dongle, and then plug your dongle into a free USB port on the Pi.
(Remember, I’m using the Pi 3B+ for this, which has only USB 2.0
ports. If you’re trying this using the Pi 4, I don’t know how things will
work using the USB 3.0 ports. If you try them and nothing works, try a
USB 2.0 port before starting over.)

To start GQRX, open a file explorer window and navigate to the gqrx-
sdr-2.11.5-linux-rpi3. Double-click the gqrx icon.

The first window that should pop up is a configuration window asking
you to configure the I/O devices, as shown. Select the Realtek
RTL2838 device from the first drop-down menu, leave the rest as
defaults, and click OK.

You should be greeted by the same gqrx screen as you were earlier in
Ubuntu. To test it, tune to a local FM radio station. Change the Mode
to WFM(mono) and click the triangular Play button at the top left. You
may need to plug a pair of headphones into the Pi’s audio jack to
hear the station, as there are a few bug reports that the gqrx audio
doesn’t play well through the HDMI connection. My headphone setup
worked well, and I was listening to my local station.

The last step will be hooking up your touchscreen, if you’re so
inclined. I tried it and it opens without any problems. However, I did
discover immediately that the reception from the antenna was quite a
bit worse, though nothing had changed in my setup, antenna-wise.
It’s pretty obvious that the touchscreen itself is putting out a lot of
noise, and this is picked up by the SDR dongle. If you want to create
a boombox, you may need to experiment with a different antenna, or
perhaps even move the touchscreen away from the Pi (my layout has
the Pi directly connected to the screen using the standoffs).

If you think about it, it’s both really cool and ironic that you can go
through all of these steps and end up with a (gasp!) handheld radio

that lets you listen to local stations. If only they’d come up with
something like that a long time ago...

Thank you!
How did you enjoy this book? Please let us know. Take a moment and
email us at support@pragprog.com with your feedback. Tell us your
story and you could win free ebooks. Please use the subject line
“Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over
to https://pragprog.com and use the coupon code BUYANOTHER2021
to save 30% on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic
Bookshelf itself. Side effects may include increased knowledge and
skill, increased marketability, and deep satisfaction. Increase dosage
regularly.

Try This
Some things to try with your Pi setup:

1. I joked about it, but try making a boombox! You can use a small LiPo
(Lithium Polymer) battery to power the Pi and your setup, as long as
you also use a voltage regulator (the Pi has no onboard regulator).
Experiment with different placements of all of the ingredients—the Pi,
the screen, and the power supply—to see how reception is affected.

2. If you’re feeling particularly confident, the Pi 4 will run Ubuntu 19.04
and 19.10. See if you can get the Linux programs mentioned in this
book to work on the Pi after installing the necessary libraries and
dependencies, rather than using the prepackaged version we used in
this chapter. (Hint: make sure you’re looking for ARM-compatible
libraries).

Copyright © 2021, The Pragmatic Bookshelf.

https://pragprog.com/

Design and Build Great Web APIs
APIs are transforming the business world at
an increasing pace. Gain the essential skills
needed to quickly design, build, and deploy
quality web APIs that are robust, reliable,
and resilient. Go from initial design through
prototyping and implementation to
deployment of mission-critical APIs for your
organization. Test, secure, and deploy your

API with confidence and avoid the “release into production” panic.
Tackle just about any API challenge with more than a dozen open-
source utilities and common programming patterns you can apply
right away.

Mike Amundsen

(330 pages) ISBN: 9781680506808 $45.95

Quantum Computing
You’ve heard that quantum computing is going to change the
world. Now you can check it out for yourself. Learn how quantum
computing works, and write programs that run on the IBM Q
quantum computer, one of the world’s first functioning quantum
computers. Develop your intuition to apply quantum concepts for
challenging computational tasks. Write programs to trigger

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/maapis

quantum effects and speed up finding the
right solution for your problem. Get your
hands on the future of computing today.

Nihal Mehta, Ph.D.

(580 pages) ISBN: 9781680507201 $45.95

A Common-Sense Guide to Data Structures and
Algorithms, Second Edition

If you thought that data structures and
algorithms were all just theory, you’re
missing out on what they can do for your
code. Learn to use Big O Notation to make
your code run faster by orders of magnitude.
Choose from data structures such as hash
tables, trees, and graphs to increase your
code’s efficiency exponentially. With simple

language and clear diagrams, this book makes this complex topic
accessible, no matter your background. This new edition features
practice exercises in every chapter, and new chapters on topics
such as dynamic programming and heaps and tries. Get the
hands-on info you need to master data structures and algorithms
for your day-to-day work.

Jay Wengrow

(506 pages) ISBN: 9781680507225 $45.95

Build Location-Based Projects for iOS

http://pragmaticprogrammer.com/titles/nmquantum
http://pragmaticprogrammer.com/titles/jwdsal2

Coding is awesome. So is being outside.
With location-based iOS apps, you can
combine the two for an enhanced outdoor
experience. Use Swift to create your own
apps that use GPS data, read sensor data
from your iPhone, draw on maps, automate
with geofences, and store augmented reality
world maps. You’ll have a great time without

even noticing that you’re learning. And even better, each of the
projects is designed to be extended and eventually submitted to
the App Store. Explore, share, and have fun.

Dominik Hauser

(154 pages) ISBN: 9781680507812 $26.95

iOS Unit Testing by Example
Fearlessly change the design of your iOS
code with solid unit tests. Use Xcode’s built-
in test framework XCTest and Swift to get
rapid feedback on all your code — including
legacy code. Learn the tricks and techniques
of testing all iOS code, especially view
controllers (UIViewControllers), which are
critical to iOS apps. Learn to isolate and

replace dependencies in legacy code written without tests.
Practice safe refactoring that makes these tests possible, and
watch all your changes get verified quickly and automatically.
Make even the boldest code changes with complete confidence.

Jon Reid

http://pragmaticprogrammer.com/titles/dhios
http://pragmaticprogrammer.com/titles/jrlegios

(300 pages) ISBN: 9781680506815 $47.95

Become an Effective Software Engineering
Manager

Software startups make global headlines
every day. As technology companies
succeed and grow, so do their engineering
departments. In your career, you’ll may
suddenly get the opportunity to lead teams:
to become a manager. But this is often
uncharted territory. How do you decide
whether this career move is right for you?

And if you do, what do you need to learn to succeed? Where do
you start? How do you know that you’re doing it right? What does
“it” even mean? And isn’t management a dirty word? This book will
share the secrets you need to know to manage engineers
successfully.

James Stanier

(396 pages) ISBN: 9781680507249 $45.95

Build Websites with Hugo
Rediscover how fun web development can be with Hugo, the static
site generator and web framework that lets you build content sites
quickly, using the skills you already have. Design layouts with
HTML and share common components across pages. Create
Markdown templates that let you create new content quickly.
Consume and generate JSON, enhance layouts with logic, and

http://pragmaticprogrammer.com/titles/jsengman

generate a site that works on any platform
with no runtime dependencies or database.
Hugo gives you everything you need to build
your next content site and have fun doing it.

Brian P. Hogan

(154 pages) ISBN: 9781680507263 $26.95

Practical Microservices
MVC and CRUD make software easier to
write, but harder to change. Microservice-
based architectures can help even the
smallest of projects remain agile in the long
term, but most tutorials meander in theory or
completely miss the point of what it means to
be microservice based. Roll up your sleeves
with real projects and learn the most

important concepts of evented architectures. You’ll have your own
deployable, testable project and a direction for where to go next.

Ethan Garofolo

(290 pages) ISBN: 9781680506457 $45.95

http://pragmaticprogrammer.com/titles/bhhugo
http://pragmaticprogrammer.com/titles/egmicro

	 Acknowledgments
	 Introduction
	Materials Needed

	1. Installing the Required Bits and Pieces
	Hardware
	Software

	2. Your First SDR Reception
	Attaching the Antenna
	Windows
	Linux
	Troubleshooting
	Try This

	3. Antenna Theory and Design
	How Antennas Transmit
	How Antennas Receive
	Antenna Design for SDR Hobbyists

	4. Digital Speech Decoding
	Hardware
	Software
	Things to Try

	5. Listening to Satellites
	Hardware
	Software
	Troubleshooting
	Try This
	Conclusion

	A1. Running SDR on the Raspberry Pi
	Try This

