
L I N U X B A S I C S
F O R H A C K E R S
L I N U X B A S I C S
F O R H A C K E R S

G E T T I N G S T A R T E D W I T H N E T W O R K I N G ,

S C R I P T I N G , A N D S E C U R I T Y I N K A L I

O C C U P Y T H E W E B

SHELVE IN
:

COM
PUTERS/SECURITY

$34.95 ($45.95 CDN)

S T A R T H E R E .
H A C K E R ?
A S P I R I N G

S T A R T H E R E .
H A C K E R ?
A S P I R I N G

If you’re getting started along the exciting path of
hacking, cybersecurity, and pentesting, Linux Basics
for Hackers is an excellent first step. Using Kali Linux,
an advanced penetration testing distribution of Linux,
you’ll learn the basics of using the Linux operating
system and acquire the tools and techniques you’ll
need to take control of a Linux environment.

First, you’ll learn how to install Kali on a virtual machine
and get an introduction to basic Linux concepts. Next,
you’ll tackle broader Linux topics like manipulating text,
controlling file and directory permissions, and managing
user environment variables. You’ll then focus in on foun-
dational hacking concepts like security and anonymity
and learn scripting skills with bash and Python.

Practical tutorials and exercises throughout will reinforce
and test your skills as you learn how to:

• Cover your tracks by changing your network informa-
tion and manipulating the rsyslog logging utility

• Write a tool to scan for network connections, and
connect and listen to wireless networks

• Keep your internet activity stealthy using Tor, proxy
servers, VPNs, and encrypted email

• Write a bash script to scan open ports for potential
targets

• Use and abuse services like MySQL, Apache web
server, and OpenSSH

• Build your own hacking tools, such as a remote video
spy camera and a password cracker

Hacking is complex, and there is no single way in. Why
not start at the beginning with Linux Basics for Hackers?

A B O U T T H E A U T H O R

OccupyTheWeb is an infosec consultant, forensic
investigator, and trainer with more than 20 years in
the industry. He maintains the Hackers-Arise training
site (https://www.hackers-arise.com/) and trains US
military personnel, Department of Defense contractors,
and federal employees in information security and
hacking.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

COVERS
KALI LINUX

AND PYTHON 3 L
IN

U
X

 B
A

S
IC

S
 F

O
R

 H
A

C
K

E
R

S
L

IN
U

X
 B

A
S

IC
S

 F
O

R
 H

A
C

K
E

R
S

O
C

C
U

P
Y

T
H

E
W

E
B

LINUX BASICS FOR HACKERS

L I N U X B A S I C S
F O R H A C K E R S

G e t t i n g S t a r t e d w i t h
N e t w o r k i n g , S c r i p t i n g ,

a n d S e c u r i t y i n K a l i

by OccupyTheWeb

San Francisco

LINUX BASICS FOR HACKERS. Copyright © 2019 by OccupyTheWeb.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America

Eighth printing

26 25 24 23 22     8 9 10 11 12

ISBN-10: 1-59327-855-1
ISBN-13: 978-1-59327-855-7

Publisher: William Pollock
Production Editors: Serena Yang and Meg Sneeringer
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Liz Chadwick
Technical Reviewer: Cliff Janzen
Copyeditor: Barton D. Reed
Compositors: Serena Yang and Meg Sneeringer
Proofreader: Paula L. Fleming
Indexer: JoAnne Burek

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: OccupyTheWeb, author.
Title: Linux basics for hackers : getting started with networking, scripting,
 and security in Kali / OccupyTheWeb.
Description: First edition. | San Francisco : No Starch Press, Inc., [2018].
Identifiers: LCCN 2018030544 (print) | LCCN 2018032646 (ebook) | ISBN
 9781593278564 (epub) | ISBN 159327856X (epub) | ISBN 9781593278557 (print)
 | ISBN 1593278551 (print) | ISBN 9781593278564 (ebook) | ISBN 159327856X
 (ebook)
Subjects: LCSH: Penetration testing (Computer security) | Kali Linux. |
 Hackers. | Operating systems (Computers)
Classification: LCC QA76.9.A25 (ebook) | LCC QA76.9.A25 O325 2018 (print) |
 DDC 005.8--dc23
LC record available at https://lccn.loc.gov/2018030544

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

I dedicate this book to my three incredible daughters.
You mean the world to me.

About the Author
OccupyTheWeb (OTW) is the pseudonym for the founder and primary
writer for the hacker and pentester training website, https://www.hackers-
arise.com/. He is a former college professor and has over 20 years of expe-
rience in the information technology industry. He has trained hackers
throughout the US, including branches of the US military (Army, Air Force,
and Navy) and the US intelligence community (CIA, NSA, and DNI). He is
also an avid mountain biker and snow boarder.

About the Technical Reviewer
Since the early days of Commodore PET and VIC-20, technology has been
a constant companion (and sometimes an obsession!) to Cliff Janzen. Cliff
discovered his career passion when he moved to information security in
2008 after a decade of IT operations. Since then, Cliff has had the great
fortune to work with and learn from some of the best people in the industry
including OccupyTheWeb and the fine people at No Starch during the
production of this book. He is happily employed as a security consultant,
doing everything from policy review to penetration tests. He feels lucky to
have a career that is also his favorite hobby and a wife that supports him.

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

Chapter 1: Getting Started with the Basics . 1

Chapter 2: Text Manipulation . 19

Chapter 3: Analyzing and Managing Networks . 29

Chapter 4: Adding and Removing Software . 39

Chapter 5: Controlling File and Directory Permissions . 49

Chapter 6: Process Management . 61

Chapter 7: Managing User Environment Variables . 71

Chapter 8: Bash Scripting . 81

Chapter 9: Compressing and Archiving . 93

Chapter 10: Filesystem and Storage Device Management . 101

Chapter 11: The Logging System . 111

Chapter 12: Using and Abusing Services . . 121

Chapter 13: Becoming Secure and Anonymous . 139

Chapter 14: Understanding and Inspecting Wireless Networks 153

Chapter 15: Managing the Linux Kernel and Loadable Kernel Modules 165

Chapter 16: Automating Tasks with Job Scheduling . . 173

Chapter 17: Python Scripting Basics for Hackers . . 183

Index . . 205

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xix

INTRODUCTION	 xxi
What’s in This Book . xxii
What Is Ethical Hacking? . xxiii

Penetration Testing . xxiii
Military and Espionage . . xxiii

Why Hackers Use Linux . xxiv
Linux Is Open Source . xxiv
Linux Is Transparent . xxiv
Linux Offers Granular Control . xxiv
Most Hacking Tools Are Written for Linux . xxiv
The Future Belongs to Linux/Unix . xxiv

Downloading Kali Linux . xxv
Virtual Machines . xxvi

Installing VirtualBox . xxvi
Setting Up Your Virtual Machine . xxviii
Installing Kali on the VM . xxix

Setting Up Kali . xxxi

1
GETTING STARTED WITH THE BASICS	 1
Introductory Terms and Concepts . 1
A Tour of Kali . 3

The Terminal . 4
The Linux Filesystem . 4

Basic Commands in Linux . . 5
Finding Yourself with pwd . 6
Checking Your Login with whoami . 6
Navigating the Linux Filesystem . 6
Getting Help . 8
Referencing Manual Pages with man . 9

Finding Stuff . 9
Searching with locate . 10
Finding Binaries with whereis . 10
Finding Binaries in the PATH Variable with which . 10
Performing More Powerful Searches with find . 11
Filtering with grep . 12

Modifying Files and Directories . . 13
Creating Files . 13
Creating a Directory . . 15
Copying a File . . 15

xii Contents in Detail

Renaming a File . 15
Removing a File . 16
Removing a Directory . 16

Go Play Now! . 17
Exercises . 17

2
TEXT MANIPULATION	 19
Viewing Files . 20

Finding the Head . 20
Finding the Tail . 21
Numbering the Lines . . 22

Filtering Text with grep . 22
Hacker Challenge: Using grep, nl, tail, and head . 23

Using sed to Find and Replace . 23
Viewing Files with more and less . . 25

Controlling the Display with more . . 25
Displaying and Filtering with less . 25

Summary . 26
Exercises . 27

3
ANALYZING AND MANAGING NETWORKS	 29
Analyzing Networks with ifconfig . 29
Checking Wireless Network Devices with iwconfig . 30
Changing Your Network Information . 31

Changing Your IP Address . 31
Changing Your Network Mask and Broadcast Address 32
Spoofing Your MAC Address . 32
Assigning New IP Addresses from the DHCP Server . 32

Manipulating the Domain Name System . 33
Examining DNS with dig . . 33
Changing Your DNS Server . 34
Mapping Your Own IP Addresses . 36

Summary . 37
Exercises . 37

4
ADDING AND REMOVING SOFTWARE	 39
Using apt to Handle Software . . 40

Searching for a Package . . 40
Adding Software . 40
Removing Software . 41
Updating Packages . 42
Upgrading Packages . 43

Adding Repositories to Your sources.list File . 43
Using a GUI-based Installer . 45
Installing Software with git . 46
Summary . 47
Exercises . 47

Contents in Detail xiii

5
CONTROLLING FILE AND DIRECTORY PERMISSIONS	 49
Different Types of Users . 50
Granting Permissions . 50

Granting Ownership to an Individual User . 50
Granting Ownership to a Group . 51

Checking Permissions . 51
Changing Permissions . 52

Changing Permissions with Decimal Notation . 52
Changing Permissions with UGO . 54
Giving Root Execute Permission on a New Tool . 55

Setting More Secure Default Permissions with Masks . 56
Special Permissions . 57

Granting Temporary Root Permissions with SUID . 57
Granting the Root User’s Group Permissions SGID . 58
The Outmoded Sticky Bit . 58
Special Permissions, Privilege Escalation, and the Hacker 58

Summary . 60
Exercises . 60

6
PROCESS MANAGEMENT	 61
Viewing Processes . . 62

Filtering by Process Name . . 63
Finding the Greediest Processes with top . . 64

Managing Processes . 64
Changing Process Priority with nice . 65
Killing Processes . 66
Running Processes in the Background . 68
Moving a Process to the Foreground . . 69

Scheduling Processes . . 69
Summary . 70
Exercises . 70

7
MANAGING USER ENVIRONMENT VARIABLES	 71
Viewing and Modifying Environment Variables . . 72

Viewing All Environment Variables . 72
Filtering for Particular Variables . 73
Changing Variable Values for a Session . 73
Making Variable Value Changes Permanent . 74

Changing Your Shell Prompt . . 75
Changing Your PATH . 76

Adding to the PATH Variable . . 76
How Not to Add to the PATH Variable . 77

Creating a User-Defined Variable . 77
Summary . 78
Exercises . 79

xiv Contents in Detail

8
BASH SCRIPTING	 81
A Crash Course in Bash . . 82
Your First Script: “Hello, Hackers-Arise!” . 82

Setting Execute Permissions . 83
Running HelloHackersArise . 84
Adding Functionality with Variables and User Input . 84

Your Very First Hacker Script: Scan for Open Ports . 86
Our Task . . 86
A Simple Scanner . 87
Improving the MySQL Scanner . . 88

Common Built-in Bash Commands . 90
Summary . 91
Exercises . 91

9
COMPRESSING AND ARCHIVING	 93
What Is Compression? . . 93
Tarring Files Together . 94
Compressing Files . 96

Compressing with gzip . 96
Compressing with bzip2 . 97
Compressing with compress . 97

Creating Bit-by-Bit or Physical Copies of Storage Devices . 98
Summary . 99
Exercises . 99

10
FILESYSTEM AND STORAGE DEVICE MANAGEMENT	 101
The Device Directory /dev . 102

How Linux Represents Storage Devices . 103
Drive Partitions . 103
Character and Block Devices . 105
List Block Devices and Information with lsblk . 105

Mounting and Unmounting . . 106
Mounting Storage Devices Yourself . 106
Unmounting with umount . . 107

Monitoring Filesystems . . 107
Getting Information on Mounted Disks . 107
Checking for Errors . 108

Summary . 109
Exercises . 109

11
THE LOGGING SYSTEM	 111
The rsyslog Logging Daemon . 112

The rsyslog Configuration File . 112
The rsyslog Logging Rules . 113

Contents in Detail xv

Automatically Cleaning Up Logs with logrotate . 115
Remaining Stealthy . 117

Removing Evidence . 117
Disabling Logging . 118

Summary . 119
Exercises . 119

12
USING AND ABUSING SERVICES	 121
Starting, Stopping, and Restarting Services . 122
Creating an HTTP Web Server with the Apache Web Server 122

Starting with Apache . 123
Editing the index.html File . 124
Adding Some HTML . 124
Seeing What Happens . 125

OpenSSH and the Raspberry Spy Pi . 125
Setting Up the Raspberry Pi . 126
Building the Raspberry Spy Pi . 126
Configuring the Camera . 127
Starting to Spy . . 129

Extracting Information from MySQL/MariaDB . . 130
Starting MySQL or MariaDB . 130
Interacting with SQL . 131
Setting a Password . . 131
Accessing a Remote Database . 132
Connecting to a Database . . 133
Database Tables . 134
Examining the Data . 135
PostgreSQL with Metasploit . 135

Summary . 137
Exercises . 138

13
BECOMING SECURE AND ANONYMOUS	 139
How the Internet Gives Us Away . . 140
The Onion Router System . 141

How Tor Works . 141
Security Concerns . 142

Proxy Servers . 143
Setting Proxies in the Config File . 144
Some More Interesting Options . 146
Security Concerns . 148

Virtual Private Networks . . 148
Encrypted Email . 150
Summary . 151
Exercises . 151

xvi Contents in Detail

14
UNDERSTANDING AND INSPECTING
WIRELESS NETWORKS	 153
Wi-Fi Networks . . 154

Basic Wireless Commands . 154
Wi-Fi Recon with aircrack-ng . 157

Detecting and Connecting to Bluetooth . 159
How Bluetooth Works . . 160
Bluetooth Scanning and Reconnaissance . . 160

Summary . 164
Exercises . 164

15
MANAGING THE LINUX KERNEL
AND LOADABLE KERNEL MODULES	 165
What Is a Kernel Module? . 166
Checking the Kernel Version . . 167
Kernel Tuning with sysctl . 167
Managing Kernel Modules . 169

Finding More Information with modinfo . 170
Adding and Removing Modules with modprobe . . 170
Inserting and Removing a Kernel Module . 171

Summary . 171
Exercises . 172

16
AUTOMATING TASKS WITH JOB SCHEDULING	 173
Scheduling an Event or Job to Run on an Automatic Basis . 174

Scheduling a Backup Task . . 176
Using crontab to Schedule Your MySQLscanner . . 177
crontab Shortcuts . 178

Using rc Scripts to Run Jobs at Startup . 178
Linux Runlevels . . 179
Adding Services to rc.d . 179

Adding Services to Your Bootup via a GUI . 180
Summary . 181
Exercises . 181

17
PYTHON SCRIPTING BASICS FOR HACKERS	 183
Adding Python Modules . . 184

Using pip . 184
Installing Third-Party Modules . 185

Getting Started Scripting with Python . . 186
Variables . 187
Comments . 190
Functions . . 190

Contents in Detail xvii

Lists	 . 191
Modules . . 192
Object-Oriented Programming (OOP) . 192
Network Communications in Python . 194

Building a TCP Client . 194
Creating a TCP Listener . . 195

Dictionaries, Loops, and Control Statements . 197
Dictionaries . 197
Control Statements . 197
Loops . 198

Improving Our Hacking Scripts . 199
Exceptions and Password Crackers . 201
Summary . 203
Exercises . 203

INDEX	 205

A C K N O W L E D G M E N T S

This book could not have been written without the collaboration of several
key people.

First, I want to thank and acknowledge Liz Chadwick for proposing this
book and being the primary editor of its content. Her persistence and dedi-
cation have made this book possible.

Second, I want to acknowledge Bill Pollock, publisher of No Starch Press,
for believing in and backing this book.

Third, I want to acknowledge the diligent efforts of my technical
reviewer, Cliff Janzen, for making certain the technical content in this
book is accurate.

Any remaining errors or omissions are solely my fault.
Finally, I want to thank and acknowledge all the dedicated professionals

at No Starch Press for their efforts to bring to book to completion and to
market. Thank you.

I N T R O D U C T I O N

Hacking is the most important skill set of
the 21st century! I don’t make that state-

ment lightly. Events in recent years seem to
reaffirm this statement with every morning’s

headline. Nations are spying on each other to gain
secrets, cyber criminals are stealing billions of dollars, digital worms
demanding ransoms are being released, adversaries are influencing each
other’s elections, and combatants are taking down each other’s utilities.
These are all the work of hackers, and their influence over our increasingly
digital world is just beginning to be felt.

I decided to write this book after working with tens of thousands of aspir-
ing hackers through Null-Byte, https://www.hackers-arise.com/, and nearly every
branch of the US military and intelligence agencies (NSA, DIA, CIA, and
FBI). These experiences have taught me that many aspiring hackers have
had little or no experience with Linux, and this lack of experience is the pri-
mary barrier to their starting the journey to becoming professional hackers.
Almost all the best hacker tools are written in Linux, so some basic Linux
skills are a prerequisite to becoming a professional hacker. I have written this
book to help aspiring hackers get over this barrier.

xxii Introduction

Hacking is an elite profession within the IT field. As such, it requires an
extensive and detailed understanding of IT concepts and technologies. At
the most fundamental level, Linux is a requirement. I strongly suggest you
invest time and energy into using and understanding it if you want to make
hacking and information security your career.

This book is not intended for the experienced hacker or the experienced
Linux admin. Instead, it is intended for those who want to get started along
the exciting path of hacking, cybersecurity, and pentesting. It is also intended
not as a complete treatise on Linux or hacking but rather a starting point
into these worlds. It begins with the essentials of Linux and extends into
some basic scripting in both bash and Python. Wherever appropriate, I have
tried to use examples from the world of hacking to teach Linux principles.

In this introduction, we’ll look at the growth of ethical hacking for infor-
mation security, and I’ll take you through the process of installing a virtual
machine so you can install Kali Linux on your system without disturbing the
operating system you are already running.

What’s in This Book
In the first set of chapters you’ll get comfortable with the fundamentals of
Linux; Chapter 1 will get you used to the file system and the terminal, and
give you some basic commands. Chapter 2 shows you how to manipulate
text to find, examine, and alter software and files.

In Chapter 3 you’ll manage networks. You’ll scan for networks, find infor-
mation on connections, and disguise yourself by masking your network and
DNS information.

Chapter 4 teaches you to add, remove, and update software, and how
to keep your system streamlined. In Chapter 5, you’ll manipulate file and
directory permissions to control who can access what. You’ll also learn some
privilege escalation techniques.

Chapter 6 teaches you how to manage services, including starting and
stopping processes and allocating resources to give you greater control. In
Chapter 7 you’ll manage environment variables for optimal performance,
convenience, and even stealth. You’ll find and filter variables, change your
PATH variable, and create new environment variables.

Chapter 8 introduces you to bash scripting, a staple for any serious
hacker. You’ll learn the basics of bash and build a script to scan for target
ports that you might later infiltrate.

Chapters 9 and 10 give you some essential file system management skills,
showing you how to compress and archive files to keep your system clean,
copy entire storage devices, and get information on files and connected disks.

The latter chapters dig deeper into hacking topics. In Chapter 11 you’ll
use and manipulate the logging system to get information on a target’s activ-
ity and cover your own tracks. Chapter 12 shows you how to use and abuse
three core Linux services: Apache web server, OpenSSH, and MySQL. You’ll
create a web server, build a remote video spy, and learn about databases and
their vulnerabilities. Chapter 13 will show you how to stay secure and anony-
mous with proxy servers, the Tor network, VPNs, and encrypted email.

Introduction xxiii

Chapter 14 deals with wireless networks. You’ll learn basic networking
commands, then crack Wi-Fi access points and detect and connect to
Bluetooth signals.

Chapter 15 dives deeper into Linux itself with a high level view of how
the kernel works and how its drivers can be abused to deliver malicious
software. In Chapter 16 you’ll learn essential scheduling skills in order to
automate your hacking scripts. Chapter 17 will teach you core Python con-
cepts, and you’ll script two hacking tools: a scanner to spy on TCP/IP con-
nections, and a simple password cracker.

What Is Ethical Hacking?
With the growth of the information security field in recent years has come
dramatic growth in the field of ethical hacking, also known as white hat
(good guy) hacking. Ethical hacking is the practice of attempting to infil-
trate and exploit a system in order to find out its weaknesses and better
secure it. I segment the field of ethical hacking into two primary compo-
nents: penetration testing for a legitimate information security firm and
working for your nation’s military or intelligence agencies. Both are rapidly
growing areas, and demand is strong.

Penetration Testing
As organizations become increasingly security conscious and the cost of
security breaches rises exponentially, many large organizations are begin-
ning to contract out security services. One of these key security services is
penetration testing. A penetration test is essentially a legal, commissioned
hack to demonstrate the vulnerability of a firm’s network and systems.

Generally, organizations conduct a vulnerability assessment first to find
potential vulnerabilities in their network, operating systems, and services. I
emphasize potential, as this vulnerability scan includes a significant number
of false positives (things identified as vulnerabilities that really are not). It is
the role of the penetration tester to attempt to hack, or penetrate, these vul-
nerabilities. Only then can the organization know whether the vulnerability
is real and decide to invest time and money to close the vulnerability.

Military and Espionage
Nearly every nation on earth now engages in cyber espionage and cyber war-
fare. One only needs to scan the headlines to see that cyber activities are the
chosen method for spying on and attacking military and industrial systems.

Hacking plays a crucial part in these military and intelligence-gathering
activities, and that will only be more true as time goes by. Imagine a war of
the future where hackers can gain access to their adversary’s war plans and
knock out their electric grid, oil refineries, and water systems. These activities
are taking place every day now. The hacker thus becomes a key component of
their nation’s defense.

xxiv Introduction

Why Hackers Use Linux
So why do hackers use Linux over other operating systems? Mostly because
Linux offers a far higher level of control via a few different methods.

Linux Is Open Source
Unlike Windows, Linux is open source, meaning that the source code of the
operating system is available to you. As such, you can change and manipulate
it as you please. If you are trying to make a system operate in ways it was not
intended to, being able to manipulate the source code is essential.

Linux Is Transparent
To hack effectively, you must know and understand your operating system
and, to a large extent, the operating system you are attacking. Linux is totally
transparent, meaning we can see and manipulate all its working parts.

Not so with Windows. Microsoft tries hard to make it as difficult as
possible to know the inner workings of its operating systems, so you never
really know what’s going on “under the hood,” whereas in Linux, you have
a spotlight shining directly on each and every component of the operating
system. This makes working with Linux more effective.

Linux Offers Granular Control
Linux is granular. That means that you have an almost infinite amount of
control over the system. In Windows, you can control only what Microsoft
allows you to control. In Linux, everything can be controlled by the terminal,
at the most miniscule level or the most macro level. In addition, Linux makes
scripting in any of the scripting languages simple and effective.

Most Hacking Tools Are Written for Linux
Well over 90 percent of all hacking tools are written for Linux. There are
exceptions, of course, such as Cain and Abel and Wikto, but those excep-
tions prove the rule. Even when hacking tools such as Metasploit or nmap
are ported for Windows, not all the capabilities transfer from Linux.

The Future Belongs to Linux/Unix
This might seem like a radical statement, but I firmly believe that the future
of information technology belongs to Linux and Unix systems. Microsoft
had its day in the 1980s and 1990s, but its growth is slowing and stagnating.

Since the internet began, Linux/Unix has been the operating system
of choice for web servers due to its stability, reliability, and robustness. Even
today, Linux/Unix is used in two-thirds of web servers and dominates the
market. Embedded systems in routers, switches, and other devices almost
always use a Linux kernel, and the world of virtualization is dominated by
Linux, with both VMware and Citrix built on the Linux kernel.

Over 80 percent of mobile devices run Unix or Linux (iOS is Unix,
and Android is Linux), so if you believe that the future of computing lies in

Introduction xxv

mobile devices such as tablets and phones (it would be hard to argue other-
wise), then the future is Unix/Linux. Microsoft Windows has just 7 percent
of the mobile devices market. Is that the wagon you want to be hitched to?

Downloading Kali Linux
Before getting started, you need to download and install Kali Linux on your
computer. This is the Linux distribution we will be working with throughout
this book. Linux was first developed by Linus Torvalds in 1991 as an open
source alternative to Unix. Since it is open source, volunteer developers code
the kernel, the utilities, and the applications. This means that there is no
overriding corporate entity overseeing development, and as a result, conven-
tions and standardization are often lacking.

Kali Linux was developed by Offensive Security as a hacking operat-
ing system built on a distribution of Linux called Debian. There are many
distributions of Linux, and Debian is one of the best. You are probably most
familiar with Ubuntu as a popular desktop distribution of Linux. Ubuntu is
also built on Debian. Other distributions include Red Hat, CentOS, Mint,
Arch, and SUSE. Although they all share the same Linux kernel (the heart
of the operating system that controls the CPU, RAM, and so on), each has its
own utilities, applications, and choice of graphical interface (GNOME, KDE,
and others) for different purposes. As a result, each of these distributions of
Linux looks and feels slightly different. Kali was designed for penetration tes-
ters and hackers and comes with a significant complement of hacking tools.

I strongly recommend that you use Kali for this book. Although you can
use another distribution, you will likely have to download and install the
various tools we will be using, which could mean many hours downloading
and installing tools. In addition, if that distribution is not built on Debian,
there may be other minor differences. You can download and install Kali
from https://www.kali.org/.

From the home page, hover over the Downloads link at the top of the
page and click Download Kali Linux. On the Downloads page you’ll be
faced with multiple download choices. It’s important to choose the right
download. Along the left side of the table, you will see the image name,
which is the name of the version that the link downloads. For instance,
you may see an image name called Kali Linux 64 Bit, meaning it’s the full
Kali Linux and is suitable for 64-bit systems—most modern systems use a
64-bit Intel or AMD CPU. To determine what type of CPU is on your sys-
tem, go to Control Panel4System and Security4System, and it should be
listed. If your system is 64-bit, download and install the 64-bit version of
the full Kali (not Light or Lxde, or any of the other alternatives).

If you are running an older computer with a 32-bit CPU, you will need
to install the 32-bit version, which appears lower on the page.

You have a choice of downloading via HTTP or Torrent. If you choose
HTTP, Kali will download directly to your system just like any download, and
it will be placed in your Downloads folder. The torrent download is the peer-to-
peer download used by many file-sharing sites. You will need a torrenting

xxvi Introduction

application like BitTorrent to do this. The Kali file will then download to the
folder in which the torrenting application stores its downloads.

There are other versions for other types of CPUs, such as the commonly
used ARM architecture found in so many mobile devices. If you are using a
Raspberry Pi, tablet, or other mobile device (phone users will likely prefer
Kali NetHunter), make certain you download and install the ARM architec-
ture version of Kali by scrolling down to Download ARM images and click-
ing Kali ARM Images.

You have Kali downloaded, but before you install anything, I want to
talk a bit about virtual machines. Generally, for the beginner, installing
Kali into a virtual machine is the best solution for learning and practicing.

Virtual Machines
Virtual machine (VM) technology allows you to run multiple operating
systems from one piece of hardware like your laptop or desktop. This means
that you can continue to run the Windows or MacOS operating system you
are familiar with and run a virtual machine of Kali Linux inside that operat-
ing system. You don’t need to overwrite your existing OS to learn Linux.

Numerous virtual machine applications are available from VMware,
Oracle, Microsoft, and other vendors. All are excellent, but here I will be
showing you how to download and install Oracle’s free VirtualBox.

Installing VirtualBox
You can download VirtualBox at https://www.virtualbox.org/, as shown
in Figure 1. Click the Downloads link in the left menu, and select the
VirtualBox package for your computer’s current operating system, which
will host VirtualBox VM. Make sure to download the latest version.

Figure 1: VirtualBox home page

N O T E 	 These instructions were written with Windows in mind. If you’re using a Mac, the
process may be a little different, but you still should be able to follow along.

Introduction xxvii

When the download has completed, click the setup file, and you will be
greeted by a familiar Setup Wizard, shown in Figure 2.

Figure 2: The Setup Wizard dialog

Click Next, and you should be greeted with the Custom Setup screen,
as in Figure 3.

Figure 3: The Custom Setup dialog

From this screen, simply click Next. Keep clicking Next until you get to
the Network Interfaces warning screen and then click Yes.

Click Install to begin the process. During this process, you will likely be
prompted several times about installing device software. These are the virtual
networking devices necessary for your virtual machines to communicate.
Click Install for each one.

When the installation is complete, click Finish.

xxviii Introduction

Setting Up Your Virtual Machine
Now let’s get you started with your virtual machine. VirtualBox should open
once it has installed—if not, open it—and you should be greeted by the
VirtualBox Manager, as seen in Figure 4.

Figure 4: The VirtualBox Manager

Since we will be creating a new virtual machine with Kali Linux, click
New in the upper-left corner. This opens the Create Virtual Machine dialog
shown in Figure 5.

Give your machine a name (any name is okay, but I simply used Kali) and
then select Linux from the Type drop-down menu. Finally, select Debian
(64-bit) from the third drop-down menu (unless you are using the 32-bit
version of Kali, in which case select the Debian 32-bit version). Click Next,
and you’ll see a screen like Figure 6. Here, you need to select how much
RAM you want to allocate to this new virtual machine.

Figure 5: The Create Virtual Machine dialog Figure 6: Allocating memory

Introduction xxix

As a rule of thumb, I don’t recommend using more than 25 percent of
your total system RAM. That means if you have installed 4GB (or 4096MB)
on your physical or host system, then select just 1GB for your virtual machine,
and if you have 16GB on your physical system, then select 4GB. The more
RAM you give your virtual machine, the better and faster it will run, but
you must also leave enough RAM for your host operating system and any
other virtual machines you might want to run simultaneously. Your virtual
machines will not use any RAM when you are not using them, but they will
use hard drive space.

Click Next, and you’ll get to the Hard Disk screen. Choose Create
Virtual Hard Disk and click Create. You should be asked which hard disk
file type to use. Select the suggested default of VDI.

In the next screen, you can decide whether you want the hard drive
you are creating to be allocated dynamically or at a fixed size. If you choose
Dynamically Allocated, the system will not take the entire maximum size you
allocate for the virtual hard disk until you need it, saving more unused hard
disk space for your host system. I suggest you select dynamically allocated.

Click Next, and you’ll choose the amount of hard drive space to allo-
cate to the VM and the location of the VM (see Figure 7).

Figure 7: Allocating hard drive space

The default is 8GB. I usually find that to be a bit small and recom-
mend that you allocate 20–25GB at a minimum. Remember, if you chose
to dynamically allocate hard drive space, it won’t use the space until you
need it, and expanding your hard drive after it has already been allocated
can be tricky, so better to err on the high side.

Click Create, and you’re ready to go!

Installing Kali on the VM
At this point, you should see a screen like Figure 8. Now you’ll need to
install Kali. Note that on the left of the VirtualBox Manager, you should
see an indication that Kali VM is powered off. Click the Start button
(green arrow icon).

xxx Introduction

Figure 8: The VirtualBox welcome screen

The VirtualBox Manager will then ask where to find the startup disk.
You’ve already downloaded a disk image with the extension .iso, which should
be in your Downloads folder (if you used a torrent to download Kali, the .iso
file will be in the Downloads folder of your torrenting application). Click the
folder icon to the right, navigate to the Downloads folder, and select the Kali
image file (see Figure 9).

Figure 9: Selecting your startup disk

Introduction xxxi

Then click Start. Congratulations, you’ve just installed Kali Linux on a
virtual machine!

Setting Up Kali
Kali will now open a screen like Figure 10, offering you several startup
choices. I suggest using the graphical install for beginners. Use your key-
board keys to navigate the menu.

If you get an error when you’re installing Kali into your VirtualBox, it’s
likely because you don’t have virtualization enabled within your system’s
BIOS. Each system and its BIOS is slightly different, so check with your
manufacturer or search online for solutions for your system and BIOS. In
addition, on Windows systems, you will likely need to disable any competing
virtualization software such as Hyper-V. Again, an internet search for your
system should guide you in doing so.

Figure 10: Selecting the install method

You will next be asked to select your language. Make certain you select
the language you are most comfortable working in and then click Continue.
Next, select your location, click Continue, and then select your keyboard
layout.

When you click Continue, VirtualBox will go through a process of detect-
ing your hardware and network adapters. Just wait patiently as it does so.
Eventually, you will be greeted by a screen asking you to configure your net-
work, as in Figure 11.

xxxii Introduction

Figure 11: Entering a hostname

The first item it asks for is the name of your host. You can name it any-
thing you please, but I left mine with the default “kali.”

Next, you will be asked for the domain name. It’s not necessary to
enter anything here. Click Continue. The next screen, shown in Figure 12,
is very important. Here, you are asked for the password you want to use
for the root user. Beginning with Kali 2020 and later versions, Kali pro-
vides you a username and password set to Kali.

Figure 12: Choosing a password

Introduction xxxiii

The root user in Linux is the all-powerful system administrator. You
can use any password you feel secure with. If this were a physical system that
we were using on the internet, I would suggest that you use a very long and
complex password to limit the ability of an attacker to crack it. Since this is
a virtual machine that people can’t access without first accessing your host
operating system, password authentication on this virtual machine is less
important, but you should still choose wisely.

Click Continue, and you will be asked to set your time zone. Do so and
then continue.

The next screen asks about partition disks (a partition is just what it
sounds like—a portion or segment of your hard drive). Choose Guided –
use entire disk, and Kali will detect your hard drives and set up a parti-
tioner automatically.

Kali will then warn you that all data on the disk you select will be
erased . . . but don’t worry! This is a virtual disk, and the disk is new and
empty, so this won’t actually do anything. Click Continue.

Kali will now ask whether you want all files in one partition or if you
want to have separate partitions. If this were a production system, you prob-
ably would select separate partitions for /home, /var, and /tmp, but consider-
ing that we will be using this as a learning system in a virtual environment,
it is safe for you to simply select All files in one partition.

Now you be will be asked whether to write your changes to disk. Select
Finish partitioning and write changes to disk. Kali will prompt you once
more to see if you want to write the changes to disk; select Yes and click
Continue (see Figure 13).

Figure 13: Writing changes to disk

xxxiv Introduction

Kali will now begin to install the operating system. This could take a
while, so be patient. Now is the time to take your bathroom break and get
your favorite beverage.

Once the installation is complete, you will be prompted as to whether
you want to use a network mirror. This really is not necessary, so click No.

Then Kali will prompt you as to whether you want to install GRUB
(Grand Unified Bootloader), shown in Figure 14. A bootloader enables you
to select different operating systems to boot into, which means when you
boot your virtual machine, you can boot into either Kali or another oper-
ating system. Select Yes and click Continue.

Figure 14: Installing GRUB

On the next screen, you will be prompted as to whether you want to
install the GRUB bootloader automatically or manually. For reasons as yet
unclear, if you choose the second option, Kali will tend to hang and display
a blank screen after installation. Select Enter device manually, as shown in
Figure 15.

Introduction xxxv

Figure 15: Entering your device manually

On the following screen, select the drive where the GRUB bootloader
should be installed (it will likely be something like /dev/sda). Click through to
the next screen, which should tell you that the installation is complete.

Congratulations! You’ve installed Kali. Click Continue. Kali will
attempt to reboot, and you will see a number of lines of code go across
a blank, black screen before you are eventually greeted with Kali 2018’s
login screen, as shown in Figure 16.

Figure 16: The Kali login screen

xxxvi Introduction

Log in as root, and you will be asked for your password. Enter what-
ever password you selected for your root user. If you are using Kali 2020
or later, you will need to use the sudo before any command that requires
root privileges. These later versions of Kali will respond with “command
not found” when the command requires root privileges. Simply precede
the command with sudo.

After logging in as root, you will be greeted with the Kali Linux desktop,
as in Figure 17.

Figure 17: The Kali home screen

You are now ready to begin your journey into the exciting field of
hacking! Welcome!

1
G E T T I N G S T A R T E D W I T H

T H E B A S I C S

By our very nature, hackers are doers. We
want to touch and play with things. We

also want to create and, sometimes, break
things. Few of us want to read long tomes of

information technology theory before we can do what
we love most: hacking. With that in mind, this chapter
is designed to give you some fundamental skills to get
you up and running in Kali . . . now!

In this chapter, we won’t go into any one concept in great detail—we’ll
cover just enough to let you play and explore in the operating system of
hackers: Linux. We will save more in-depth discussions for later chapters.

Introductory Terms and Concepts
Before we begin our journey through the wonderful world of Linux Basics
for Hackers, I want to introduce a few terms that should clarify some con-
cepts discussed later in this chapter.

2 Chapter 1

Binaries  This term refers to files that can be executed, similar to
executables in Windows. Binaries generally reside in the /usr/bin or
usr/sbin directory and include utilities such as ps, cat, ls, and ifconfig
(we’ll touch on all of four of these in this chapter) as well as applica-
tions such as the wireless hacking tool aircrack-ng and the intrusion
detection system (IDS) Snort.

Case sensitivity  Unlike Windows, the Linux filesystem is case sensi-
tive. This means that Desktop is different from desktop, which is different
from DeskTop. Each of these would represent a different file or directory
name. Many people coming from a Windows environment can find this
frustrating. If you get the error message “file or directory not found”
and you are sure the file or directory exists, you probably need to check
your case.

Directory  This is the same as a folder in Windows. A directory pro-
vides a way of organizing files, usually in a hierarchical manner.

Home  Each user has their own /home directory, and this is generally
where files you create will be saved by default.

Kali  Kali Linux is a distribution of Linux specifically designed for
penetration testing. It has hundreds of tools preinstalled, saving you
the hours it would take to download and install them yourself. I will be
using the latest version of Kali at the time of this writing: Kali 2018.2,
first released in April 2018.

root  Like nearly every operating system, Linux has an administrator
or superuser account, designed for use by a trusted person who can do
nearly anything on the system. This would include such things as recon-
figuring the system, adding users, and changing passwords. In Linux,
that account is called root. As a hacker or pentester, you will often use
the root account to give yourself control over the system. In fact, many
hacker tools require that you use the root account.

Script  This is a series of commands run in an interpretive environ-
ment that converts each line to source code. Many hacking tools are
simply scripts. Scripts can be run with the bash interpreter or any of
the other scripting language interpreters, such as Python, Perl, or Ruby.
Python is currently the most popular interpreter among hackers.

Shell  This is an environment and interpreter for running commands
in Linux. The most widely used shell is bash, which stands for Bourne-
again shell, but other popular shells include the C shell and Z shell. I
will be using the bash shell exclusively in this book.

Terminal  This is a command line interface (CLI).

With those basics behind us, we will attempt to methodically develop
the essential Linux skills you’ll need to become a hacker or penetration tes-
ter. In this first chapter, I’ll walk you through getting started with Kali Linux.

Getting Started with the Basics 3

A Tour of Kali
Once you start Kali, you’ll be greeted with a login screen, as shown in
Figure 1-1. Log in using the root account username root and the default
password toor (if you changed the password earlier, use your new password
here).

Figure 1-1: Logging into Kali using the root account

You should now have access to your Kali desktop (see Figure 1-2). We’ll
quickly look at two of the most basic aspects of the desktop: the terminal
interface and file structure.

Figure 1-2: The Kali desktop

4 Chapter 1

The Terminal
The first step in using Kali is to open the terminal, which is the command
line interface we’ll use in this book. In Kali Linux, you’ll find the icon
for the terminal along the left of the desktop. Click this icon to open the
terminal. Your new terminal should look like the one shown in Figure 1-3.

Figure 1-3: The Kali terminal

This terminal opens the command line environment, known as the shell,
which enables you to run commands on the underlying operating systems
and write scripts. Although Linux has many different shell environments,
the most popular is the bash shell, which is also the default shell in Kali and
many other Linux distributions.

To change your password, you can use the command passwd.

The Linux Filesystem
The Linux filesystem structure is somewhat different from that of Windows.
Linux doesn’t have a physical drive (such as the C: drive) at the base of the
filesystem but uses a logical filesystem instead. At the very top of the file-
system structure is /, which is often referred to as the root of the filesystem,
as if it were an upside-down tree (see Figure 1-4). Keep in mind that this is
different from the root user. These terms may seem confusing at first, but
they will become easier to differentiate once you get used to Linux.

Getting Started with the Basics 5

/

/root
Superuser’s

home
directory

/boot
Kernel
image

/home
User

directories

/etc
System

configuration
files

/mnt
General-
purpose

mount point

/proc
View of
internal

kernel data

/dev
Special

device files

/sys
Kernel’s

view of the
hardware

/bin
Binaries

/sbin
Binaries

/lib
Libraries

/usr

/bin
More

binaries

/sbin
More

binaries

/lib
More

libraries

Figure 1-4: The Linux filesystem

The root (/) of the filesystem is at the top of the tree, and the following
are the most important subdirectories to know:

/root  The home directory of the all-powerful root user

/etc  Generally contains the Linux configuration files—files that con-
trol when and how programs start up

/home  The user’s home directory

/mnt  Where other filesystems are attached or mounted to the
filesystem

/media  Where CDs and USB devices are usually attached or mounted
to the filesystem

/bin  Where application binaries (the equivalent of executables in
Microsoft Windows or applications in macOS) reside

/lib  Where you’ll find libraries (shared programs that are similar to
Windows DLLs)

We’ll spend more time with these key directories throughout this book.
Understanding these first-level directories is important to navigating through
the filesystem from the command line.

It’s also important to know before you start that you should not log in
as root when performing routine tasks, because anyone who hacks your
system (yes, hackers sometimes get hacked) when you’re logged in as root
would immediately gain root privileges and thus “own” your system. Log in
as a regular user when starting regular applications, browsing the web, run-
ning tools like Wireshark, and so on. For the practice you’ll do in this book,
staying logged in as root should be fine.

Basic Commands in Linux
To begin, let’s look at some basic commands that will help you get up and
running in Linux.

6 Chapter 1

Finding Yourself with pwd
Unlike when you’re working in a graphical user interface (GUI) environ-
ment like Windows or macOS, the command line in Linux does not always
make it apparent which directory you’re presently in. To navigate to a new
directory, you usually need to know where you are currently. The present
working directory (or print working directory) command, pwd, returns your
location within the directory structure.

Enter pwd in your terminal to see where you are:

kali >pwd
/root

In this case, Linux returned /root, telling me I’m in the root user’s
directory. And because you logged in as root when you started Linux, you
should be in the root user’s directory, too, which is one level below the top
of the filesystem structure (/).

If you’re in another directory, pwd will return that directory name
instead.

Checking Your Login with whoami
In Linux, the one “all-powerful” superuser or system administrator is named
root, and it has all the system privileges needed to add users, change pass-
words, change privileges, and so on. Obviously, you don’t want just anyone
to have the ability to make such changes; you want someone who can be
trusted and has proper knowledge of the operating system. As a hacker,
you usually need to have all those privileges to run the programs and com-
mands you need (many hacker tools won’t work unless you have root privi-
leges), so you’ll want to log in as root.

If you’ve forgotten whether you’re logged in as root or another user, you
can use the whoami command to see which user you’re logged in as:

kali >whoami
root

If I had been logged in as another user, such as my personal account,
whoami would have returned my username instead, as shown here:

kali >whoami
OTW

Navigating the Linux Filesystem
Navigating the filesystem from the terminal is an essential Linux skill. To
get anything done, you need to be able to move around to find applications,
files, and directories located in other directories. In a GUI-based system,
you can visually see the directories, but when you’re using the command

Getting Started with the Basics 7

line interface, the structure is entirely text based, and navigating the file
system means using some commands.

Changing Directories with cd

To change directories from the terminal, use the change directory command,
cd. For example, here’s how to change to the /etc directory used to store con-
figuration files:

kali >cd /etc
kali:/etc >

The prompt changes to root@kali:/etc, indicating that we’re in the /etc
directory. We can confirm this by entering pwd:

kali:/etc >pwd
/etc

To move up one level in the file structure (toward the root of the file
structure, or /), we use cd followed by double dots (..), as shown here:

kali:/etc >cd ..
kali >pwd
/
kali >

This moves us up one level from /etc to the / root directory, but you can
move up as many levels as you need. Just use the same number of double-
dot pairs as the number of levels you want to move:

•	 You would use .. to move up one level.

•	 You would use ../.. to move up two levels.

•	 You would use ../../.. to move up three levels, and so on.

So, for example, to move up two levels, enter cd followed by two sets of
double dots with a forward slash in between:

kali >cd ../..

You can also move up to the root level in the file structure from any-
where by entering cd /, where / represents the root of the filesystem.

Listing the Contents of a Directory with ls

To see the contents of a directory (the files and subdirectories), we can use
the ls (list) command. This is very similar to the dir command in Windows.

kali >ls
bin initrd.img media run var

8 Chapter 1

boot initrd.img.old mnt sbin vmlinuz
dev lib opt srv vmlinuz.old
etc lib64 proc tmp
home lost+found root usr

This command lists both the files and directories contained in the
directory. You can also use this command on any particular directory, not
just the one you are currently in, by listing the directory name after the
command; for example, ls /etc shows what’s in the /etc directory.

To get more information about the files and directories, such as their
permissions, owner, size, and when they were last modified, you can add
the -l switch after ls (the l stands for long). This is often referred to as
long listing. Let’s try it here:

kali >ls -l
total 84
drw-r--r-- 1 root root 4096 Dec 5 11:15 bin
drw-r--r-- 2 root root 4096 Dec 5 11:15 boot
drw-r--r-- 3 root root 4096 Dec 9 13:10 dev
drw-r--r-- 18 root root 4096 Dec 9 13:43 etc
--snip--
drw-r--r-- 1 root root 4096 Dec 5 11:15 var

As you can see, ls -l provides us with significantly more information,
such as whether an object is a file or directory, the number of links, the
owner, the group, its size, when it was created or modified, and its name.

I typically add the -l switch whenever doing a listing in Linux, but to
each their own. We’ll talk more about ls -l in Chapter 5.

Some files in Linux are hidden and won’t be revealed by a simple ls or
ls -l command. To show hidden files, add a lowercase –a switch, like so:

kali >ls -la

If you aren’t seeing a file you expect to see, it’s worth trying ls with the
a flag When using multiple flags, you can combine them into one, as we’ve
done here with -la instead of -l -a.

Getting Help
Nearly every command, application, or utility has a dedicated help file in
Linux that provides guidance for its use. For instance, if I needed help
using the best wireless cracking tool, aircrack-ng, I could simply type the
aircrack-ng command followed by the --help command:

kali >aircrack-ng --help

Note the double dash here. The convention in Linux is to use a double
dash (--) before word options, such as help, and a single dash (-) before
single-letter options, such as –h.

Getting Started with the Basics 9

When you enter this command, you should see a short description of
the tool and guidance on how to use it. In some cases, you can use either -h
or -? to get to the help file. For instance, if I needed help using the hacker’s
best port-scanning tool, nmap, I would enter the following:

kali >nmap -h

Unfortunately, although many applications support all three options
(--help, -h, and -?), there’s no guarantee the application you’re using will.
So if one option doesn’t work, try another.

Referencing Manual Pages with man
In addition to the help switch, most commands and applications have a
manual (man) page with more information, such as a description and syn-
opsis of the command or application. You can view a man page by simply
typing man before the command, utility, or application. To see the man page
for aircrack-ng, for example, you would enter the following:

kali >man aircrack-ng
NAME
 aircrack-ng - a 802.11 WEP / WPA-PSK key cracker
SYNOPSIS
 aircrack-ng [options] <.cap / .ivs file(s)>
DESCRIPTION
 aircrack-ng is an 802.11 WEP and WPA/WPA2-PSK key cracking program.
 It can recover the WEP key once enough encrypted packets have been
 captured with airodump-ng. This part of the aircrack-ng suite deter-
 mines the WEP key using two fundamental methods. The first method is
 via the PTW approach (Pyshkin, Tews, Weinmann). The main advantage
 of the PTW approach is that very few data packets are required to
 crack the WEP key. The second method is the FMS/KoreK method. The
 FMS/KoreK method incorporates various statistical attacks to dis-
 cover the WEP key and uses these in combination with brute forcing.
 Additionally, the program offers a dictionary method for determining
 the WEP key. For cracking WPA/WPA2 pre-shared keys, a wordlist (file
 or stdin) or an airolib-ng has to be used.

This opens the manual for aircrack-ng, providing you with more
detailed information than the help screen. You can scroll through this
manual file using the enter key, or you can page up and down using the
pg dn and pg up keys, respectively; you can also use the arrow keys. To exit,
simply enter q (for quit), and you’ll return to the command prompt.

Finding Stuff
Until you become familiar with Linux, it can be frustrating to find your way
around, but knowledge of a few basic commands and techniques will go a
long way toward making the command line much friendlier. The following
commands help you locate things from the terminal.

10 Chapter 1

Searching with locate
Probably the easiest command to use is locate. Followed by a keyword denot-
ing what it is you want to find, this command will go through your entire
filesystem and locate every occurrence of that word.

To look for aircrack-ng, for example, enter the following:

kali >locate aircrack-ng
/usr/bin/aircrack-ng
/usr/share/applications/kali-aircrack-ng.desktop
/usr/share/desktop-directories/05-1-01-aircrack-ng.directory
--snip--
/var/lib/dpkg/info/aircrack-ng.md5sums

The locate command is not perfect, however. Sometimes the results of
locate can be overwhelming, giving you too much information. Also, locate
uses a database that is usually only updated once a day, so if you just created
a file a few minutes or a few hours ago, it might not appear in this list until
the next day. It’s worth knowing the disadvantages of these basic commands
so you can better decide when best to use each one.

Finding Binaries with whereis
If you’re looking for a binary file, you can use the whereis command to
locate it. This command returns not only the location of the binary but
also its source and man page if they are available. Here’s an example:

kali >whereis aircrack-ng
aircarck-ng: /usr/bin/aircarck-ng /usr/share/man/man1/aircarck-ng.1.gz

In this case, whereis returned just the aircrack-ng binaries and man page,
rather than every occurrence of the word aircrack-ng. Much more efficient
and illuminating, don’t you think?

Finding Binaries in the PATH Variable with which
The which command is even more specific: it only returns the location of
the binaries in the PATH variable in Linux. We’ll look more closely at the
PATH variable in Chapter 7, but for now it’s sufficient to know that PATH holds
the directories in which the operating system looks for the commands you
execute at the command line. For example, when I enter aircrack-ng on
the command line, the operating system looks to the PATH variable to see
in which directories it should look for aircrack-ng:

kali >which aircrack-ng
/usr/bin/aircrack-ng

Here, which was able to find a single binary file in the directories listed
in the PATH variable. At minimum, these directories usually include /usr/bin,
but may include /usr/sbin and maybe a few others.

Getting Started with the Basics 11

Performing More Powerful Searches with find
The find command is the most powerful and flexible of the searching utili-
ties. It is capable of beginning your search in any designated directory and
looking for a number of different parameters, including, of course, the file-
name but also the date of creation or modification, the owner, the group,
permissions, and the size.

Here’s the basic syntax for find:

find directory options expression

So, if I wanted to search for a file with the name apache2 (an open source
web server) starting in the root directory, I would enter the following:

kali >find / -type f -name apache2w

First I state the directory in which to start the search, in this case / .
Then I specify which type of file to search for, in this case f for an ordi-
nary file . Last, I give the name of the file I’m searching for, in this case
apache2 .

My results for this search are shown here:

kali >find / -type f -name apache2
/usr/lib/apache2/mpm-itk/apache2
/usr/lib/apache2/mpm-event/apache2
/usr/lib/apache2/mpm-worker/apache2
/usr/lib/apache2/mpm-prefork/apache2
/etc/cron.daily/apache2
/etc/logrotate.d/apache2
/etc/init.d/apache2
/etc/default/apache2

The find command started at the top of the filesystem (/), went through
every directory looking for apache2 in the filename, and then listed all
instances found.

As you might imagine, a search that looks in every directory can be
slow. One way to speed it up is to look only in the directory where you would
expect to find the file(s) you need. In this case, we are looking for a con-
figuration file, so we could start the search in the /etc directory, and Linux
would only search as far as its subdirectories. Let’s try it:

kali >find /etc -type f -name apache2
/etc/init.d/apache2
/etc/logrotate.d/apache2
/etc/cron.daily/apache2
/etc/default/apache2

This much quicker search only found occurrences of apache2 in the
/etc directory and its subdirectories. It’s also important to note that unlike
some other search commands, find displays only exact name matches. If the

12 Chapter 1

file apache2 has an extension, such as apache2.conf, the search will not find a
match. We can remedy this limitation by using wildcards, which enable us to
match multiple characters. Wildcards come in a few different forms: * . , ?
and [].

Let’s look in the /etc directory for all files that begin with apache2 and
have any extension. For this, we could write a find command using the fol-
lowing wildcard:

kali >find /etc -type f -name apache2.
/etc/apache2/apache2.conf

When we run this command, we find that there is one file in the /etc
directory that fits the apache2.* pattern. When we use a period followed
by the * wildcard, the terminal looks for any extension after the filename
apache2. This can be a very useful technique for finding files where you
don’t know the file extension.

When I run this command, I find two files that start with apache2 in the
/etc directory, including the apache2.conf file.

A QUICK LOOK AT W IL DC A R DS

Let’s say we’re doing a search on a directory that has the files cat, hat, what,
and bat. The ? wildcard is used to represent a single character, so a search
for ?at would find hat, cat, and bat but not what, because at in this filename is
preceded by two letters. The [] wildcard is used to match the characters that
appear inside the square brackets. For example, a search for [c,b]at would
match cat and bat but not hat or what. Among the most widely used wildcards
is the asterisk (*), which matches any character(s) of any length, from none to
an unlimited number of characters. A search for *at, for example, would find
cat, hat, what, and bat.

Filtering with grep
Very often when using the command line, you’ll want to search for a par-
ticular keyword. For this, you can use the grep command as a filter to search
for keywords.

The grep command is often used when output is piped from one com-
mand to another. I cover piping in Chapter 2, but for now, suffice it to say
that Linux (and Windows for that matter) allows us to take the output of one
command and send it as input to another command. This is called piping,
and we use the | command to do it (the | key is usually above the enter key
on your keyboard).

The ps command is used to display information about processes run-
ning on the machine. We cover this in more detail in Chapter 6, but for this

Getting Started with the Basics 13

example, suppose I want to see all the processes running on my Linux sys-
tem. In this case, I can use the ps (processes) command followed by the aux
switches to specify which process information to display, like so:

kali >ps aux

This provides me with a listing of all the processes running in this
system—but what if I just want to find one process to see if it is running?

I can do this by piping the output from ps to grep and searching for a
keyword. For instance, to find out whether the apache2 service is running,
I would enter the following.

kali >ps aux | grep apache2
root 4851 0.2 0.7 37548 7668 ? Ss 10:14 0:00 /usr/sbin/apache2 -k start
root 4906 0.0 0.4 37572 4228 ? S 10:14 0:00 /usr/sbin/apache2 -k start
root 4910 0.0 0.4 37572 4228 ? Ss 10:14 0:00 /usr/sbin/apache2 -k start
--snip--

This command tells Linux to display all my services and then send
that output to grep, which will look through the output for the keyword
apache2 and then display only the relevant output, thus saving me consid-
erable time and my eyesight.

Modifying Files and Directories
Once you’ve found your files and directories, you’ll want to be able to per-
form actions on them. In this section, we look at how to create files and
directories, copy files, rename files, and delete files and directories.

Creating Files
There are many ways to create files in Linux, but for now we’ll just look at
two simple methods. The first is cat, which is short for concatenate, meaning
to combine pieces together (not a reference to your favorite domesticated
feline). The cat command is generally used for displaying the contents of a
file, but it can also be used to create small files. For creating bigger files, it’s
better to enter the code in a text editor such as vim, emacs, leafpad, gedit,
or kate and then save it as a file.

Concatenation with cat

The cat command followed by a filename will display the contents of that
file, but to create a file, we follow the cat command with a redirect, denoted
with the > symbol, and a name for the file we want to create. Here’s an
example:

kali >cat > hackingskills
Hacking is the most valuable skill set of the 21st century!

14 Chapter 1

When you press enter, Linux will go into interactive mode and wait for
you to start entering content for the file. This can be puzzling because
the prompt disappears, but if you simply begin typing, whatever you enter
will go into the file (in this case, hackingskills). Here, I entered Hacking
is the most valuable skill set of the 21st century!. To exit and return to
the prompt, I press ctrl-D. Then, when I want to see what’s in the file
hackingskills, I enter the following:

kali >cat hackingskills
Hacking is the most valuable skill set of the 21st century!

If you don’t use the redirect symbol, Linux will spit back the contents of
your file.

To add, or append, more content to a file, you can use the cat command
with a double redirect (>>), followed by whatever you want to add to the end
of the file. Here’s an example:

kali >cat >> hackingskills
Everyone should learn hacking

Linux once again goes into interactive mode, waiting for content to
append to the file. When I enter Everyone should learn hacking and press
ctrl-D, I am returned to the prompt. Now, when I display the contents of
that file with cat, I can see that the file has been appended with Everyone
should learn hacking, as shown here:

kali >cat hackingskills
Hacking is the most valuable skill set of the 21st century! Everyone should
learn hacking

If I want to overwrite the file with new information, I can simply use the
cat command with a single redirect again, as follows:

kali >cat > hackingskills
Everyone in IT security without hacking skills is in the dark
kali >cat hackingskills
Everyone in IT security without hacking skills is in the dark

As you can see here, Linux goes into interactive mode, and I enter the
new text and then exit back to the prompt. When I once again use cat to see
the content of the file, I see that my previous words have been overwritten
with the latest text.

File Creation with touch

The second command for file creation is touch. This command was origi-
nally developed so a user could simply touch a file to change some of its
details, such as the date it was created or modified. However, if the file
doesn’t already exist, this command creates that file by default.

Getting Started with the Basics 15

Let’s create newfile with touch:

kali >touch newfile

Now when I then use ls –l to see the long list of the directory, I see that
a new file has been created named newfile. Note that its size is 0 because there
is no content in newfile.

Creating a Directory
The command for creating a directory in Linux is mkdir, a contraction of
make directory. To create a directory named newdirectory, enter the following
command:

kali >mkdir newdirectory

To navigate to this newly created directory, simply enter this:

kali >cd newdirectory

Copying a File
To copy files, we use the cp command. This creates a duplicate of the file in
the new location and leaves the old one in place.

Here, we’ll create the file oldfile in the root directory with touch and
copy it to /root/newdirectory, renaming it in the process and leaving the ori
ginal oldfile in place:

kali >touch oldfile
kali >cp oldfile /root/newdirectory/newfile

Renaming the file is optional and is done simply by adding the name
you want to give it to the end of the directory path. If you don’t rename the
file when you copy it, the file will retain the original name by default.

When we then navigate to newdirectory, we see that there is an exact
copy of oldfile called newfile :

kali >cd newdirectory
kali >ls

newfile oldfile

Renaming a File
Unfortunately, Linux doesn’t have a command intended solely for renaming
a file, as Windows and some other operating systems do, but it does have the
mv (move) command.

16 Chapter 1

The mv command can be used to move a file or directory to a new loca-
tion or simply to give an existing file a new name. To rename newfile to
newfile2, you would enter the following:

kali >mv newfile newfile2
kali >ls
oldfile newfile2

Now when you list (ls) that directory, you see newfile2 but not newfile,
because it has been renamed. You can do the same with directories.

Removing a File
To remove a file, you can simply use the rm command, like so:

kali >rm newfile2

If you now do a long listing on the directory, you can confirm that the
file has been removed.

Removing a Directory
The command for removing a directory is similar to the rm command for
removing files but with dir (for directory) appended, like so:

kali >rmdir newdirectory
rmdir:failed to remove 'newdirectory': Directory not empty

It’s important to note that rmdir will not remove a directory that is not
empty, but will give you a warning message that the “directory is not empty,”
as you can see in this example. You must first remove all the contents of the
directory before removing it. This is to stop you from accidentally deleting
objects you didn’t intend to delete.

If you do want to remove a directory and its content all in one go, you
can use the -r switch after rm, like so:

kali >rm -r newdirectory

Just a word of caution, though: be wary of using the -r option with rm,
at least at first, because it’s very easy to remove valuable files and directories
by mistake. Using rm -r in your home directory, for instance, would delete
every file and directory there—probably not what you were intending.

Getting Started with the Basics 17

Go Play Now!
Now that you have some basic skills for navigating around the filesystem,
you can play with your Linux system a bit before progressing. The best way
to become comfortable with using the terminal is to try out your newfound
skills right now. In subsequent chapters, we will explore farther and deeper
into our hacker playground.

E X E RCISE S

Before you move on to Chapter 2, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Use the ls command from the root (/) directory to explore the directory
structure of Linux. Move to each of the directories with the cd command
and run pwd to verify where you are in the directory structure.

2.	 Use the whoami command to verify which user you are logged in as.

3.	 Use the locate command to find wordlists that can be used for password
cracking.

4.	 Use the cat command to create a new file and then append to that file.
Keep in mind that > redirects input to a file and >> appends to a file.

5.	 Create a new directory called hackerdirectory and create a new file in
that directory named hackedfile. Now copy that file to your /root directory
and rename it secretfile.

2
T E X T M A N I P U L A T I O N

In Linux, nearly everything you deal with
directly is a file, and most often these will

be text files; for instance, all configuration
files in Linux are text files. So to reconfigure

an application, you simply open the configuration
file, change the text, save the file, and then restart
the application—your reconfiguration is complete.

With so many text files, manipulating text becomes crucial in manag-
ing Linux and Linux applications. In this chapter, you’ll use several com-
mands and techniques for manipulating text in Linux.

For illustrative purposes, I’ll use files from the world’s best network
intrusion detection system (NIDS), Snort, which was first developed by
Marty Roesch and is now owned by Cisco. NIDSs are commonly used to
detect intrusions by hackers, so if you want to be a successful hacker, you
must be familiar with the ways NIDSs can deter attacks and the ways you
can abuse them to avoid detection.

20 Chapter 2

N O T E 	 If the version of Kali Linux you’re using doesn’t come preinstalled with Snort, you
can download the files from the Kali repository by entering apt-get install snort.

Viewing Files
As demonstrated in Chapter 1, the most basic text display command is
probably cat, but it has its limitations. Use cat to display the Snort config
file (snort.conf ) found in/etc/snort (see Listing 2-1).

kali >cat /etc/snort/snort.conf

Listing 2-1: Displaying snort.conf in the terminal window

Your screen should now display the entire snort.conf file, which will
stream until it comes to the end of the file, and should look something like
the following code. This isn’t the most convenient or practical way to view
and work with this file.

#---
VRT Rule Packages Snort.conf
#
For more information visit us at:
HYPERLINK "http://www.snort.org/" http://www.snort.org Snort Website
--snip--
event thresholding or suppressions commands...
kali >

In the following two sections, I will show you the head and tail com-
mands, which are two methods for displaying just part of a file’s content
in order to more easily view the key content.

Finding the Head
If you just want to view the beginning of a file, you can use the head com-
mand. By default, this command displays the first 10 lines of a file. The
following command, for instance, shows you the first 10 lines of snort.conf:

kali >head /etc/snort/snort.conf
#---
VRT Rule Packages Snort.conf
#
For more information visit us at:
--snip--
Snort bugs:bugs@snort.org

If you want to see more or fewer than the default 10 lines, enter the
quantity you want with the dash (-) switch after the call to head and before
the filename. For example, if you want to see the first 20 lines of the file,
you would enter the command shown at the top of Listing 2-2.

Text Manipulation 21

kali >head -20 /etc/snort/snort.conf

#---
VRT Rule Packages Snort.conf
#
For more information visit us at:
--snip--

Options : --enable-gre --enable-mpls --enable-targetbased
--enable-ppm --enable-perfprofiling enable-zlib --enable-act
live-response --enable-normalizer --enable-reload --enable-react

Listing 2-2: Displaying the first 20 lines of snort.conf in the terminal window

You should see only the first 20 lines of snort.conf displayed in your
terminal window.

Finding the Tail
The tail command is similar to the head command, but it’s used to view the
last lines of a file. Let’s use it on snort.conf:

kali >tail /etc/snort/snort.conf
#include $SO_RULE_PATH/smtp.rules
#include $SO_RULE_PATH/specific-threats.rules
#include $SO_RULE_PATH/web-activex.rules
#include $SO_RULE_PATH/web-client.rules
#include $SO_RULE_PATH/web-iis.rules
#include $SO_RULE_PATH/web-miscp.rules

#Event thresholding and suppression commands. See threshold.conf

Notice that this command displays some of the last include lines of the
rules files, but not all of them, because similar to head, the default for tail
is to show 10 lines. You can display more lines by grabbing the last 20 lines
of snort.conf. As with the head command, you can tell tail how many lines
to display by entering a dash (-) and then the number of lines between the
command and the filename, as shown in Listing 2-3.

kali >tail -20 /etc/snort/snort.conf
#include $SO_RULE_PATH/chat.rules
#include $SO_RULE_PATH/dos.rules
#include $SO_RULE_PATH/exploit.rules
--snip--
#Event thresholding or suppression commands. See theshold.conf

Listing 2-3: Displaying the last 20 lines of snort.conf in the terminal window

Now we can view nearly all the include lines of the rules files on one
screen.

22 Chapter 2

Numbering the Lines
Sometimes—especially with very long files—we may want the file to display
line numbers. Since snort.conf  has more than 600 lines, line numbers would
be useful here. This makes it easier to reference changes and come back to
the same place within the file.

To display a file with line numbers, we use the nl (number lines) com-
mand. Simply enter the command shown in Listing 2-4.

kali >nl /etc/snort/snort.conf
612 ###
613 #dynamic library rules
614 #include $SO_RULE_PATH/bad-traffic.rules
615 #include $SO_RULE_PATH/chat.rules
--snip--
630 #include $SO_RULE_PATH/web-iis.rules
631 #include $SO_RULE_PATH/web-misc.rules
632 #Event thresholding or suppression commands. See threshold.conf
633 include threshold.conf

Listing 2-4: Displaying line numbers in terminal output

Each line now has a number, making referencing much easier. Note that
this command skips the numbering for the blank lines.

Filtering Text with grep
The command grep is probably the most widely used text manipulation com-
mand. It lets you filter the content of a file for display. If, for instance, you
want to see all lines that include the word output in your snort.conf file, you
could use cat and ask it to display only those lines (see Listing 2-5).

kali >cat /etc/snort/snort.conf | grep output
6) Configure output plugins
Step #6: Configure output plugins
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types,
vlan_event_types
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types,
vlan_event_types
output alert_unified2: filename merged.log, limit 128, nostamp
output log_unified2: filename merged.log, limit 128, nostamp
output alert_syslog: LOG_AUTH LOG_ALERT
output log_tcpdump: tcpdump.log

Listing 2-5: Displaying lines with instances of the keyword or phrase specified by grep

This command will first view snort.conf and then use a pipe (|) to send
it to grep, which will take the file as input, look for lines with occurrences of
the word output, and display only those lines. The grep command is a very
powerful and essential command for working in Linux, because it can save
you hours of searching for every occurrence of a word or command in a file.

Text Manipulation 23

Hacker Challenge: Using grep, nl, tail, and head
Let’s say you want to display the five lines immediately before a line that
says # Step #6: Configure output plugins using at least four of the commands
you just learned. How would you do it? (Hint: there are many more options
to these commands than those we’ve discussed. You can learn more com-
mands by using the built-in Linux command man. For example, man tail will
show the help file for the tail command.)

There are many ways to solve this challenge; here, I show you which
lines to change to do it one way, and your job is to find another method.

Step 1

kali >nl /etc/snort/snort.conf | grep output
 34 # 6) Configure output plugins
 512 # Step #6: Configure output plugins
 518 # output unified2: filename merged.log, limit 128, nostamp,
mpls_event_types, vlan_event_types
 520 # output unified2: filename snort.log, limit 128, nostamp,
mpls_event_types, vlan_event_types
 521 # output alert_unified2: filename snort.alert, limit 128, nostamp
 522 # output log_unified2: filename snort.log, limit 128, nostamp
 525 # output alert_syslog: LOG_AUTH LOG_ALERT
 528 # output log_tcpdump: tcpdump.log

N O T E 	 Your line numbers may differ slightly as the snort.conf file gets updated.

We can see that the line # Step #6: Configure output plugins is line 512,
and we know we want the five lines preceding line 512 as well as line 512
itself (that is, lines 507 to 512).

Step 2

kali >tail -n+507 /etc/snort/snort.conf | head -n 6
nested_ip inner, \
whitelist $WHITE_LIST_PATH/white_list.rules, \
blacklist $BLACK_LIST_PATH/black_list.rules

###
Step #6: Configure output plugins

Here, we use tail to start at line 507 and then output into head, and we
return just the top six lines, giving us the five lines preceding the Step #6
line, with that line included.

Using sed to Find and Replace
The sed command lets you search for occurrences of a word or a text
pattern and then perform some action on it. The name of the command

24 Chapter 2

is a contraction of stream editor. In its most basic form, sed operates like the
Find and Replace function in Windows.

Search for the word mysql in the snort.conf file using grep, like so:

kali >cat /etc/snort/snort.conf | grep mysql
include $RULE_PATH/mysql.rules
#include $RULE_PATH/server-mysql.rules

You should see that the grep command found two occurrences of mysql.
Let’s say you want sed to replace every occurrence of mysql with MySQL

(remember, most of Linux is case sensitive) and then save the new file
to snort2.conf. You could do this by entering the command shown in
Listing 2-6.

kali >sed s/mysql/MySQL/g /etc/snort/snort.conf > snort2.conf

Listing 2-6: Using sed to find and replace keywords or phrases

The s command performs the substitution: you first give the term you
are searching for (mysql ) and then the term you want to replace it with
(MySQL), separated by a slash (/). The g flag tells Linux that you want
the replacement performed globally. Then the result is saved to a new file
named snort2.conf.

Now, when you use grep with snort2.conf to search for mysql, you’ll see
that no instances were found, but when you search for MySQL, you’ll see
two occurrences.

kali >cat snort2.conf | grep MySQL
include $RULE_PATH/MySQL.rules
#include $RULE_PATH/server-MySQL.rules

If you wanted to replace only the first occurrence of the term mysql, you
would leave out the trailing g option.

kali >sed s/mysql/MySQL/ snort.conf > snort2.conf

You can also use the sed command to find and replace any specific occur-
rence of a word rather than all occurrences or just the first occurrence. For
instance, if you want to replace only the second occurrence of the word
mysql, simply place the number of the occurrence (in this case, 2) at the
end of the command:

kali >sed s/mysql/MySQL/2 snort.conf > snort2.conf

This command affects only the second occurrence of mysql.

Text Manipulation 25

Viewing Files with more and less
Although cat is a good utility for displaying files and creating small files, it
certainly has its limitations when displaying large files. When you use cat
with snort.conf, the file scrolls through every page until it comes to the end,
which is not very practical if you want to glean any information from it.

For working with larger files, we have two other viewing utilities: more
and less.

Controlling the Display with more
The more command displays a page of a file at a time and lets you page down
through it using the enter key. Open snort.conf with the more command, as
shown in Listing 2-7.

kali >more /etc/snort/snort.conf
--snip--
Snort build options:
Options: --enable-gre --enable-mpls --enable-targetbased
--enable-ppm --enable-perfprofiling enable-zlib --enable-active
-response --enable-normalizer --enable-reload --enable-react
--enable-flexresp3
#
--More--(2%)

Listing 2-7: Using more to display terminal output one page at a time

Notice that more displays only the first page and then stops, and it tells us
in the lower-left corner how much of the file is shown (2 percent in this case).
To see additional lines or pages, press enter. To exit more, enter q (for quit).

Displaying and Filtering with less
The less command is very similar to more, but with additional functionality
—hence, the common Linux aficionado quip, “Less is more.” With less, you
can not only scroll through a file at your leisure, but you can also filter it for
terms. As in Listing 2-8, open snort.conf with less.

kali >less /etc/snort/snort.conf
--snip--
Snort build options:
Options: --enable-gre --enable-mpls --enable-targetbased
--enable-ppm --enable-perfprofiling enable-zlib --enable-active
-response --enable-normalizer --enable-reload --enable-react
/etc/snort/snort.conf

Listing 2-8: Using less to both display terminal output a page at a time and filter results

26 Chapter 2

Notice in the bottom left of the screen that less has highlighted the
path to the file. If you press the forward slash (/) key, less will let you
search for terms in the file. For instance, when you first set up Snort, you
need to determine how and where you want to send your intrusion alert
output. To find that section of the configuration file, you could simply
search for output, like so:

Snort build options:
Options: --enable-gre --enable-mpls --enable-targetbased
 --enable-ppm --enable-perfprofiling enable-zlib --enable-active
-response --enable-normalizer --enable-reload --enable-react
 /output

This will immediately take you to the first occurrence of output and
highlight it. You can then look for the next occurrence of output by typing
n (for next).

Step #6: Configure output plugins
For more information, see Snort Manual, Configuring Snort - Output Modules
###

#unified2
Recommended for most installs
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types,
vlan_event_types
output unified2: filename snort.log, limit 128, nostamp, mpls_event_types,
vlan_event_types

Additional configuration for specific types of installs
output alert_unified2: filename snort.alert, limit 128, nostamp
output log_unified2: filename snort.log, limit 128, nostamp

syslog
output alert_syslog: LOG_AUTH LOG_ALERT
:

As you can see, less took you to the next occurrence of the word output
and highlighted all the search terms. In this case, it went directly to the out-
put section of Snort. How convenient!

Summary
Linux has numerous ways of manipulating text, and each way comes with
its own strengths and weaknesses. We’ve touched on a few of the most use-
ful methods in this chapter, but I suggest you try each one out and develop
your own feel and preferences. For example, I think grep is indispensable,
and I use less widely, but you might feel different.

Text Manipulation 27

E X E RCISE S

Before you move on to Chapter 3, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Navigate to /usr/share/metasploit-framework/data/wordlists. This is a
directory of multiple wordlists that can be used to brute force passwords
in various password-protected devices using Metasploit, the most popular
pentesting and hacking framework.

2.	 Use the cat command to view the contents of the file password.lst.

3.	 Use the more command to display the file password.lst.

4.	 Use the less command to view the file password.lst.

5.	 Now use the nl command to place line numbers on the passwords in
password.lst. There should be around 88,396 passwords.

6.	 Use the tail command to see the last 20 passwords in password.lst.

7.	 Use the cat command to display password.lst and pipe it to find all the
passwords that contain 123.

3
A N A LY Z I N G A N D M A N A G I N G

N E T W O R K S

Understanding networking is crucial for
any aspiring hacker. In many situations,

you’ll be hacking something over a network,
and a good hacker needs to know how to con-

nect to and interact with that network. For example,
you may need to connect to a computer with your
Internet Protocol (IP) address hidden from view, or you may need to redi-
rect a target’s Domain Name System (DNS) queries to your system; these
kinds of tasks are relatively simple but require a little Linux network know-
how. This chapter shows you some essential Linux tools for analyzing and
managing networks during your network-hacking adventures.

Analyzing Networks with ifconfig
The ifconfig command is one of the most basic tools for examining and
interacting with active network interfaces. You can use it to query your
active network connections by simply entering ifconfig in the terminal.
Try it yourself, and you should see output similar to Listing 3-1.

30 Chapter 3

kali >ifconfig
ueth0: flags=4163<UP, Broadcast, RUNNING, MULTICAST> mtu 1500
vinet addr:192.168.181.131 netmask 255.255.255.0
Bcast:192.168.181.255
--snip--
lo Linkencap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
--snip--
wlan0 Link encap:EthernetHWaddr 00:c0:ca:3f:ee:02

Listing 3-1: Using ifconfig to get network information

As you can see, the command ifconfig shows some useful informa-
tion about the active network interfaces on the system. At the top of the
output is the name of the first detected interface, eth0 , which is short for
Ethernet0 (Linux starts counting at 0 rather than 1). This is the first wired
network connection. If there were more wired Ethernet interfaces, they
would show up in the output using the same format (eth1, eth2, and so on).

The type of network being used (Ethernet) is listed next, followed by
HWaddr and an address; this is the globally unique address stamped on every
piece of network hardware—in this case, the network interface card (NIC),
usually referred to as the media access control (MAC) address.

The second line contains information on the IP address currently
assigned to that network interface (in this case, 192.168.181.131 ); the
Bcast , or broadcast address, which is the address used to send out informa-
tion to all IPs on the subnet; and finally the network mask (netmask), which is
used to determine what part of the IP address is connected to the local net-
work. You’ll also find more technical info in this section of the output, but
it’s beyond the scope of this Linux networking basics chapter.

The next section of the output shows another network connection
called lo , which is short for loopback address and is sometimes called
localhost. This is a special software address that connects you to your own
system. Software and services not running on your system can’t use it. You
would use lo to test something on your system, such as your own web server.
The localhost is generally represented with the IP address 127.0.0.1.

The third connection is the interface wlan0 . This appears only if you
have a wireless interface or adapter, as I do here. Note that it also displays
the MAC address of that device (HWaddr).

This information from ifconfig enables you to connect to and manipu-
late your local area network (LAN) settings, an essential skill for hacking.

Checking Wireless Network Devices with iwconfig
If you have an external USB, you can use the iwconfig command to gather
crucial information for wireless hacking such as the adapter’s IP address, its
MAC address, what mode it’s in, and more. The information you can glean
from this command is particularly important when you’re using wireless
hacking tools like aircrack-ng.

Analyzing and Managing Networks 31

Using the terminal, let’s take a look at some wireless devices with iwconfig
(see Listing 3-2).

kali >iwconfig
wlan0 IEEE 802.11bg ESSID:off/any
Mode:Managed Access Point: Not Associated Tx-Power=20 dBm
--snip--
lo no wireless extensions

eth0 no wireless extensions

Listing 3-2: Using iwconfig to get information on wireless adapters

The output here tells us that the only network interface with wireless
extensions is wlan0, which is what we would expect. Neither lo nor eth0 has
any wireless extensions.

For wlan0, we learn what 802.11 IEEE wireless standards our device is
capable of: b and g, two early wireless communication standards. Most wire-
less devices now include n as well (n is the latest standard).

We also learn from iwconfig the mode of the wireless extension (in this
case, Mode:Managed, in contrast to monitor or promiscuous mode). We’ll need
promiscuous mode for cracking wireless passwords.

Next, we can see that the wireless adapter is not connected (Not Associated)
to an access point (AP) and that its power is 20 dBm, which represents the
strength of signal. We’ll spend more time with this information in Chapter 14.

Changing Your Network Information
Being able to change your IP address and other network information is a
useful skill because it will help you access other networks while appearing
as a trusted device on those networks. For example, in a denial-of-service
(DoS) attack, you can spoof your IP so that that the attack appears to come
from another source, thus helping you evade IP capture during forensic
analysis. This is a relatively simple task in Linux, and it’s done with the
ifconfig command.

Changing Your IP Address
To change your IP address, enter ifconfig followed by the interface you want
to reassign and the new IP address you want assigned to that interface. For
example, to assign the IP address 192.168.181.115 to interface eth0, you would
enter the following:

kali >ifconfig eth0 192.168.181.115
kali >

When you do this correctly, Linux will simply return the command
prompt and say nothing. This is a good thing!

32 Chapter 3

Then, when you again check your network connections with ifconfig,
you should see that your IP address has changed to the new IP address you
just assigned.

Changing Your Network Mask and Broadcast Address
You can also change your network mask (netmask) and broadcast address
with the ifconfig command. For instance, if you want to assign that same
eth0 interface with a netmask of 255.255.0.0 and a broadcast address of
192.168.1.255, you would enter the following:

kali >ifconfig eth0 192.168.181.115 netmask 255.255.0.0 broadcast 192.168.1.255
kali >

Once again, if you’ve done everything correctly, Linux responds with a
new command prompt. Now enter ifconfig again to verify that each of the
parameters has been changed accordingly.

Spoofing Your MAC Address
You can also use ifconfig to change your MAC address (or HWaddr). The MAC
address is globally unique and is often used as a security measure to keep
hackers out of networks—or to trace them. Changing your MAC address
to spoof a different MAC address is almost trivial and neutralizes those
security measures. Thus, it’s a very useful technique for bypassing network
access controls.

To spoof your MAC address, simply use the ifconfig command’s down
option to take down the interface (eth0 in this case). Then enter the ifconfig
command followed by the interface name (hw for hardware, ether for Ethernet)
and the new spoofed MAC address. Finally, bring the interface back up with
the up option for the change to take place. Here’s an example:

kali >ifconfig eth0 down
kali >ifconfig eth0 hw ether 00:11:22:33:44:55
kali >ifconfig eth0 up

Now, when you check your settings with ifconfig, you should see that
HWaddr has changed to your new spoofed IP address!

Assigning New IP Addresses from the DHCP Server
Linux has a Dynamic Host Configuration Protocol (DHCP) server that
runs a daemon—a process that runs in the background—called dhcpd, or the
dhcp daemon. The DHCP server assigns IP addresses to all the systems on the
subnet and keeps log files of which IP address is allocated to which machine
at any one time. This makes it a great resource for forensic analysts to trace
hackers with after an attack. For that reason, it’s useful to understand how
the DHCP server works.

Usually, to connect to the internet from a LAN, you must have a DHCP-
assigned IP. Therefore, after setting a static IP address, you must return and

Analyzing and Managing Networks 33

get a new DHCP-assigned IP address. To do this, you can always reboot your
system, but I’ll show you how to retrieve a new DHCP without having to shut
your system down and restart it.

To request an IP address from DHCP, simply call the DHCP server
with the command dhclient followed by the interface you want the address
assigned to. Different Linux distributions use different DHCP clients, but
Kali is built on Debian, which uses dhclient. Therefore, you can assign a
new address like this:

kali >dhclient eth0

The dhclient command sends a DHCPDISCOVER request from the network
interface specified (here, eth0). It then receives an offer (DHCPOFFER) from the
DHCP server (192.168.181.131 in this case) and confirms the IP assignment
to the DHCP server with a dhcp request.

kali >ifconfig
eth0Linkencap:EthernetHWaddr 00:0c:29:ba:82:0f
inet addr:192.168.181.131 Bcast:192.168.181.131 Mask:255.255.255.0

Depending on the configuration of the DHCP server, the IP address
assigned in each case might be different.

Now when you enter ifconfig, you should see that the DHCP server has
assigned a new IP address, a new broadcast address, and new netmask to
your network interface eth0.

Manipulating the Domain Name System
Hackers can find a treasure trove of information on a target in its Domain
Name System (DNS). DNS is a critical component of the internet, and
although it’s designed to translate domain names to IP addresses, a hacker
can use it to garner information on the target.

Examining DNS with dig
DNS is the service that translates a domain name like hackers-arise.com to
the appropriate IP address; that way, your system knows how to get to it.
Without DNS, we would all have to remember thousands of IP addresses
for our favorite websites—no small task even for a savant.

One of the most useful commands for the aspiring hacker is dig, which
offers a way to gather DNS information about a target domain. The stored
DNS information can be a key piece of early reconnaissance to obtain before
attacking. This information could include the IP address of the target’s
nameserver (the server that translates the target’s name to an IP address),
the target’s email server, and potentially any subdomains and IP addresses.

For instance, enter dig hackers-arise.com and add the ns option (short
for nameserver). The nameserver for hackers-arise.com is displayed in the
ANSWER SECTION of Listing 3-3.

34 Chapter 3

kali >dig hackers-arise.com ns
--snip--
;; QUESTION SECTION:
;hackers-arise.com. IN NS

;; ANSWER SECTION:
hackers-arise.com. 5 IN NS ns7.wixdns.net.
hackers-arise.com. 5 IN NS ns6.wixdns.net.

;; ADDITIONAL SECTION:
ns6.wixdns.net. 5 IN A 216.239.32.100
--snip--

Listing 3-3: Using dig and its ns option to get information on a domain nameserver

Also note in the ADDITIONAL SECTION that this dig query reveals the IP
address (216.239.32.100) of the DNS server serving hackers-arise.com. This
section may look slightly different on your system or may not show at all.

You can also use the dig command to get information on email
servers connected to a domain by adding the mx option (mx is short for
mail exchange server). This information is critical for attacks on email sys-
tems. For example, info on the www.hackers-arise.com email servers is shown
in the AUTHORITY SECTION of Listing 3-4.

kali >dig hackers-arise.com mx
--snip--
;; QUESTION SECTION:
;hackers-arise.com. IN MX

;; AUTHORITY SECTION:
hackers-arise.com. 5 IN SOA ns6.wixdns.net. support.wix.com 2016052216
10800 3600 604 800 3600
--snip--

Listing 3-4: Using dig and its mx option to get information on a domain mail exchange
server

The most common Linux DNS server is the Berkeley Internet Name
Domain (BIND). In some cases, Linux users will refer to DNS as BIND, but
don’t be confused: DNS and BIND both map individual domain names to
IP addresses.

Changing Your DNS Server
In some cases, you may want to use another DNS server. To do so, you’ll edit
a plaintext file named /etc/resolv.conf on the system. Open that file in a text
editor—I’m using Leafpad. Then, on your command line, enter the precise
name of your editor followed by the location of the file and the filename.
For example,

kali >leafpad /etc/resolv.conf

Analyzing and Managing Networks 35

will open the resolv.conf file in the /etc directory in my specified graphical
text editor, Leafpad. The file should look something like Figure 3-1.

Figure 3-1: A typical resolv.conf file in a text editor

As you can see on line 3, my nameserver is set to a local DNS server at
192.168.181.2. That works fine, but if I want to replace that DNS server with,
say, Google’s public DNS server at 8.8.8.8, I could place the following line in
the /etc/resolv.conf file to specify the nameserver:

nameserver 8.8.8.8

Then I would just need to save the file. However, you can also achieve the
same result exclusively from the command line by entering the following:

kali >echo "nameserver 8.8.8.8"> /etc/resolv.conf

This command echoes the string nameserver 8.8.8.8 and redirects it (>)
to the file /etc/resolv.conf, replacing the current content. Your /etc/resolv.conf
file should now look like Figure 3-2.

Figure 3-2: Changing the resolv.conf file to specify Google’s DNS server

If you open the /etc/resolv.conf file now, you should see that it points the
DNS requests to Google’s DNS server rather than your local DNS server.
Your system will now go out to the Google public DNS server to resolve
domain names to IP addresses. This can mean domain names take a little
longer to resolve (probably milliseconds). Therefore, to maintain speed but
keep the option of using a public server, you might want to retain the local
DNS server in the resolv.conf file and follow it with a public DNS server. The
operating system queries each DNS server listed in the order it appears in
/etc/resolv.conf, so the system will only refer to the public DNS server if the
domain name can’t be found in the local DNS server.

N O T E 	 If you’re using a DHCP address and the DHCP server provides a DNS setting, the
DHCP server will replace the contents of the file when it renews the DHCP address.

36 Chapter 3

Mapping Your Own IP Addresses
A special file on your system called the hosts file also performs domain name–
IP address translation. The hosts file is located at /etc/hosts, and kind of as with
DNS, you can use it to specify your own IP address–domain name mapping.
In other words, you can determine which IP address your browser goes to
when you enter www.microsoft.com (or any other domain) into the browser,
rather than let the DNS server decide. As a hacker, this can be useful for
hijacking a TCP connection on your local area network to direct traffic to a
malicious web server with a tool such as dnsspoof.

From the command line, type in the following command (you can sub-
stitute your preferred text editor for leafpad):

kali >leafpad /etc/hosts

You should now see your hosts file, which will look something like
Figure 3-3.

Figure 3-3: A default Kali Linux hosts file

By default, the hosts file contains only a mapping for your localhost, at
127.0.0.1, and your system’s hostname (in this case, Kali, at 127.0.1.1). But you
can add any IP address mapped to any domain you’d like. As an example of
how this might be used, you could map www.bankofamerica.com to your local
website, at 192.168.181.131.

127.0.0.1 localhost
127.0.1.1 kali
192.168.181.131 bankofamerica.com

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Make certain you press tab between the IP address and the domain
key—not the spacebar.

As you get more involved in your hacking endeavors and learn about
tools like dnsspoof and Ettercap, you’ll be able to use the hosts file to direct
any traffic on your LAN that visits www.bankofamerica.com to your web server
at 192.168.181.131.

Pretty easy, right?

Analyzing and Managing Networks 37

Summary
Any hacker needs some basic Linux networking skills to connect, analyze,
and manage networks. As you progress, these skills will become more and
more useful for doing reconnaissance, spoofing, and connecting to target
systems.

E X E RCISE S

Before you move on to Chapter 4, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Find information on your active network interfaces.

2.	 Change the IP address on eth0 to 192.168.1.1.

3.	 Change your hardware address on eth0.

4.	 Check whether you have any available wireless interfaces active.

5.	 Reset your IP address to a DHCP-assigned address.

6.	 Find the nameserver and email server of your favorite website.

7.	 Add Google’s DNS server to your /etc/resolv.conf file so your system
refers to that server when it can’t resolve a domain name query with
your local DNS server.

4
A D D I N G A N D R E M O V I N G

S O F T W A R E

One of the most fundamental tasks in
Linux—or any operating system—is add-

ing and removing software. You’ll often
need to install software that didn’t come with

your distribution or remove unwanted software so it
doesn’t take up hard drive space.

Some software requires other software to run, and you’ll sometimes
find that you can download everything you need at once in a software package,
which is a group of files—typically libraries and other dependencies—that
you need for a piece of software to run successfully. When you install a
package, all the files within it are installed together, along with a script
to make loading the software simpler.

In this chapter, we examine three key methods for adding new soft-
ware: apt package manager, GUI-based installation managers, and git.

40 Chapter 4

Using apt to Handle Software
In Debian-based Linux distributions, which include Kali and Ubuntu, the
default software manager is the Advanced Packaging Tool, or apt, whose
primary command is apt-get. In its simplest and most common form, you
can use apt-get to download and install new software packages, but you can
also update and upgrade software with it.

N O T E 	 Many Linux users prefer to use the apt command over apt-get. They are in many ways
similar, but apt-get has more functionality and I think it’s worth learning early on.

Searching for a Package
Before downloading a software package, you can check whether the pack-
age you need is available from your repository, which is a place where your
operating system stores information. The apt tool has a search function that
can check whether the package is available. The syntax is straightforward:

apt-cache search keyword

Note that we use the apt-cache command to search the apt cache, or the
place it stores the package names. So if you were searching for the intrusion
detection system Snort, for example, you would enter the command shown
in Listing 4-1.

kali >apt-cache search snort
fwsnort - Snort-to-iptables rule translator
ippl - IP protocols logger
--snip--
snort - flexible Network Intrusion Detection System
snort-common - flexible Network Intrusion Detection System - common files
--snip--

Listing 4-1: Searching the system with apt-cache for Snort

As you can see, numerous files have the keyword snort in them, but near
the middle of the output we see snort – flexible Network Intrusion Detection
System. That’s what we are looking for!

Adding Software
Now that you know the snort package exists in your repository, you can use
apt-get to download the software.

To install a piece of software from your operating system’s default
repository in the terminal, use the apt-get command, followed by the key-
word install and then the name of the package you want to install. The
syntax looks like this:

apt-get install packagename

Adding and Removing Software 41

Let’s try this out by installing Snort on your system. Enter apt-get
install snort as a command statement, as shown in Listing 4-2.

kali >apt-get install snort
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
snort-doc
The following NEW packages will be installed:
snort
--snip--
Install these packages without verification [Y/n]?

Listing 4-2: Installing Snort with apt-get install

The output you see tells you what is being installed. If everything looks
correct, go ahead and enter y when prompted, and your software installa-
tion will proceed.

Removing Software
When removing software, use apt-get with the remove option, followed by the
name of the software to remove (see Listing 4-3).

kali >apt-get remove snort
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer
required:
 libdaq0 libprelude2 oinkmaster snort-common-libraries snort-rules-default
--snip--
Do you want to continue [Y/n]?

Listing 4-3: Removing Snort with apt-get remove

Again, you’ll see the tasks being done in real time and you will be
asked whether you want to continue. You can enter y to uninstall, but you
might want to keep Snort since we’ll be using it again. The remove command
doesn’t remove the configuration files, which means you can reinstall the
same package in the future without reconfiguring.

If you do want to remove the configuration files at the same time as the
package, you can use the purge option, as shown in Listing 4-4.

kali >apt-get purge snort
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 libdaq0 libprelude2 oinkmaster snort-common-libraries snort-rules-default

42 Chapter 4

--snip--
Do you want to continue [Y/n]?

Listing 4-4: Removing Snort and the accompanying configuration files with apt-get purge

Simply enter Y at the prompt to continue the purge of the software
package and the configuration files.

You may have noticed the line The following packages were automatically
installed and are no longer required in the output. To keep things small and
modular, many Linux packages are broken into software units that many
different programs might use. When you installed Snort, you installed sev-
eral dependencies or libraries with it that Snort requires in order to run.
Now that you’re removing Snort, those other libraries or dependencies are
no longer required, so they can be removed by running apt autoremove.

kali > apt autoremove snort
Reading Package lists...Done
Building dependency tree
Reading state information ...done
--snip--
Removing snort-common-libaries (2.9.7.0-5)...
Removing libdaq2 (2.04-3+b1) …
Removing oikmaster (2.0-4)
--snip--

Updating Packages
Software repositories will be periodically updated with new software or new
versions of existing software. These updates don’t reach you automatically,
so you have to request them in order to apply these updates to your own sys-
tem. Updating isn’t the same as upgrading : updating simply updates the list
of packages available for download from the repository, whereas upgrading
will upgrade the package to the latest version in the repository.

You can update your individual system by entering the apt-get command
followed by the keyword update. This will search through all the packages on
your system and check whether updates are available. If so, the updates are
downloaded (see Listing 4-5).

kali >apt-get update
Get:1 http://mirrors.ocf.berkeley.edu/kali kali-rolling InRelease [30.5kb]
Get:2 http://mirrors.ocf.berkeley.edu/kali kali-rolling/main amd64 Packages [14.9MB]
Get:3 http://mirrors.ocf.berkeley.edu/kali kali-rolling non-free amd64 Packages [163kb]
Get:4 http://mirrors.ocf.berkeley.edu/kali kali-rolling/contrib amd64 Packages [107 kB]
Fetched 15.2 MB in 1min 4s (236 kB/s)
Reading package lists... Done

Listing 4-5: Updating all out-of-date packages with apt-get update

The list of available software in the repository on your system will be
updated. If the update is successful, your terminal will state Reading package

Adding and Removing Software 43

lists... Done, as you can see in Listing 4-5. Note that the name of the reposi-
tory and the values—time, size, and so on—might be different on your
system.

Upgrading Packages
To upgrade the existing packages on your system, use apt-get upgrade.
Because upgrading your packages may make changes to your software, you
must be logged in as root before entering apt-get upgrade. This command
will upgrade every package on your system that apt knows about, meaning
only those stored in the repository (see Listing 4-6). Upgrading can be
time-consuming, so you might not be able to use your system for a while.

kali >apt-get upgrade
Reading package lists... Done
Building dependency tree... Done
Calculating upgrade... Done
The following packages were automatically installed and no longer required:
--snip--
The following packages will be upgraded:
--snip--
1101 upgraded, 0 newly installed, 0 to remove and 318 not upgraded.
Need to get 827 MB of archives.
After this operation, 408 MB disk space will be freed.
Do you want to continue? [Y/n]

Listing 4-6: Upgrading all out-of-date packages with apt-get upgrade

You should see in the output that your system estimates the amount of
hard drive space necessary for the software package. Go ahead and enter Y
if you want to continue and have enough hard drive space for the upgrade.

Adding Repositories to Your sources.list File
The servers that hold the software for particular distributions of Linux are
known as repositories. Nearly every distribution has its own repositories of
software—developed and configured for that distribution—that might not
work well, or at all, with other distributions. Although these repositories
often contain the same or similar software, they aren’t identical, and they
sometimes have different versions of the same software or entirely different
software.

You will, of course, be using the Kali repository, which has a large
amount of security and hacking software. But because Kali specializes in
security and hacking, it doesn’t include some specialty software and tools
and even some run-of-the-mill software. It’s worth adding a backup reposi-
tory or two that your system can search through in case it doesn’t find it a
specific software in the Kali repository.

The repositories your system will search for software are stored in the
sources.list file, and you can alter this file to define from which repositories
you want to download software. I often add the Ubuntu repositories after

44 Chapter 4

the Kali repositories in my sources.list file; that way, when I request to down-
load a new software package, if it isn’t in the Kali repository, my system may
find it in the Ubuntu repository.

You can find the sources.list file at /etc/apt/sources.list and open it with any
text editor. I’ll again be using Leafpad. To open the sources.list file, enter the
following into your terminal, replacing leafpad with the name of your editor:

kali >leafpad /etc/apt/sources.list

After entering this command, you should see a window like the one in
Figure 4-1, with a list of Kali’s default repositories.

Figure 4-1: Kali’s default repositories in sources.list

Many Linux distributions divide repositories into separate categories.
For instance, Debian breaks out its repository categories as follows:

main  Contains supported open source software

universe  Contains community-maintained open source software

multiverse  Contains software restricted by copyright or other legal
issues

restricted  Contains proprietary device drivers

backports  Contains packages from later releases

I don’t recommend using testing, experimental, or unstable reposito-
ries in your sources.list because they can download problematic software to
your system. Software that isn’t fully tested might break your system.

When you ask to download a new software package, the system looks
through your repositories listed in sources.list and selects the most recent
version of the desired package. Check first that the repository is compatible
for your system. Kali, like Ubuntu, is built on Debian, so these repositories
work pretty well with each of these systems.

To add a repository, just edit the sources.list file by adding the name of
the repository to the list and then save the file. Say, for example, you want
to install Oracle Java 8 on Kali. No apt package for Oracle Java 8 is available
as part of the default Kali sources, but a quick search online shows that the
fine folk at WebUpd8 have created one. If you add their repository to the

Adding and Removing Software 45

sources, you can then install Oracle Java 8 with the apt-get install oracle
-java8-installer command. At the time of writing, you would need to add
the following repository locations to sources.list in order to add the necessary
repositories:

deb http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main
deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu precise main

Using a GUI-based Installer
Newer versions of Kali no longer include a GUI-based software installation
tool, but you can always install one with the apt-get command. The two
most common GUI-based installation tools are Synaptic and Gdebi. Let’s
install Synaptic and use it to install our Snort package:

kali >apt-get install synaptic
Reading package lists... Done
Building dependency tree
Reading state information... Done
--snip--
Processing triggers for menu (2.1.47)...
kali >

Once you have Synaptic installed, you can start it by entering synaptic at
the command line prompt or from the GUI by going to Settings4Synaptic
Package Manager, which should open a window like the one in Figure 4-2.

Figure 4-2: The Synaptic Package Manager interface

46 Chapter 4

Now you can search for the package you’re looking for. Simply click
the Search tab to open a search window. Because you are looking for Snort
again, enter snort into the search window and click Search. Scroll down the
search results to find the package you’re looking for. Check the box next to
snort and then click the Apply tab, as shown in Figure 4-3. Synaptic will now
download and install Snort from the repository along with any necessary
dependencies.

Figure 4-3: Downloading Snort from the Synaptic Package Manager

Installing Software with git
Sometimes the software you want isn’t available in any of the repositories—
especially if it’s brand new—but it may be available on github (https://www
.github.com/), a site that allows developers to share their software with others
to download, use, and provide feedback. For instance, if you want bluediv-
ing, a Bluetooth hacking and pentesting suite, and can’t find it in the Kali
repository, you can search github for the software by entering bluediving
into the search bar. If it exists on github, you should see the repository for
it in the search results.

Once you’ve found the software on github, you can install it from the
terminal by entering the git clone command followed by its github URL.
For instance, bluediving is located at https://www.github.com/balle/bluediving
.git. To clone it into your system, enter the command shown in Listing 4-7.

kali >git clone https://www.github.com/balle/bluediving.git
Cloning into 'bluediving'...
remote: Counting objects: 131, Done.
remote: Total 131 (delta 0), reused 0 (delta 0), pack-reused 131
Receiving objects: 100% (131/131), 900.81 KiB | 646.00 KiB/s, Done.

https://www.github.com/balle/bluediving.git
https://www.github.com/balle/bluediving.git

Adding and Removing Software 47

Resolving deltas: 100% (9/9), Done.
Checking connectivity... Done.

Listing 4-7: Cloning bluediving with git clone

The git clone command copies all the data and files from that location
onto your system. You can check to see that they’ve been successfully down-
loaded by using the long listing command ls –l on the target directory,
like so:

kali >ls -l

If you’ve successfully cloned bluediving to your system, you should see
something like the following output:

total 80
drwxr-xr-x 7 root root 4096 Jan 10 22:19 bluediving
drwxr-xr-x 2 root root 4096 Dec 5 11:17 Desktop
drwxr-xr-x 2 root root 4096 Dec 5 11:17 Documents
drwxr-xr-x 2 root root 4096 Dec 5 11:17 Downloads
drwxr-xr-x 2 root root 4096 Dec 5 11:17 Music
--snip--

As you can see, bluediving has been successfully cloned to the system,
and a new directory named bluediving has been created for its files.

Summary
In this chapter, you learned a few of the many ways to download and install
new software on your Linux system. Software package managers (like apt),
GUI-based installers, and git clones are the most common and crucial
methods for an aspiring hacker to know. You’ll soon find yourself becom-
ing familiar with each of them.

E X E RCISE S

Before you move on to Chapter 5, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Install a new software package from the Kali repository.

2.	 Remove that same software package.

3.	 Update your repository.

4.	 Upgrade your software packages.

5.	 Select a new piece of software from github and clone it to your system.

5
C O N T R O L L I N G F I L E A N D

D I R E C T O R Y P E R M I S S I O N S

Not every user of a single operating system
should have the same level of access to files

and directories. Like any professional or
enterprise-level operating system, Linux has

methods for securing file and directory access. This
security system allows the system administrator—the
root user—or the file owner to protect their files from
unwanted access or tampering by granting select users permissions to read,
write, or execute files. For each file and directory, we can specify the per-
mission status for the file’s owner, for particular groups of users, and for
all other users. This is a necessity in a multiuser, enterprise-level operating
system. The alternative would be quite chaotic.

In this chapter, I’ll show you how to check for and change permissions
on files and directories for select users, how to set default file and directory
permissions, and how to set special permissions. Finally, you will see how a
hacker’s understanding of permissions might help them exploit a system.

50 Chapter 5

Different Types of Users
As you know, in Linux, the root user is all-powerful. The root user can do
basically anything on the system. Other users on the system have more lim-
ited capabilities and permissions and almost never have the access that the
root user has.

These other users are usually collected into groups that generally share
a similar function. In a commercial entity, these groups might be finance,
engineering, sales, and so on. In an IT environment, these groups might
include developers, network administrators, and database administrators.
The idea is to put people with similar needs into a group that is granted
relevant permissions; then each member of the group inherits the group
permissions. This is primarily for the ease of administering permissions
and, thus, security.

The root user is part of the root group by default. Each new user on the
system must be added to a group in order to inherit the permissions of that
group.

Granting Permissions
Each and every file must be allocated a particular level of permission
for the different identities using it. The three levels of permission are as
follows:

r  Permission to read. This grants permission only to open and view
a file.

w  Permission to write. This allows users to view and edit a file.

x  Permission to execute. This allows users to execute a file (but not
necessarily view or edit it).

In this way, the root user can grant users a level of permission depend-
ing on what they need the files for. When a file is created, typically the user
who created it is the owner of the file, and the owning group is the user’s
current group. The owner of the file can grant various access privileges to
it. Let’s look at how to change permissions to pass ownership to individual
users and to groups.

Granting Ownership to an Individual User
To move ownership of a file to a different user so that they have the ability
to control permissions, we can use the chown (or change owner) command:

kali >chown ubob v/tmp/bobsfile

Here, we give the command, the name of the user we are giving owner-
ship to, and then the location and name of the relevant file. This command
grants the user account for Bob u ownership of bobsfile v.

Controlling File and Directory Permissions 51

Granting Ownership to a Group
To transfer ownership of a file from one group to another, we can use the
chgrp (or change group) command.

Hackers are often more likely to work alone than in groups, but it’s not
unheard of for several hackers or pentesters work together on a project, and
in that case, using groups is necessary. For instance, you might have a group
of pentesters and a group of security team members working on the same
project. The pentesters in this example are the root group, meaning they
have all permissions and access. The root group needs access to the hack-
ing tools, whereas the security folk only need access to defensive tools such
as an intrusion detection system (IDS). Let’s say the root group downloads
and installs a program named newIDS; the root group will need to change
the ownership to the security group so the security group can use it at will.
To do so, the root group would simply enter the following command:

kali >chgrp usecurity vnewIDS

This command passes the security group u ownership of newIDS v.
Now you need to know how to check whether these allocations have

worked. You’ll do that by checking a file’s permissions.

Checking Permissions
When you want to find out what permissions are granted to what users for
a file or directory, use the ls command with the –l (long) switch to display
the contents of a directory in long format—this list will contain the permis-
sions. In Listing 5-1, I use the ls –l command on the file /usr/share/hashcat
(one of my favorite password-cracking tools) in order to see what we can
learn about the files there.

kali >ls –l /usr/share/hashcat
total 32952
u v  w  x y    z {
drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets
-rw-r--r-- 1 root root 33685504 June 28 2018 hashcat.hcstat
-rw-r--r-- 1 root root 33685504 June 28 2018 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

Listing 5-1: Checking a file’s permissions with the long listing command

On each line, we get information about:

u  The file type (this is the first character listed)

v  The permissions on the file for owner, groups, and users, respectively
(this is the rest of this section)

w  The number of links (This topic is beyond the scope of the book.)

52 Chapter 5

x  The owner of the file

y  The size of the file in bytes

z  When the file was created or last modified

{  The name of the file

For now, let’s focus on the seemingly incomprehensible strings of letters
and dashes on the left edge of each line. They tell us whether an item is a
file or directory and what permissions, if any, are on it.

The first character tells you the file type, where d stands for a directory
and a dash (–) indicates a file. These are the two most common file types.

The next section defines the permissions on the file. There are three sets
of three characters, made of some combination of read (r), write (w), and
execute (x), in that order. The first set represents the permissions of the
owner; the second, those of the group; and the last, those of all other users.

Regardless of which set of three letters you’re looking at, for files, if
you see an r first, that user or group of users has permission to open and
read that file or directory. A w as the middle letter means they can write to
(modify) the file, and an x at the end means they can execute (or run) the
file or access the directory. If any r, w, or x is replaced with a dash (-), then
the respective permission hasn’t been given. Note that users can have per-
mission to execute only either binaries or scripts.

Let’s use the third line of output in Listing 5-1 as an example:

-rw-r--r-- 1 root root 33685504 June 28 2018 hashcat.hcstat

The file is called, as we know from the right end of the line, hashcat.hcstat.
After the initial – (which indicates it’s a file), the permissions rw- tell us that
the owner has read and write permissions but not execute permission.

The next set of permissions (r--) represents those of the group and
shows that the group has read permission but not write or execute permis-
sions. And, finally, we see that the rest of the users also have only read per-
mission (r--).

These permissions aren’t set in stone. As a root user or file owner, you
can change them. Next, we’ll do just that.

Changing Permissions
We can use the Linux command chmod (or change mode) to change the per-
missions. Only a root user or the file’s owner can change permissions.

In this section, we use chmod to change permissions on hashcat.hcstat
using two different methods. First we use a numerical representation of
permissions, and then we use a symbolic representation.

Changing Permissions with Decimal Notation
We can use a shortcut to refer to permissions by using a single number
to represent one rwx set of permissions. Like everything underlying the

Controlling File and Directory Permissions 53

operating system, permissions are represented in binary, so ON and OFF
switches are represented by 1 and 0, respectively. You can think of the
rwx permissions as three ON/OFF switches, so when all permissions are
granted, this equates to 111 in binary.

A binary set like this is then easily represented as one digit by convert-
ing it into octal, an eight-digit number system that starts with 0 and ends
with 7. An octal digit represents a set of three binary digits, meaning we
can represent an entire rwx set with one digit. Table 5-1 contains all possible
permission combinations and their octal and binary representatives.

Table 5-1: Octal and Binary
Representations of Permissions

Binary Octal rwx

000 0 ---

001 1 --x

010 2 -w-

011 3 -wx

100 4 r--

101 5 r-x

110 6 rw-

111 7 rwx

Using this information, let’s go through some examples. First, if we
want to set only the read permission, we could consult Table 5-1 and locate
the value for read:

r w x
4 - -

Next, if we want to set the permission to wx, we could use the same
methodology and look for what sets the w and what sets the x:

r w x
- 2 1

Notice in Table 5-1 that the octal representation for -wx is 3, which not
so coincidently happens to be the same value we get when we add the two
values for setting w and x individually: 2 + 1 = 3.

Finally, when all three permissions are on, it looks like this:

r w x
4 2 1

And 4 + 2 + 1 = 7. Here, we see that in Linux, when all the permission
switches are on, they are represented by the octal equivalent of 7.

54 Chapter 5

So, if we wanted to represent all permissions for the owner, group, and
all users, we could write it as follows:

7 7 7

Here’s where the shortcut comes in. By passing chmod three octal digits
(one for each rwx set), followed by a filename, we can change permissions on
that file for each type of user. Enter the following into your command line:

kali >chmod 774 hashcat.hcstat

Looking at Table 5-1, we can see that this statement gives the owner all
permissions, the group all permissions, and everyone else (other) only the
read permission.

Now we can see whether those permissions have changed by running
ls -l on the directory and looking at the hashcat.hcstat line. Navigate to the
directory and run that command now:

kali >ls -l
total 32952
drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets

u -rwxrwxr-- 1 root root 33685504 June 28 2018 hashcat.hcstat
-rw-r--r-- 1 root root 33685504 June 28 2018 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

You should see -rwxrwxr-- on the left side of the hashcat.hcstat line u.
This confirms that the chmod call successfully changed permissions on the
file to give both the owner and the group the ability to execute the file.

Changing Permissions with UGO
Although the numeric method is probably the most common method for
changing permissions in Linux, some people find chmod’s symbolic method
more intuitive—both methods work equally well, so just find the one that
suits you. The symbolic method is often referred to as the UGO syntax,
which stands for user (or owner), group, and others.

UGO syntax is very simple. Enter the chmod command and then the users
you want to change permissions for, providing u for user, g for group, or o for
others, followed by one of three operators:

-  Removes a permission

+  Adds a permission

=  Sets a permission

After the operator, include the permission you want to add or remove
(rwx) and, finally, the name of the file to apply it to.

Controlling File and Directory Permissions 55

So, if you want to remove the write permission from the user that the
file hashcat.hcstat belongs to, you could enter the following:

kali >chmod u-w hashcat.hcstat

This command says to remove (-) the write (w) permission from hashcat
.hcstat for the user (u).

Now when you check the permissions with ls –l again, you should see
that the hashcat.hcstat file no longer has write permission for the user:

kali >ls -l
total 32952
drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets
-r-xr-xr-- 1 root root 33685504 June 28 2018 hashcat.hcstat
-rw-r--r-- 1 root root 33685504 June 28 2018 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

You can also change multiple permissions with just one command. If
you want to give both the user and other users (not including the group)
execute permission, you could enter the following:

kali >chmod u+x, o+x hashcat.hcstat

This command tells Linux to add the execute permission for the user
as well as the execute permission for others for the hashcat.hcstat file.

Giving Root Execute Permission on a New Tool
As a hacker, you’ll often need to download new hacking tools, but Linux
automatically assigns all files and directories default permissions of 666 and
777, respectively. This means that, by default, you won’t be able to execute a
file immediately after downloading it. If you try, you’ll usually get a message
that says something like “Permission denied.” For these cases, you’ll need to
give yourself root and execute permissions using chmod in order to execute
the file.

For example, say we download a new hacker tool called newhackertool
and place it into the root user’s directory (/).

kali >ls -l
total 80
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Desktop
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Documents
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Downloads
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Music
-rw-r--r-- 1 root root 1072 Dec 5 11.17 newhackertoolu
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Pictures

56 Chapter 5

drwxr-xr-x 7 root root 4096 Dec 5 11.17 Public
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Templates
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Videos

We can see newhackertool at u, along with the rest of the contents of the
root directory. We can see that our newhackertool doesn’t have execute per-
mission for anyone. This makes it impossible to use. It might seem strange
that by default, Linux won’t let you execute a file you downloaded, but over-
all this setting makes your system more secure.

We can give ourselves permission to execute newhackertool by entering
the following:

kali >chmod 766 newhackertool

Now, when we perform a long listing on the directory, we can see that
our newhackertool has execute permission for the owner:

kali >chmod 766 newhackertool
kali >ls -l
total 80

--snip--
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Music
-rwxrw-rw- 1 root root 1072 Dec 5 11.17 newhackertool
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Pictures
--snip--

As you now understand, this grants us (as the owner) all permissions,
including execute, and grants the group and everyone else only read and
write permissions (4 + 2 = 6).

Setting More Secure Default Permissions with Masks
As you have seen, Linux automatically assigns base permissions—usually
666 for files and 777 for directories. You can change the default permissions
allocated to files and directories created by each user with the umask (or user
file-creation mask) method. The umask method represents the permissions
you want to remove from the base permissions on a file or directory to make
them more secure.

The umask is a three-digit octal number corresponding to the three
permissions digits, but the umask number is subtracted from the permissions
number to give the new permissions status. This means that when a new file
or directory is created, its permissions are set to the default value minus the
value in umask, as shown in Figure 5-1.

Controlling File and Directory Permissions 57

Resulting permissions

umask

6 6 6

0 2 2

6 4 4

New files

−

7 7 7

0 2 2

7 5 5

New directories

−
Linux base permissions

Figure 5-1: How a umask value of 022 affects the permissions
on new files and directories

For example, if the umask is set to 022, a new file with the original default
permissions of 666 will now have the permissions 644, meaning the owner
has both read and write permissions, and the group and all other users
have only read permission.

In Kali, as with most Debian systems, the umask is preconfigured to 022,
meaning the Kali default is 644 for files and 755 for directories.

The umask value is not universal to all users on the system. Each user
can set a personal default umask value for the files and directories in their
personal .profile file. To see the current value when logged on as the user,
simply enter the command umask and note what is returned. To change the
umask value for a user, edit the file /home/username/.profile and, for example,
add umask 007 to set it so only the user and members of the user’s group have
permissions.

Special Permissions
In addition to the three general-purpose permissions, rwx, Linux has three
special permissions that are slightly more complicated. These special per-
missions are set user ID (or SUID), set group ID (or SGID), and sticky bit. I’ll
discuss each in turn in the next three sections.

Granting Temporary Root Permissions with SUID
As you should know by now, a user can execute a file only if they have per-
mission to execute that particular file. If the user only has read and/or
write permissions, they cannot execute. This may seem straightforward,
but there are exceptions to this rule.

You may have encountered a case in which a file requires the permis-
sions of the root user during execution for all users, even those who are not
root. For example, a file that allows users to change their password would
need access to the /etc/shadow file—the file that holds the users’ passwords
in Linux—which requires root user privileges in order to execute. In such a
case, you can temporarily grant the owner’s privileges to execute the file by
setting the SUID bit on the program.

Basically, the SUID bit says that any user can execute the file with the per-
missions of the owner but those permissions don’t extend beyond the use of
that file.

58 Chapter 5

To set the SUID bit, enter a 4 before the regular permissions, so a file
with a new resulting permission of 644 is represented as 4644 when the SUID
bit is set.

Setting the SUID on a file is not something a typical user would do, but if
you want to do so, you’ll use the chmod command, as in chmod 4644 filename.

Granting the Root User’s Group Permissions SGID
SGID also grants temporary elevated permissions, but it grants the permissions
of the file owner’s group, rather than of the file’s owner. This means that,
with an SGID bit set, someone without execute permission can execute a file if
the owner belongs to the group that has permission to execute that file.

The SGID bit works slightly differently when applied to a directory: when
the bit is set on a directory, ownership of new files created in that directory
goes to the directory creator’s group, rather than the file creator’s group.
This is very useful when a directory is shared by multiple users. All users in
that group can execute the file(s), not just a single user.

The SGID bit is represented as 2 before the regular permissions, so a new
file with the resulting permissions 644 would be represented as 2644 when
the SGID bit is set. Again, you would use the chmod command for this—for
example, chmod 2644 filename.

The Outmoded Sticky Bit
The sticky bit is a permission bit that you can set on a directory to allow a
user to delete or rename files within that directory. However, the sticky bit
is a legacy of older Unix systems, and modern systems (like Linux) ignore
it. As such, I will not discuss it further here, but you should be familiar with
the term because you might hear it in the Linux world.

Special Permissions, Privilege Escalation, and the Hacker
As a hacker, these special permissions can be used to exploit Linux systems
through privilege escalation, whereby a regular user gains root or sysadmin
privileges and the associated permissions. With root privileges, you can do
anything on the system.

One way to do this is to exploit the SUID bit. A system administrator or
software developer might set the SUID bit on a program to allow that pro-
gram access to files with root privileges. For instance, scripts that need to
change passwords often have the SUID bit set. You, the hacker, can use that
permission to gain temporary root privileges and do something malicious,
such as get access to the passwords at /etc/shadow.

Let’s look for files with the SUID bit set on our Kali system to try this
out. Back in Chapter 1, I introduced you to the find command. We’ll use
its power to find files with the SUID bit set.

As you’ll remember, the find command is powerful, but the syntax is
bit more complicated than some of the other location commands, such as
locate and which. Take a moment to review the find syntax in Chapter 1, if
you need to.

Controlling File and Directory Permissions 59

In this case, we want to find files anywhere on the filesystem, for the
root user or other sysadmin, with the permissions 4000. To do this, we can
use the following find command:

kali >find / -user root -perm -4000

With this command, we ask Kali to start looking at the top of the file-
system with the / syntax. It then looks everywhere below / for files that are
owned by root, specified with user root, and that have the SUID permission
bit set (-perm -4000).

When we run this command, we get the output shown in Listing 5-2.

/usr/bin/chsh
/usr/bin/gpasswd
/usr/bin/pkexec
/usr/bin/sudo
/usr/bin/passwd
/usr/bin/kismet_capture
--snip--

Listing 5-2: Finding files with the SUID bit set

The output reveals numerous files that have the SUID bit set. Let’s navi-
gate to the /usr/bin directory, where many of these files reside, and then run
a long listing on that directory and scroll down to the sudo file, as shown in
Listing 5-3.

kali >cd /usr/bin
kali >ls -l
--snip--
-rwxr-xr-x 1 root root 176272 Jul 18 2018 stunnel4
-rwxr-xr-x 1 root root 26696 Mar 17 2018 sucrack

u -rwsr-xr-x 1 root root 140944 Jul 5 2018 sudo
--snip--

Listing 5-3: Identifying files with the SUID bit set

Note that at u, the first set of permissions—for the owner—has an s
in place of the x. This is how Linux represents that the SUID bit is set. This
means that anyone who runs the sudo file has the privileges of the root user,
which can be a security concern for the sysadmin and a potential attack vec-
tor for the hacker. For instance, some applications need to access the /etc/
shadow file to successfully complete their tasks. If the attacker can gain con-
trol of that application, they can use that application’s access to the pass-
words on a Linux system.

Linux has a well-developed system of security that protects files and
directories from unauthorized access. The aspiring hacker needs to have a
basic understanding of this system not only to protect their files but also to
execute new tools and files. In some cases, hackers can exploit the SUID and
SGID permissions to escalate privileges from a regular user to a root user.

60 Chapter 5

Summary
Linux’s use of permissions to protect a user’s or group’s files and directories
from other users in the system can be used for offensive and defensive pur-
poses. You should now know how to manage these permissions and how to
exploit weak points in this security system—in particular, SUID and SGID bits.

E X E RCISE S

Before you move on to Chapter 6, put the knowledge you learned from this
chapter to the test by completing the following exercises:

1.	 Select a directory and run a long listing on it. Note the permissions on the
files and directories.

2.	 Select a file you don’t have permission to execute and give yourself execute
permissions using the chmod command. Try using both the numeral method
(777) and the UGO method.

3.	 Choose another file and change its ownership using chown.

4.	 Use the find command to find all files with the SGID bit set.

6
P R O C E S S M A N A G E M E N T

At any given time, a Linux system typically
has hundreds, or sometimes even thousands,

of processes running simultaneously. A process
is simply a program that’s running and using

resources. Examples of a process include a terminal,
web server, any running commands, any databases, the
GUI interface, and much more. Any good Linux administrator—and par­
ticularly a hacker—needs to understand how to manage their processes to
optimize their systems. For example, once a hacker takes control of a target
system, they might want to find and stop a certain process, like an antivirus
application or firewall. To do so, the hacker would first need to know how to
find the process. The hacker might also want to set a scanning script to run
periodically to find vulnerable systems, so we’ll also look at how to schedule
such a script.

In this chapter, you’ll learn to manage those processes. First, you’ll
learn to view and find processes and how to discover which processes
are using the most resources. Then, you’ll learn to manage processes by

62 Chapter 6

running them in the background, prioritizing them, and killing them if
necessary (no blood involved). Finally, you’ll learn to schedule processes to
run on specified days and dates and at specific times.

Viewing Processes
In most cases, the first step in managing processes is to view what processes
are running on your system. The primary tool for viewing processes—and
one of the Linux administrator’s best friends—is the ps command. Run it in
your command line to see what processes are active:

kali >ps
PID TTY TIME CMD
39659 pts/0 00:00:01 bash
39665 pts/0 00:00:00 ps

The Linux kernel, the inner core of the operating system that con­
trols nearly everything, assigns a unique process ID (PID) to each process
sequentially, as the processes are created. When working with these processes
in Linux, you often need to specify their PIDs, so it is far more important to
note the PID of the process than the name of the process.

Alone, the ps command doesn’t really provide you with much infor­
mation. Running the ps command without any options lists the processes
started (said to be invoked) by the currently logged-in user (in our case,
root) and what processes are running on that terminal. Here, it simply says
that the bash shell is open and running and that we ran the ps command.
We want and need far more information than that, particularly on those
processes run by other users and by the system in the background. Without
this information, we know very little of what is actually taking place on our
system.

Running the ps command with the options aux will show all processes
running on the system for all users, as shown in Listing 6-1. Note that you
don’t prefix these options with a dash (-) and that everything is in lower­
case; because Linux is case-sensitive, using uppercase options would give
you significantly different results.

kali >ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.4 202540 6396 ? Ss Apr24 0:46 /sbin/init
root 2 0.0 0.0 0 0 ? S Apr24 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Apr24 0:26 [ksoftirqd/0]
--snip--
root 39706 0.0 0.2 36096 3204 pts/0 R+ 15:05 0:00 ps aux

Listing 6-1: Using the aux options to see processes for all users

As you can see, this command now lists so many processes, they likely
run off the bottom of your screen. The first process is init, listed in the

Process Management 63

final column, and the last process is the command we ran to display, ps aux.
Many of the details (PID, %CPU, TIME, COMMAND, and so on) may be different on
your system but should have the same format. For our purposes, here are
the most important columns in this output:

USER  The user who invoked the process

PID  The process ID

%CPU  The percent of CPU this process is using

%MEM  The percent of memory this process is using

COMMAND  The name of the command that started the process

In general, to perform any action on a process, we must specify its PID.
Let’s see how to use this identifier to our advantage.

Filtering by Process Name
When we inquire about or perform an action on processes, we usually don’t
want all of the processes displayed on the screen. It’s simply a problem of
too much information. Most often, we want to find information on a single
process. To do so, we can use the filtering command grep, which I intro­
duced in Chapter 1.

To demonstrate, we’ll use the Metasploit exploitation framework, the
most widely used exploitation framework and nearly every hacker’s good
friend. This comes installed on your Kali system, so start Metasploit with
the following:

kali >msfconsole

Once the exploitation framework has been started, let’s see whether
we can find it in the list of processes. Metasploit has now taken over this
terminal, so open another terminal. Now, use the ps aux command and
then pipe it (|) to grep looking for the string msfconsole, as in Listing 6-2.

kali >ps aux | grep msfconsole
1:36 ruby /usr/bin/msfconsole
root 39892 0.0 0.0 4304 940 pts/2 S+ 15:18 0:00 grep msfconsole

Listing 6-2: Filtering a ps search to find a particular process

From the filtered output in this listing, you should see all the processes
that match the term msfconsole. Here, you see the msfconsole program itself
from /usr/bin/msfconsole, and then you should see the grep command you
used to look for msfconsole. Notice that the output did not include the column
header list from ps. Since the keyword, msfconsole, is not in the header, it is not
displayed. Even so, the results are displayed in the same format.

From this, you can learn some important information. If, for example,
you need to know how many resources Metasploit is using, you can consult

64 Chapter 6

the third column (the CPU column), to see that it’s using 35.1 percent of
your CPU, and consult the fourth column to see that it’s using 15.2 percent
of your system memory. That’s quite a bit. It’s a demanding beast!

Finding the Greediest Processes with top
When you enter the ps command, the processes are displayed in the order
they were started, and since the kernel assigns PIDs in the order they have
started, what you see are processes ordered by PID number.

In many cases, we want to know which processes are using the most
resources. This is where the top command comes in handy because it dis­
plays the processes ordered by resources used, starting with the largest.
Unlike the ps command, which gives us a one-time snapshot of the pro­
cesses, top refreshes the list dynamically—by default, every 3 seconds.
You can watch and monitor those resource-hungry processes, as shown in
Listing 6-3.

kali >top
top - 15:31:17 up 2 days, 6:50, 4 users, load average: 0.00, 0.04, 0.09
Tasks: 176 total, 1 running, 175 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.3 us, 0.7 sy, 0.0 ni, 97.4 id, 0.0 wa, 0.0 hi 0.0 si 0.0
MiB Mem : 1491220 total, 64848 free, 488272 used, 938100 buff/cache
MiB Swap : 1046524 total, 1044356 free, 2168 used. 784476 avail MEM

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
39759 root 20 0 893180 247232 11488 S 0.7 16.6 1:47.88 ruby
39859 root 20 0 27308 16796 14272 S 0.3 1.2 1:47.88 postgres
39933 root 20 0 293936 61500 29108 S 0.7 4.1 1:47.88 Xorg
--snip--

Listing 6-3: Finding the greediest processes with top

System administrators often keep top running in a terminal to monitor
use of process resources. As a hacker, you may want to do the same, espe­
cially if you have multiple tasks running on your system. While you have
top running, pressing the H or ? key will bring up a list of interactive com­
mands, and pressing Q will quit top. You’ll use top again soon to manage
your processes in “Changing Process Priority with nice” on page 65 and
“Killing Processes” on page 66.

Managing Processes
Hackers often need to multiprocess, and an operating system like Kali is
ideal for this. The hacker may have a port scanner running while running
a vulnerability scanner and an exploit simultaneously. This requires that
the hacker manage these processes efficiently to best use system resources
and complete the task. In this section, I'll show you how to manage multiple
processes.

Process Management 65

Changing Process Priority with nice
You don’t often hear the word nice used in the context of hackers, but here
you will. The nice command is used to influence the priority of a process to
the kernel. As you saw when we ran the ps command, numerous processes
run on the system at once, and all of them are contending for the available
resources. The kernel will have final say over the priority of a process, but
you can use nice to suggest that a process should be elevated in priority.

The idea behind the use of the term nice is that, when you use it, you’re
determining how “nice” you’ll be to other users: if your process is using most
of the system resources, you aren’t being very nice.

The values for nice range from −20 to +19, with zero being the default
value (see Figure 6-1). A high nice value translates to a low priority, and a
low nice value translates to a high priority (when you’re not being so nice
to other users and processes). When a process is started, it inherits the nice
value of its parent process. The owner of the process can lower the priority
of the process but cannot increase its priority. Of course, the superuser or
root user can arbitrarily set the nice value to whatever they please.

0−20 +19

Default
nice value

Least likely to
receive priority

Most likely to
receive priority

Figure 6-1: Niceness priority values

When you start a process, you can set the priority level with the nice
command and then alter the priority after the process has started run­
ning with the renice command. The syntax for these two commands is
slightly different and can be confusing. The nice command requires that
you increment the nice value, whereas the renice command wants an absolute
value for niceness. Let’s look at an example to demonstrate this.

Setting the Priority When Starting a Process

For demonstration purposes, let’s assume we have a process named
slowprocess that’s located at /bin/slowprocess. If we wanted it to speed up
its completion, we could start the process with the nice command:

kali >nice -n -10 /bin/slowprocess

This command would increment the nice value by -10, increasing its
priority and allocating it more resources.

On the other hand, if we want to be nice to our fellow users and pro­
cesses and give slowprocess a lower priority, we could increment its nice value
positively by 10:

kali >nice -n 10 /bin/slowprocess

66 Chapter 6

Give this a try on a process you have currently running and then run ps
to see how it changes, if at all.

Changing the Priority of a Running Process with renice

The renice command takes absolute values between –20 and 19 and sets
the priority to that particular level, rather than increasing or decreasing
from the level at which it started. In addition, renice requires the PID of the
process you are targeting rather than the name. So, if slowprocess is using
an inordinate amount of resources on your system and you want to give it
a lower priority, thus allowing other processes a higher priority and more
resources, you could renice the slowprocess (which has a PID of 6996) and
give it a much higher nice value, like so:

kali >renice 19 6996

As with nice, only the root user can renice a process to a negative value
to give it higher priority, but any user can be nice and reduce priority with
renice.

You can also use the top utility to change the nice value. With the top
utility running, simply press the R key and then supply the PID and the nice
value. Listing 6-4 shows the top utility running. When I press the R key and
supply the PID and nice value, I get the following output:

top - 21:36:56 up 21:41, 2 users, load average: 0.60, 0.22, 0.11
Tasks: 128 total, 1 running, 127 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.5 us, 0.7 sy, 0.0 ni, 96.7 id, 1.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 511864 total, 500780 used, 11084 free, 152308 buffers
KiB Swap: 901116 total, 14444 used, 886672 free, 171376 cached

u PID to renice
|
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME COMMAND
5451 root 20 0 1577m 19m 14m S 5.3 3.9 42:46.26 0LLYDBG.EXE
2766 root 20 0 55800 20m 5480 S 2.6 4.0 1:01.42 Xorg
5456 root 20 0 6356 4272 1780 S 1.3 0.8 13:21.69 wineserver
7 root 20 0 0 0 0 S 0.3 0.0 0:30.12 rcu_sched
5762 root 20 0 174m 20m 17m S 0.3 4.1 0:04.74 gnome-terminal

Listing 6-4: Changing a nice value when top is in use

When I press the R key, I’m asked for the PID u with the text renice
PID [value] to value. The output should then change to reflect the new
priorities.

Killing Processes
At times, a process will consume way too many system resources, exhibit
unusual behavior, or—at worst—freeze. A process that exhibits this type of
behavior is often referred to as a rogue process. For you, probably the most
problematic symptom will be wasted resources used by the rogue process
that could be better allocated to useful processes.

Process Management 67

When you identify a problematic process, you may want to stop it with
the kill command. There are many different ways to kill a program, and
each has its own kill number.

The kill command has 64 different kill signals, and each does some­
thing slightly different. Here, we focus on a few you will likely find most
useful. The syntax for the kill command is kill-signal PID, where the signal
switch is optional. If you don’t provide a signal flag, it defaults to SIGTERM.
Table 6-1 lists the common kill signals

Table 6-1: Commonly Used Kill Signals

Signal name Number
for option

Description

SIGHUP 1 This is known as the Hangup (HUP) signal. It stops the des-
ignated process and restarts it with the same PID.

SIGINT 2 This is the Interrupt (INT) signal. It is a weak kill signal that
isn’t guaranteed to work, but it works in most cases.

SIGQUIT 3 This is known as the core dump. It terminates the process
and saves the process information in memory, and then it
saves this information in the current working directory to
a file named core. (The reasons for doing this are beyond
the scope of this book.)

SIGTERM 15 This is the Termination (TERM) signal. It is the kill com-
mand’s default kill signal.

SIGKILL 9 This is the absolute kill signal. It forces the process to
stop by sending the process’s resources to a special
device, /dev/null.

Using the top command, you can identify which processes are using too
many resources; often, those processes will be legitimate, but there may be
malicious processes taking resources that you’ll want to kill.

If you just want to restart a process with the HUP signal, enter the -1
option with kill, like so:

kali >kill -1 6996

In the case of a rogue or a malicious process, you likely want to send
the kill -9 signal, the absolute kill signal, to the process. This makes cer­
tain that the process is terminated.

kali >kill -9 6996

If you don’t know a process’s PID, you can use the killall command to
kill the process. This command takes the name of the process, instead of
the PID, as an argument.

68 Chapter 6

For example, you could terminate a hypothetical rogueprocess like this:

kali >killall -9 rogueprocess

Finally, you can also terminate a process in the top command. Simply
press the K key and then enter the PID of the offending process.

Running Processes in the Background
In Linux, whether you’re working from the command line or the GUI,
you’re working within a shell. All commands that run are executed from
within that shell, even if they run from the graphical interface. When you
execute a command, the shell waits until the command is completed before
offering another command prompt.

At times, you may want a process to run in the background, rather than
having to wait for it to complete in that terminal. For instance, say we want
to work on a script in a text editor and so have called our text editor (leaf­
pad) by entering the following:

kali >leafpad newscript

In this case, the bash shell will open the leafpad text editor to create
newscript. While we work in the text editor, the terminal is occupied with
running the text editor. If we return to the terminal, we should see that it
is running our text editor and that we have no new prompt to allow us to
enter more commands.

We could, of course, open another terminal to run more commands,
but a better option to save resources and screen real estate is to start the
text editor running in the background. Running a process in the back­
ground simply means that it will continue to run without needing the ter­
minal. In this way, the terminal is freed up for other duties.

To start the text editor in the background, just append an ampersand
(&) to the end of the command, like so:

kali >leafpad newscript &

Now, when the text editor opens, the terminal returns a new command
prompt so we can enter other commands on our system while also editing
our newscript. This is effective for any process that may run for a significant
length of time when you want use the terminal. As a hacker, you’ll find this
useful for running multiple terminals with multiple tasks, to save resources
and screen space.

You can also move a process to the background using the bg command
followed by the PID of the process. If you don’t know the PID, you can use
the ps command to find it.

Process Management 69

Moving a Process to the Foreground
If you want to move a process running in the background to the fore­
ground, you can use the fg (foreground) command. The fg command
requires the PID of the process you want to return to the foreground, as
shown next.

kali >fg 1234

If you don’t know the PID, you can use the ps command to find it.

Scheduling Processes
Both Linux system administrators and hackers often need to schedule
processes to run at a particular time of day. A system administrator might
want to schedule a system backup to run every Saturday night at 2 am, for
example. A hacker might want to set a script to run to perform reconnais­
sance on a regular basis, finding open ports or vulnerabilities. In Linux,
you can accomplish this in at least two ways: with at and crond.

The at command is used to set up the daemon—a background process—
atd, which is useful for scheduling a job to run once at some point in the
future. The crond daemon is more suited for scheduling tasks to occur every
day, week, or month, and we’ll cover this in detail in Chapter 16.

We use the at daemon to schedule the execution of a command or set
of commands in the future. The syntax is simply the at command followed
by the time to execute the process. The time argument can be provided in
various formats. Table 6-2 contains the most common at time formats.

Table 6-2: Time Formats Accepted by the at Command

Time format Meaning

at 7:20pm Scheduled to run at 7:20 pm on the current day
at 7:20pm June 25 Scheduled to run at 7:20 pm on June 25
at noon Scheduled to run at noon on the current day
at noon June 25 Scheduled to run at noon on June 25
at tomorrow Scheduled to run tomorrow
at now + 20 minutes Scheduled to run in 20 minutes from the current time
at now + 10 hours Scheduled to run in 10 hours from the current time
at now + 5 days Scheduled to run in five days from the current date
at now + 3 weeks Scheduled to run in three weeks from the current date
at 7:20pm 06/25/2019 Scheduled to run at 7:20 pm on June 25, 2019

70 Chapter 6

When you enter the at daemon with the specified time, at goes into
interactive mode and you are greeted with an at> prompt. Here is where
you enter the command you want executed at the specified time:

kali >at 7:20am
at >/root/myscanningscript

This code snippet will schedule myscanningscript to execute today at
7:20 am. When you want to stop entering commands, hit ctrl-D.

Summary
Managing processes in Linux is a key skill for every Linux user and hacker.
You must be able to view, find, kill, prioritize, and schedule processes to
manage your Linux instance optimally. A hacker often will need to find
processes on the target they want to kill, such as the antivirus software or a
firewall. They will also need to manage multiple processes in an attack and
prioritize them.

E X E RCISE S

Before you move on to Chapter 7, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Run the ps command with the aux options on your system and note which
process is first and which is last.

2.	 Run the top command and note the two processes using the greatest
amount of your resources.

3.	 Use the kill command to kill the process that uses the most resources.

4.	 Use the renice command to reduce the priority of a running process
to +19.

5.	 Create a script called myscanning (to see how to write a bash script, see
Chapter 8; the content of the script is not important) with a text editor and
then schedule it to run next Wednesday at 1 AM.

7
M A N A G I N G U S E R

E N V I R O N M E N T V A R I A B L E S

To get the most from your Linux hacking
system, you need to understand environ-

ment variables and be adept at managing
them for optimal performance, convenience,

and even stealth. Among the areas that Linux new-
comers find problematic, however, managing the user
environment variables might be the most difficult to
master. Technically, there are two types of variables: shell and environment.
Environment variables are process-wide variables built into your system and
interface that control the way your system looks, acts, and “feels” to the
user, and they are inherited by any child shells or processes. Shell variables,
on the other hand, are typically listed in lowercase and are only valid in the
shell they are set in. To avoid over-explanation, I just cover some of the most
basic and useful skills for environment and shell variables in this chapter.

72 Chapter 7

Variables are simply strings in key-value pairs. Generally, each pair will
look like KEY=value. In cases where there are multiple values, they will look
like KEY=value1:value2. As with most things in Linux, if there are spaces in the
value, it needs to be contained in quotation marks. In Kali Linux, your envi-
ronment is your bash shell. Each user, including root, has a default set of
environment variables that determine how the system looks, acts, and feels.
You can change the values for these variables to make your system work
more efficiently, tailor your work environment to best meet your individual
needs, and potentially cover your tracks if you need to.

Viewing and Modifying Environment Variables
You can view all your default environment variables by entering env into
your terminal from any directory:

kali >env
XDG_VTNR=7
SSHAGENT_PID=922
XDG_SESSION_ID=2
XDG_GREETER_DATA_DIR=/var/lib/lightdm/data/root
GLADE_PIXMAP_PATH=:echo
TERM=xterm-256color
SHELL=/bin/bash
--snip--
USER=root
--snip--
PATH=/usr/local/sbin :usr/local/bin:/usr/sbin:/sbin/bin
--snip--
HOME=/root
--snip--

Environment variables are always uppercase, as in HOME, PATH, SHELL, and
so on. These are only the default environment variables that come on your
system. A user can also create their own variables, and as you will see, we
need a different command to include those in the output.

Viewing All Environment Variables
To view all environment variables, including shell variables, local vari-
ables, and shell functions such as any user-defined variables and command
aliases, use the set command. This command will list all environment vari-
ables unique to your system, which in most cases will give you an output so
long you won’t be able to view it all on a single screen. You can request to
view each variable, line by line, in a more accessible fashion using set and
piping it to the more command, as follows:

kali >set | more
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdlist:complete_fullquote:expand_aliases:extglob.....

Managing User Environment Variables 73

BASH_ALIASES=()
BASH_ARGC=([0] = "0")
BASH_ARGV=()
--snip--

Now the list of variables will fill up one screen, line by line, and then stop.
When you press enter, the terminal advances to the next line, taking you
to the next variable, so you can scroll through by pressing or holding enter.
As you might recall from Chapter 2, whenever you use the more command
for output, you can enter q to quit (or exit) and return to the command
prompt.

Filtering for Particular Variables
Although using set with more gives more manageable results than looking
through the huge chunk of variable names you get with set alone, it can still
be rather tedious if you’re looking for a particular variable. Instead, you can
use the filtering command grep to find your variable of interest.

Let’s use the variable HISTSIZE as an example. This variable contains
the maximum number of commands your command history file will store.
These commands are any ones you’ve previously typed into your command
prompt in this session and can be recalled with your up- and down-arrow
keys. Note that HISTSIZE doesn’t store the commands themselves, just the
number of them that can be stored.

Pipe your set output with grep to find the HISTSIZE variable, like so:

kali >set | grep HISTSIZE
HISTSIZE=1000

As you can see, this command finds the variable HISTSIZE and displays
its value. The default value of this variable is probably set to 1000 on your
system. This indicates that the terminal will store your last 1,000 commands
by default.

Changing Variable Values for a Session
Now let’s see how to change a variable’s value. As noted, the HISTSIZE variable
contains the value of the number of commands to store in the history file.
Sometimes, you won’t want your system to save past commands—perhaps
because you don’t want to leave any evidence of your activity on your own
system or a target system. In that case, you can set the HISTSIZE variable to 0
so the system won’t store any of your past commands. Because this variable
has a single value, to change it, you assign it a new value in the familiar way
shown in Listing 7-1.

kali >HISTSIZE=0

Listing 7-1: Changing the value of HISTSIZE

74 Chapter 7

Now, when you try to use the up- and down-arrow keys to recall your
commands, nothing happens because the system no longer stores them.
This is stealthy, although it can be inconvenient.

Making Variable Value Changes Permanent
When you change an environment variable, that change only occurs in that
particular environment; in this case, that environment is the bash shell
session. This means that when you close the terminal, any changes you
made are lost, with values set back to their defaults. If you want to make the
changes permanent, you need to use the export command. This command
will export the new value from your current environment (the bash shell) to
any new forked child processes. This allows the new process to inherit the
exported variables.

Variables are strings, so if you run on the cautious side, it isn’t a bad
idea to save the contents of a variable to a text file before you modify it.
For example, since we’re about to change the PS1 variable, which controls
the information you display in the prompt, first run the following com-
mand to save the existing values to a text file in the current user’s home
directory:

kali >echo $HISTSIZE> ~/valueofHISTSIZE.txt

This way, you can always undo your changes. If you want to be even
more cautious and create a text file with all the current settings, you can
save the output of the set command to a text file with a command like
this one:

kali >set> ~/valueofALLon01012019.txt

After you’ve changed a variable, as we did in Listing 7-1, you can make
the change permanent by entering export and then the name of the variable
you changed, as shown here:

kali >export HISTSIZE

Now the HISTSIZE variable will still be set to 0 in this environment and
will no longer store your commands. If you want to reset the HISTSIZE vari-
able to 1,000, simply enter this:

kali >HISTSIZE=1000
kali >export HISTSIZE

This code snippet will set your HISTSIZE variable’s value to 1,000 and
export it to all your environments.

Managing User Environment Variables 75

Changing Your Shell Prompt
Your shell prompt, another environment variable, provides you with useful
information such as the user you’re operating as and the directory in which
you’re currently working. The default shell prompt in Kali takes the follow-
ing format:

username@hostname:current_directory #

If you’re working as the root user, this translates to the following
default prompt:

root@kali:current_directory #

You can change the name in the default shell prompt by setting the
value for the PS1 variable. The PS1 variable has a set of placeholders for
information you want to display in the prompt, including the following:

\u  The name of the current user

\h  The hostname

\w  The base name of the current working directory

This is very useful if you happen to have shells on multiple systems or
are logged on as multiple accounts. By using the \u and \h values, you can
tell at a glance who you are and what your current system is.

Let’s have a little fun and change the prompt in your terminal. For
example, you could enter the following:

kali >PS1="World's Best Hacker: #"
World's Best Hacker: #

Now, every time you use this terminal, you’ll be reminded that you are
the “World’s Best Hacker.” But any subsequent terminal you open will still
have the default command prompt, because the PS1 variable only holds val-
ues for your terminal session. Remember, until you export a variable, it is
only good for that session. If you really like this new command prompt and
want to continue to use it, you need to export it, like so:

kali >export PS1

How about a little more fun? Say you really want your terminal to look
like a Windows cmd prompt. In this case, you could change the prompt name
to C: and keep the \w to have the prompt show your current directory, as
shown in Listing 7-2.

76 Chapter 7

kali >export PS1='C:\w> '
kali >cd /tmp
C:/tmp>

Listing 7-2: Changing the prompt and showing the current directory

Having your prompt show your current directory can be generally
useful, particularly to a beginner, so it’s something to consider when you
change your PS1 variable.

Changing Your PATH
One of the most important variables in your environment is your PATH vari-
able, which controls where on your system your shell will look for commands
you enter, such as grep, ls, and echo. Most commands are located in the sbin
or bin subdirectory, like /usr/local/sbin or /usr/local/bin. If the bash shell
doesn’t find the command in one of the directories in your PATH variable, it
will return the error command not found, even if that command does exist in a
directory not in your PATH.

You can find out which directories are stored in your PATH variable by
using echo on its contents, like so:

kali >echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

These are the directories where your terminal will search for any com-
mand. When you enter ls, for example, the system knows to look in each
of these directories for the ls command, and when it finds ls, the system
executes it.

Each directory is separated by a colon (:). Don’t forget to add the $
content symbol to PATH. When we put a $ before a variable, we are asking the
system for the content of the variable.

Adding to the PATH Variable
You can probably see why it’s important to know what is in your PATH vari-
able: if you downloaded and installed a new tool—let’s say newhackingtool—
into the /root/newhackingtool directory, you could only use commands from
that tool when you’re in that directory because that directory is not in the
PATH variable. Every time you wanted to use that tool, you would first have to
navigate to /root/newhackingtool, which is a bit inconvenient if you want to
use the tool often.

To be able to use this new tool from any directory, you need to add the
directory holding this tool to your PATH variable.

To add newhackingtool to your PATH variable, enter the following:

kali >PATH=$PATH:/root/newhackingtool

Managing User Environment Variables 77

This assigns the original PATH variable plus the /root/newhackingtool
directory to the new PATH variable, so the variable contains everything it did
before, plus the new tool directory.

If you examine the contents of the PATH variable again, you should see
that this directory has been appended to the end of PATH, as shown here:

kali >echo $PATH
/usr/local/sbin:usr/local/bin:/usr/sbin:/sbin/bin:/root/newhackingtool

Now you can execute newhackingtool applications from anywhere on
your system, rather than having to navigate to its directory. The bash shell
will look in all directories listed for your new tool!

N O T E 	 Adding to PATH can be a useful technique for directories you use often, but be careful
not to add too many directories to your PATH variable. Because the system will have to
search through each and every directory in PATH to find commands, adding a lot of
directories could slow down your terminal and your hacking.

How Not to Add to the PATH Variable
One mistake commonly made by new Linux users is assigning a new direc-
tory, such as /root/newhackingtool, directly to the PATH variable in this way:

kali >PATH=/root/newhackingtool
kali >echo $PATH
/root/newhackingtool

If you use this command, your PATH variable will only contain the /root/
newhackingtool directory and no longer contain the system binaries direc-
tories such as /bin, /sbin, and others that hold critical commands. When
you then go to use any of the system commands, you’ll receive the error
command not found, as shown next, unless you first navigate to the system
binaries directory when you execute the command:

kali >ls
bash: ls: command not found

Remember that you want to append to the PATH variable, not replace it.
If you’re in doubt, save the contents of the variable somewhere before you
modify it.

Creating a User-Defined Variable
You can create your own custom, user-defined variables in Linux by simply
assigning a value to a new variable that you name. This may be useful when
you are doing some more advanced shell scripting or find you’re often using
a long command that you get tired of typing over and over.

78 Chapter 7

The syntax is straightforward: enter the name of your variable, followed
by the assignment symbol (=) without a space, and then the value to put in
the variable, as shown here:

kali >MYNEWVARIABLE="Hacking is the most valuable skill set in the 21st century"

This assigns a string to the variable MYNEWVARIABLE. To see the value in
that variable, use the echo command and the $ content symbol with the vari-
able name, as we did earlier:

kali >echo $MYNEWVARIABLE
Hacking is the most valuable skill set in the 21st century

Just like our system environment variables, user-defined variables must
be exported to persist to new sessions.

If you want to delete this new variable, or any variable, use the unset
command. Always think before deleting a system variable, though, because
your system will probably operate much differently afterward.

kali >unset MYNEWVARIABLE
kali >echo $MYNEWVARIABLE
kali >

As you can see, when you enter unset MYNEWVARIABLE, you delete the vari-
able along with its value. If you use echo on that same variable, Linux will
now return a blank line.

Summary
You might find environment variables foreign, but it’s worth getting to know
them. They control how your working environment in Linux looks, acts,
and feels. You can manage these variables to tailor your environment to
your needs by changing them, exporting them, and even creating your own.
In some cases, they may be useful for covering your tracks as a hacker.

Managing User Environment Variables 79

E X E RCISE S

Before you move on to Chapter 8, try out the skills you learned from this chapter
by completing the following exercises:

1.	 View all of your environment variables with the more command.

2.	 Use the echo command to view the HOSTNAME variable.

3.	 Find a method to change the slash (/) to a backslash (\) in the faux
Microsoft cmd PS1 example (see Listing 7-2).

4.	 Create a variable named MYNEWVARIABLE and put your name in it.

5.	 Use echo to view the contents of MYNEWVARIABLE.

6.	 Export MYNEWVARIABLE so that it’s available in all environments.

7.	 Use the echo command to view the contents of the PATH variable.

8.	 Add your home directory to the PATH variable so that any binaries in your
home directory can be used in any directory.

9.	 Change your PS1 variable to "World's Greatest Hacker:".

8
B A S H S C R I P T I N G

Any self-respecting hacker must be able
to write scripts. For that matter, any self-

respecting Linux administrator must be
able to script. Hackers often need to automate

commands, sometimes from multiple tools, and this
is most efficiently done through short programs they
write themselves.

In this chapter, we build a few simple bash shell scripts to start you off
with scripting. We’ll add capabilities and features as we progress, eventually
building a script capable of finding potential attack targets over a range of
IP addresses.

To become an elite hacker, you also need the ability to script in one of
the widely used scripting languages, such as Ruby (Metasploit exploits are
written in Ruby), Python (many hacking tools are Python scripts), or Perl
(Perl is the best text-manipulation scripting language). I give a brief intro-
duction to Python scripting in Chapter 17.

82 Chapter 8

A Crash Course in Bash
A shell is an interface between the user and the operating system that enables
you to manipulate files and run commands, utilities, programs, and much
more. The advantage of a shell is that you perform these tasks immediately
from the computer and not through an abstraction, like a GUI, which allows
you to customize your task to your needs. A number of different shells are
available for Linux, including the Korn shell, the Z shell, the C shell, and
the Bourne-again shell, more widely known as bash.

Because the bash shell is available on nearly all Linux and UNIX distri-
butions (including macOS and Kali), we’ll be using the bash shell, exclusively.

The bash shell can run any system commands, utilities, or applications
your usual command line can run, but it also includes some of its own built-
in commands. Table 8-1 later in the chapter gives you a reference to some
useful commands that reside within the bash shell.

In earlier chapters, you used the cd, pwd, set, and umask commands. In
this section, you will be using two more commands: the echo command, first
used in Chapter 7, which displays messages to the screen, and the read com-
mand, which reads in data and stores it somewhere else. Just learning these
two commands alone will enable you to build a simple but powerful tool.

You’ll need a text editor to create shell scripts. A text editor is a pro-
gram that can edit plain, unformatted text, like Notepad in Windows or
TextEdit in macOS. You can use whichever Linux text editor you like best.
Popular hacker choices include vi, vim, emacs, gedit, kate, and so on. I’ll be
using Leafpad in this book, as I have in previous chapters. Using a different
editor should not make any difference in your script or its functionality.

Your First Script: “Hello, Hackers-Arise!”
For your first script, we will start with a simple program that returns a
message to the screen that says "Hello, Hackers-Arise!" Open your text
editor, and let’s go.

To start, you need to tell your operating system which interpreter you
want to use for the script. To do this, enter a shebang, which is a combina-
tion of a hash mark and an exclamation mark, like so:

#!

You then follow the shebang (#!) with /bin/bash to indicate that you want
the operating system to use the bash shell interpreter. As you’ll see in later
chapters, you could also use the shebang to use other interpreters, such
as Perl or Python. Here, you want to use the bash interpreter, so enter the
following:

#! /bin/bash

Bash Scripting 83

Next, enter the echo command, which tells the system to simply repeat
(or echo) back to your monitor whatever follows the command.

In this case, we want the system to echo back to us "Hello, Hackers-Arise!",
as done in Listing 8-1. Note that the text or message we want to echo back
must be in double quotation marks.

#! /bin/bash

This is my first bash script. Wish me luck.

echo "Hello, Hackers-Arise!"

Listing 8-1: Your “Hello, Hackers-Arise!” script

Here, you also see a line that’s preceded by a hash mark (#). This is a
comment, which is a note you leave to yourself or anyone else reading the
code to explain what you’re doing in the script. Programmers use com-
ments in every coding language. These comments are not read or executed
by the interpreter, so you don’t need to worry about messing up your code.
They are visible only to humans. The bash shell knows a line is a comment
if it starts with the # character.

Now, save this file as HelloHackersArise with no extension and exit your
text editor.

Setting Execute Permissions
By default, a newly created bash script is not executable even by you, the
owner. Let’s look at the permissions on our new file in the command line by
using cd to move into the directory and then entering ls -l. It should look
something like this:

kali >ls -l
--snip--
-rw-r--r-- 1 root root 90 Oct 22 14:32 HelloHackersArise
--snip--

As you can see, our new file has rw-r--r-- (644) permissions. As you
learned in Chapter 5, this means the owner of this file only has read (r)
and write (w) permissions, but no execute (x) permissions. The group and
all other users have only read permissions. We need to give ourselves exe-
cute permissions in order to run this script. We change the permissions
with the chmod command, as you saw in Chapter 5. To give the owner, the
group, and all others execute permissions, enter the following:

kali >chmod 755 HelloHackersArise

84 Chapter 8

Now when we do a long listing on the file, like so, we can see that we
have execute permissions:

kali >ls -l
--snip--
-rwx r-x r-x 1 root root 42 Oct 22 14:32 HelloHackersArise
--snip--

The file will also be in green, another indicator of its execute permis-
sions. The script is now ready to run!

Running HelloHackersArise
To run our simple script, enter the following:

kali >./HelloHackersArise

The ./ before the filename tells the system that we want to execute
this script in the file HelloHackersArise from the current directory. It also
tells the system that if there is another file in another directory named
HelloHackersArise, please ignore it and only run HelloHackersArise in the cur-
rent directory. It may seem unlikely that there’s another file with this name
on your system, but it’s good practice to use the ./ when executing files, as
this localizes the file execution to the current directory and many directo-
ries will have duplicate filenames, such as start and setup.

When we press enter, our very simple script returns our message to the
monitor:

Hello, Hackers-Arise!

Success! You just completed your first shell script!

Adding Functionality with Variables and User Input
So, now we have a simple script. All it does is echo back a message to stan-
dard output. If we want to create more advanced scripts, we will likely need
to add some variables.

A variable is an area of storage that can hold something in memory.
That “something” might be some letters or words (strings) or numbers. It’s
known as a variable because the values held within it are changeable; this is
an extremely useful feature for adding functionality to a script.

In our next script, we will add functionality to prompt the user for their
name, place whatever they input into a variable, then prompt the user for
the chapter they’re at in this book, and place that keyboard input into a
variable. After that, we’ll echo a welcome message that includes their name
and the chapter back to the user.

Open a new file in your text editor and enter the script shown in
Listing 8-2.

Bash Scripting 85

u #! /bin/bash

v # This is your second bash script. In this one, you prompt
the user for input, place the input in a variable, and
display the variable contents in a string.

w echo "What is your name?"

read name

x echo "What chapter are you on in Linux Basics for Hackers?"

read chapter

y echo "Welcome $name to Chapter $chapter of Linux Basics for Hackers!"

Listing 8-2: A simple script making use of variables

We open with #! /bin/bash to tell the system we want to use the bash inter-
preter for this script u. We then add a comment that describes the script and
its functionality v. After that, we prompt the user for their name and ask
the interpreter to read the input and place it into a variable we call name w.
Then we prompt the user to enter the chapter they are currently working
through in this book, and we again read the keyboard input into a variable,
this time called chapter x.

In the final line, we construct a line of output that welcomes the reader
by their name to the chapter they are on y. We use the echo command and
provide the text we want to display on the screen in double quotes. Then, to
fill in the name and chapter number the user entered, we add the variables
where they should appear in the message. As noted in Chapter 7, to use the
values contained in the variables, you must precede the variable name with
the $ symbol.

Save this file as WelcomeScript.sh. The .sh extension is the convention for
script files. You might have noticed we didn’t include the extension earlier;
it’s not strictly required, and it makes no difference if you leave the exten-
sion off. The extension can be a useful indicator for other people that this
file is a shell script, though.

Now, let’s run this script. Don’t forget to give yourself execute permis-
sion with chmod first; otherwise, the operating system will scold you with a
Permission denied message.

kali >./WelcomeScript.sh
What is your name?
OccupytheWeb
What chapter are you on in Linux Basics for Hackers?
8
Welcome OccupytheWeb to Chapter 8 of Linux Basics for Hackers!

As you can see, your script took input from the user, placed it into vari-
ables, and then used those inputs to make a greeting for the user.

86 Chapter 8

This is a simple script, but it taught you how to use variables and take
input from the keyboard. These are both crucial concepts in scripting that
you will need to use in more complex scripts in future.

Your Very First Hacker Script: Scan for Open Ports
Now that you have some basic scripting skills, let’s move to some slightly
more advanced scripting that has real-world application to hacking. We’ll
use an example from the world of black hat hacking. Black hat hackers are
those with malicious intentions, such as stealing credit card numbers or
defacing websites. White hat hackers are those with good intentions, such
as helping software developers or system administrators make their systems
more secure. Gray hat hackers are those who tend to move between these
two extremes.

Before you continue, you need to become familiar with a simple yet
essential tool named nmap that comes installed on Kali by default. You’ve
likely heard the name; nmap is used to probe a system to see whether it
is connected to the network and finds out what ports are open. From the
open ports discovered, you can surmise what services are running on the
target system. This is a crucial skill for any hacker or system administrator.

In its simplest form, the syntax for running an nmap scan looks like this:

nmap <type of scan><target IP><optionally, target port>

Not too difficult. The simplest and most reliable nmap scan is the TCP
connect scan, designated with the -sT switch in nmap. So, if you wanted to
scan IP address 192.168.181.1 with a TCP scan, you would enter the following:

nmap -sT 192.168.181.1

To take things a step further, if you wanted to perform a TCP scan of
address 192.168.181.1, looking to see whether port 3306 (the default port
for MySQL) was open, you could enter this:

nmap -sT 192.168.181.1 -p 3306

Here, -p designates the port you want to scan for. Go ahead and try it
out now on your Kali system.

Our Task
At the time of this writing, there is a hacker serving time in US federal prison
by the name of Max Butler, also known as Max Vision throughout the hacker
world. Max was a kind of gray hat hacker. By day, he was an IT security profes-
sional in Silicon Valley, and by night, he was stealing and selling credit card
numbers on the black market. At one time, he ran the world’s largest credit
card black market, CardersMarket. Now, Max is serving a 13-year prison term

Bash Scripting 87

while at the same time assisting the Computer Emergency Response Team
(CERT) in Pittsburgh with defending against hackers.

A few years before Max was caught, he realized that the Aloha Point of
Sale (POS) system used by many small restaurants had a technical support
backdoor built into it. In this case, the backdoor enabled tech support to
assist their clients. Aloha tech support could access the end user’s system
through port 5505 to provide assistance when the user called for help. Max
realized that if he found a system connected to the internet with the Aloha
POS system, he could access the system with sysadmin privileges through
port 5505. Max was able to enter many of these systems and steal tens of
thousands of credit card numbers.

Eventually, Max wanted to find every system that had port 5505 open so
that he could go from stealing thousands of credit card numbers to steal-
ing millions. Max decided to write a script that would scan millions of IP
addresses looking for systems with port 5505 open. Of course, most systems
do not have port 5505 open so, if they did, it was likely they were running the
doomed Aloha POS. He could run this script while at work during the day,
then by night hack into those systems identified as having port 5505 open.

Our task is to write a script that will be nearly identical to Max’s script,
but rather than scan for port 5505 as Max did, our script will scan for systems
connected to the ubiquitous online database MySQL. MySQL is an open
source database used behind millions of websites; we’ll be working with
MySQL in Chapter 12. By default, MySQL uses port 3306. Databases are the
“Golden Fleece” that nearly every black hat hacker is seeking, as they often
contain credit card numbers and personally identifiable information (PII)
that is very valuable on the black market.

A Simple Scanner
Before we write the script to scan public IPs across the internet, let’s take on
much a smaller task. Instead of scanning the globe, let’s first write a script to
scan for port 3306 on a local area network to see whether our script actually
works. If it does, we can easily edit it to do the much larger task.

In your text editor, enter the script shown in Listing 8-3.

u #! /bin/bash

v # This script is designed to find hosts with MySQL installed

nmap w-sT 192.168.181.0/24 x-p 3306 y>/dev/null z-oG MySQLscan

{ cat MySQLscan | grep open > MySQLscan2 |

cat MySQLscan2

Listing 8-3: The simplified scanner script

We start with the shebang and the interpreter to use u. Let’s follow this
with a comment to explain what the script does v.

88 Chapter 8

Now let’s use the nmap command to request a TCP scan w on our LAN,
looking for port 3306 x. (Note that your IP addresses may differ; in your
terminal, use the ifconfig command on Linux or the ipconfig command on
Windows to determine your IP address.) The redirect symbol > tells the
standard nmap output, which usually goes to the screen, to instead go to
/dev/null, which is simply a place to send output so that it disappears y.
We’re doing this on a local machine, so it doesn’t matter so much, but if you
were to use the script remotely, you’d want to hide the nmap output. We then
send the output of the scan to a file named MySQLscan in a grep-able format
z, meaning a format that grep can work on.

The next line displays the MySQLscan file we stored the output in and
then pipes that output to grep to filter for lines that include the keyword
open {. Then we put those lines into a file named MySQLscan2 |.

Finally, you display the contents of the file MySQLscan2. This final file
should only include lines of output from nmap with hosts that have port 3306
open. Save this file as MySQLscanner.sh and give yourself execute permissions
with chmod 755.

Execute the script, like so:

kali >./MySQLscanner.sh

Host: 192.168.181.69 () Ports: 3306/open/tcp//mysql///

As we can see, this script was able to identify the only IP address on my
LAN with MySQL running. Your results may differ, depending on whether
any ports are running MySQL installations on your local network, of course.

Improving the MySQL Scanner
Now we want to adapt this script to make it applicable to more than just
your own local network. This script would be much easier to use if it could
prompt the user for the range of IP addresses they wanted to scan and the
port to look for, and then use that input. Remember, you learned how to
prompt the user and put their keyboard input into a variable in “Adding
Functionality with Variables and User Input” on page 84.

Let’s take a look at how you could use variables to make this script more
flexible and efficient.

Adding Prompts and Variables to Our Hacker Script

In your text editor, enter the script shown in Listing 8-4.

#! /bin/bash

u echo "Enter the starting IP address : "
v read FirstIP

w echo "Enter the last octet of the last IP address : "
read LastOctetIP

Bash Scripting 89

x echo "Enter the port number you want to scan for : "
read port

y nmap -sT $FirstIP-$LastOctetIP -p $port >/dev/null -oG MySQLscan

z cat MySQLscan | grep open > MySQLscan2

{ cat MySQLscan2

Listing 8-4: Your advanced MySQL port scanner

The first thing we need to do is replace the specified subnet with an IP
address range. We’ll create a variable called FirstIP and a second variable
named LastOctetIP to create the range as well as a variable named port for the
port number (the last octet is the last group of digits after the third period in
the IP address. In the IP address 192.168.1.101, the last octet is 101).

N O T E 	 The name of the variable is irrelevant, but best practice is to use a variable name that
helps you remember what the variable holds.

We also need to prompt the user for these values. We can do this by
using the echo command that we used in Listing 8-1.

To get a value for the FirstIP variable, echo "Enter the starting IP
address : " to the screen, asking the user for the first IP address they want
to scan u. Upon seeing this prompt on the screen, the user will enter the
first IP address, so we need to capture that input from the user.

We can do this with the read command followed by the name of the
variable we want to store the input in v. This command will put the IP
address entered by the user into the variable FirstIP. Then we can use that
value in FirstIP throughout our script.

We’ll do the same for the LastOctetIP w and port x variables by prompt-
ing the user to enter the information and then using a read command to
capture it.

Next, we need to edit the nmap command in our script to use the vari-
ables we just created and filled. To use the value stored in the variable,
we simply preface the variable name with $, as in $port, for example. So
at y, we scan a range of IP addresses, starting with the first user-input IP
through the second user-input IP, and look for the particular port input
by the user. We’ve used the variables in place of the subnet to scan and the
port to determine what to scan for. As before, we send the standard output
to /dev/null. Then, we send the output in a grep-able format to a file we
named MySQLscan.

The next line remains the same as in our simple scanner: it outputs the
contents of the MySQLscan file, pipes it to grep, where it is filtered for lines
that include the keyword open, and then sends that output to a new file named
MySQLscan2 z. Finally, we display the contents of the MySQLscan2 file {.

If everything works as expected, this script will scan IP addresses from
the first input address to the last input address, searching for the input port

90 Chapter 8

and then reporting back with just the IP addresses that have the designated
port open. Save your script file as MySQLscannerAdvanced, remembering to
give yourself execute permission.

A Sample Run

Now we can run our simple scanner script with the variables that determine
what IP address range and port to scan without having to edit the script
every time we want to run a scan:

kali >./MySQLscannerAdvanced.sh
Enter the starting IP address :
192.168.181.0
Enter the last octet of the last address :
255
Enter the port number you want to scan for :
3306
Host: 192.168.181.254 () Ports:3306/open/tcp//mysql//

The script prompts the user for the first IP address, the last octet of the
last IP address, and then the port to scan for. After collecting this info, the
script performs the nmap scan and produces a report of all the IP addresses
in the range that have the specified port open. As you can see, even the
simplest of scripting can create a powerful tool. You’ll learn even more
about scripting in Chapter 17.

Common Built-in Bash Commands
As promised, Table 8-1 gives you a list of some useful commands built
into bash.

Table 8-1: Built-in Bash Commands

Command Function

: Returns 0 or true
. Executes a shell script
bg Puts a job in the background
break Exits the current loop
cd Changes directory
continue Resumes the current loop
echo Displays the command arguments
eval Evaluates the following expression
exec Executes the following command without creating a new process,

replacing the current process
exit Quits the shell
export Makes a variable or function available to other programs that are

executed from this shell

Bash Scripting 91

Command Function

fg Brings a job to the foreground
getopts Parses arguments to the shell script
jobs Lists background (bg) jobs
pwd Displays the current directory
read Reads a line from standard input
readonly Declares as variable as read-only
set Lists all variables
shift Moves the script's input parameters to the left, dropping the first

parameter (useful for consuming all parameters one at a time)
test Evaluates arguments
[[Performs a conditional test
times Prints the user and system times
trap Traps a signal so the script can handle it (untrapped signals terminate

the script)
type Displays how each argument would be interpreted as a command
umask Changes the default permissions for a new file
unset Deletes values from a variable or function
wait Waits for a background process to complete

Summary
Scripting is an essential skill for any hacker or system administrator. It
enables you to automate tasks that would normally take hours of your time,
and once the script is saved, it can be used over and over again. Bash script-
ing is the most basic form of scripting, and you will advance to Python
scripting with even more capabilities in Chapter 17.

E X E RCISE S

Before you move on to Chapter 9, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Create your own greeting script similar to our HelloHackersArise script.

2.	 Create a script similar to MySQLscanner.sh but design it to find systems with
Microsoft’s SQL Server database at port 1433. Call it MSSQLscanner.

3.	 Alter that MSSQLscanner script to prompt the user for a starting and end-
ing IP address and the port to search for. Then filter out all the IP addresses
where those ports are closed and display only those that are open.

9
C O M P R E S S I N G A N D A R C H I V I N G

Hackers often need to download and
install new software, as well as send and

download multiple scripts and large files.
These tasks are easier if these files are com-

pressed and combined into a single file. If you come
from the Windows world, you will probably recognize
this concept from the .zip format, which combines and compresses files to
make them smaller for transferring over the internet or removable media.
There are many ways to do this in Linux, and we look at a few of the most
common tools for doing so in this chapter. We also look at the dd command,
which allows you to copy entire drives, including deleted files on those drives.

What Is Compression?
The interesting subject of compression could fill an entire book by itself,
but for this book we only need a rudimentary understanding of the process.
Compression, as the name implies, makes data smaller, thereby requiring less

94 Chapter 9

storage capacity and making the data easier to transmit. For your purposes
as a beginning hacker, it will suffice to categorize compression as either
lossy or lossless.

Lossy compression is very effective in reducing the size of files, but the
integrity of the information is lost. In other words, the file after compres-
sion is not exactly the same as the original. This type of compression works
great for graphics, video, and audio files, where a small difference in the
file is hardly noticeable—.mp3, .mp4, and .jpg are all lossy compression algo-
rithms. If a pixel in a .jpg file or a single note in an .mp3 file is changed, your
eye or ear is unlikely to notice the difference—though, of course, music
aficionados will say that they can definitely tell the difference between an
.mp3 and an uncompressed .flac file. The strengths of lossy compression are
its efficiency and effectiveness. The compression ratio is very high, meaning
that the resulting file is significantly smaller than the original.

However, lossy compression is unacceptable when you’re sending files
or software and data integrity is crucial. For example, if you are sending a
script or document, the integrity of the original file must be retained when
it is decompressed. This chapter focuses on this lossless type of compression,
which is available from a number of utilities and algorithms. Unfortunately,
lossless compression is not as efficient as lossy compression, as you might
imagine, but for the hacker, integrity is often far more important than com-
pression ratio.

Tarring Files Together
Usually, the first thing you do when compressing files is to combine them into
an archive. In most cases, when archiving files, you’ll use the tar command.
Tar stands for tape archive, a reference to the prehistoric days of computing
when systems used tape to store data. The tar command creates a single file
from many files, which is then referred to as an archive, tar file, or tarball.

For instance, say you had three script files like the ones we used in
Chapter 8, named hackersarise1, hackersarise2, and hackersarise3. If you navi-
gate to the directory that holds them and perform a long listing, you can
clearly see the files and the details you’d expect, including the size of the
files, as shown here:

kali >ls -l
-rwxr-xr-x 1 root root 22311 Nov 27 2018 13:00 hackersarise1.sh
-rwxr-xr-x 1 root root 8791 Nov 27 2018 13:00 hackersarise2.sh
-rwxr-xr-x 1 root root 3992 Nov 27 2018 13:00 hackersarise3.sh

Let’s say you want to send all three of these files to another hacker you’re
working with on a project. You can combine them and create a single archive
file using the command in Listing 9-1.

kali >tar -cvf HackersArise.tar hackersarise1 hackersarise2 hackersarise3
hackersarise1

Compressing and Archiving 95

hackersarise2
hackersarise3

Listing 9-1: Creating a tarball of three files

Let’s break down this command to better understand it. The archiving
command is tar, and we’re using it here with three options. The c option
means create, v (which stands for verbose and is optional) lists the files that
tar is dealing with, and f means write to the following file. This last option
will also work for reading from files. Then we give the new archive the file-
name you want to create from the three scripts: HackersArise.tar.

In full, this command will take all three files and create a single file,
HackersArise.tar, out of them. When you do another long listing of the direc-
tory, you will see that it also contains the new .tar file, as shown next:

kali >ls -l
--snip--
-rw-r--r-- 1 root root 40960 Nov 27 2018 13:32 HackersArise.tar
--snip--
kali >

Note the size of the tarball here: 40,960 bytes. When the three files are
archived, tar uses significant overhead to perform this operation: whereas the
sum of the three files before archiving was 35,094 bytes, after archiving, the
tarball had grown to 40,960 bytes. In other words, the archiving process has
added over 5,000 bytes. Although this overhead can be significant with small
files, it becomes less and less significant with larger and larger files.

We can display those files from the tarball, without extracting them, by
using the tar command with the -t content list switch, as shown next:

kali >tar -tvf HackersArise.tar
-rwxr-xr-x 1 root root 22311 Nov 27 2018 13:00 hackersarise1.sh
-rwxr-xr-x 1 root root 8791 Nov 27 2018 13:00 hackersarise2.sh
-rwxr-xr-x 1 root root 3992 Nov 27 2018 13:00 hackersarise3.sh

Here, we see our three original files and their original sizes. You can
then extract those files from the tarball using the tar command with the -x
(extract) switch, as shown next:

kali >tar -xvf HackersArise.tar
hackersarise1.sh
hackersarise2.sh
hackersarise3.sh

Because you’re still using the –v switch, this command will show which
files are being extracted in the output. If you want to extract the files
and do so “silently,” meaning without showing any output, you can simply
remove the -v (verbose) switch, as shown here:

kali >tar -xf HackersArise.tar

96 Chapter 9

The files have been extracted into the current directory; you can do
a long listing on the directory to double-check. Note that by default, if an
extracted file already exists, tar will remove the existing file and replace it
with the extracted file.

Compressing Files
Now we have one archived file, but that file is bigger than the sum of the
original files. What if you want to compress those files for ease of transport?
Linux has several commands capable of creating compressed files. We will
look at these:

•	 gzip, which uses the extension .tar.gz or .tgz

•	 bzip2, which uses the extension .tar.bz2

•	 compress, which uses the extension .tar.z

These all are capable of compressing our files, but they use different
compression algorithms and have different compression ratios. Therefore,
we’ll look at each one and what it’s capable of.

In general, compress is the fastest, but the resultant files are larger; bzip2
is the slowest, but the resultant files are the smallest; and gzip falls some-
where in between. The main reason you, as a budding hacker, should know
all three methods is that when accessing other tools, you will run into vari-
ous types of compression. Therefore, this section shows you how to deal
with the main methods of compression.

Compressing with gzip
Let’s try gzip (GNU zip) first, as it is the most commonly used compression
utility in Linux. You can compress your HackersArise.tar file by entering the
following (making sure you’re in the directory that holds the archived file):

kali >gzip HackersArise.*

Notice that we used the wildcard * for the file extension; this tells Linux
that the command should apply to any file that begins with HackersArise with
any file extension. You will use similar notation for the following examples.
When we do a long listing on the directory, we can see that HackersArise.tar
has been replaced by HackersArise.tar.gz, and the file size has been com-
pressed to just 3,299 bytes!

kali >ls -l
--snip--
-rw-r--r-- 1 root root 3299 Nov 27 2018 13:32 HackersArise.tar.gz
--snip--

We can then decompress that same file by using the gunzip command,
short for GNU unzip.

Compressing and Archiving 97

kali >gunzip HackersArise.*

Once uncompressed, the file is no longer saved with the .tar.gz exten-
sion but with the .tar extension instead. Also, notice that it has returned to
its original size of 40,960 bytes. Try doing a long list to confirm this.

Compressing with bzip2
Another of the other widely used compression utilities in Linux is bzip2,
which works similarly to gzip but has better compression ratios, mean-
ing that the resulting file will be even smaller. You can compress your
HackersArise.tar file by entering the following:

kali >bzip2 HackersArise.*

When you do a long listing, you can see that bzip2 has compressed the
file down to just 2,081 bytes! Also note that the file extension is now .tar.bz2.

To uncompress the compressed file, use bunzip2, like so:

kali >bunzip2 HackersArise.*
kali >

When you do, the file returns to its original size, and its file extension
returns to .tar.

Compressing with compress
Finally, you can use the command compress to compress the file. This is
probably the least commonly used compression utility, but it’s easy to
remember. To use it, simply enter the command compress followed by the
filename, like so:

kali >compress HackersArise.*
kali >ls -l
--snip--
-rw-r--r-- 1 root root 5476 Nov 27 2018 13:32 HackersArise.tar.Z

Note that the compress utility reduced the size of the file to 5,476 bytes,
more than twice the size of bzip2. Also note that the file extension now is
.tar.Z (with an uppercase Z).

To decompress the same file, use uncompress:

kali >uncompress HackersArise.*

You can also use the gunzip command with files that have been com-
pressed with compress.

98 Chapter 9

Creating Bit-by-Bit or Physical Copies of Storage Devices
Within the world of information security and hacking, one Linux archiving
command stands above the rest in its usefulness. The dd command makes
a bit-by-bit copy of a file, a filesystem, or even an entire hard drive. This
means that even deleted files are copied (yes, it’s important to know that
your deleted files may be recoverable), making for easy discovery and
recovery. Deleted files will not be copied with most logical copying utili-
ties, such as cp.

Once a hacker has owned a target system, the dd command will allow
them to copy the entire hard drive or a storage device to their system. In
addition, those people whose job it is to catch hackers—namely, forensic
investigators—will likely use this command to make a physical copy of the
hard drive with deleted files and other artifacts that might be useful for
finding evidence against the hacker.

It’s critical to note that the dd command should not be used for typical
day-to-day copying of files and storage devices because it is very slow; other
commands do the job faster and more efficiently. It is, though, excellent
when you need a copy of a storage device without the filesystem or other
logical structures, such as in a forensic investigation.

The basic syntax for the dd command is as follows:

dd if=inputfile of=outputfile

So, if you wanted to make a physical copy of your flash drive, assuming
the flash drive is sdb (we’ll discuss this designation more in Chapter 10),
you would enter the following:

kali >dd if=/dev/sdb of=/root/flashcopy
1257441=0 records in
1257440+0 records out
7643809280 bytes (7.6 GB) copied, 1220.729 s, 5.2 MB/s

Let’s break down this command: dd is your physical “copy” command;
if designates your input file, with /dev/sdb representing your flash drive in
the /dev directory; of designates your output file; and /root/flashcopy is the
name of the file you want to copy the physical copy to. (For a more com-
plete explanation of the Linux system designation of drives within the /dev
directory, see Chapter 10.)

Numerous options are available to use with the dd command, and you
can do a bit of research on these, but among the most useful are the noerror
option and the bs (block size) option. As the name implies, the noerror option
continues to copy even if errors are encountered. The bs option allows you
to determine the block size (the number of bytes read/written per block) of
the data being copied. By default, it is set to 512 bytes, but it can be changed
to speed up the process. Typically, this would be set to the sector size of the

Compressing and Archiving 99

device, most often 4KB (4,096 bytes). With these options, your command
would look like this:

kali >dd if=/dev/media of=/root/flashcopy bs=4096 conv=noerror

As mentioned, it’s worth doing a little more research on your own, but
this is a good introduction to the command and its common usages.

Summary
Linux has a number of commands to enable you to combine and compress
your files for easier transfer. For combining files, tar is the command of
choice, and you have at least three utilities for compressing files—gzip, bzip2,
and compress—all with different compression ratios. The dd command goes
above and beyond. It enables you to make a physical copy of storage devices
without the logical structures such as a filesystem, allowing you to recover
such artifacts as deleted files.

E X E RCISE S

Before you move on to Chapter 10, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Create three scripts to combine, similar to what we did in Chapter 8.
Name them Linux4Hackers1, Linux4Hackers2, and Linux4Hackers3.

2.	 Create a tarball from these three files. Name the tarball L4H. Note how the
size of the sum of the three files changes when they are tarred together.

3.	 Compress the L4H tarball with gzip. Note how the size of the file changes.
Investigate how you can control overwriting existing files. Now uncompress
the L4H file.

4.	 Repeat Exercise 3 using both bzip2 and compress.

5.	 Make a physical, bit-by-bit copy of one of your flash drives using the dd
command.

10
F I L E S Y S T E M A N D S T O R A G E

D E V I C E M A N A G E M E N T

If you are coming from a Windows envi-
ronment, the way that Linux represents

and manages storage devices will look
rather different to you. You’ve already seen

that the filesystem has no physical representation of
the drive, like the C:, D:, or E: system in Windows,
but rather has a file tree structure with / at the top,
or root, of it. This chapter takes a look at how Linux
represents storage devices such as hard drives, flash
drives, and other storage devices.

We first look how additional drives and other storage devices are
mounted upon that filesystem, leading up to the / (root) directory.
Mounting in this context simply means attaching drives or disks to the
filesystem to make them accessible to the operating system (OS). For you
as a hacker, it’s necessary to understand the file and storage device manage-
ment system, both on your own system and, often, the system of your target.

102 Chapter 10

Hackers commonly use external media to load data, hacking tools, or even
their OS. Once you’re on your target system, you need to understand what
you’re working with, where to find confidential or other critical files, how to
mount a drive to the target, and whether and where you can put those files
on your system. We cover all of these topics, plus how to manage and moni-
tor storage devices, in this chapter.

We begin with the directory known as /dev, which you’ve probably
already noticed in the directory structure: dev is short for device, and every
device in Linux is represented by its own file within the /dev directory. Let’s
start out by working with /dev.

The Device Directory /dev
Linux has a special directory that contains files representing each attached
device: the appropriately named /dev directory. As your first introduction,
navigate to the /dev directory and then perform a long listing on it. You
should see something like Listing 10-1.

kali >cd /dev
kali >ls -l
total 0
crw------- 1 root root 10, 175 May 16 12:44 agpgart
crw------- 1 root root 10, 235 May 16 12:44 autofs
drwxr-xr-x 1 root root 160 May 16 12:44 block
--snip--
lrwxrwxrwx 1 root root 3 May 16 12:44 cdrom -> sr0
--snip--
drwxr-xr-x 2 root root 60 May 16 12:44 cpu
--snip--

Listing 10-1: A long listing of the /dev directory

The devices are displayed in alphabetical order by default. You may
recognize some of the devices, such a cdrom and cpu, but others have
rather cryptic names. Each device on your system is represented by a file
in the /dev directory, including devices you’ve probably never used or even
realized existed. On the off chance you do, there is a device file waiting to
be used for it.

If you scroll down this screen a bit, you should see more listings of
devices. Of particular interest are the devices sda1, sda2, sda3, sdb, and
sdb1, which are usually the hard drive and its partitions and a USB flash
drive and its partitions.

--snip--
brw-rw---- 1 root root 8, 0 May 16 12:44 sda
brw-rw---- 1 root root 8, 1 May 16 12:44 sda1
brw-rw---- 1 root root 8, 2 May 16 12:44 sda2
brw-rw---- 1 root root 8, 5 May 16 12:44 sda5

Filesystem and Storage Device Management 103

brw-rw---- 1 root root 8, 16 May 16 12:44 sdb
brw-rw---- 1 root root 8, 17 May 16 12:44 sdb1
--snip--

Let’s take a closer look at these.

How Linux Represents Storage Devices
Linux uses logical labels for drives that are then mounted on the filesystem.
These logical labels will vary depending on where the drives are mounted,
meaning the same hard drive might have different labels at different times,
depending on where and when it’s mounted.

Originally, Linux represented floppy drives (remember those?) as fd0
and hard drives as hda. You will still occasionally see these drive repre-
sentations on legacy Linux systems, but today most floppy drives are gone
(thank goodness). Even so, old legacy hard drives that used an IDE or
E-IDE interface are still represented in the form hda. Newer Serial ATA
(SATA) interface drives and Small Computer System Interface (SCSI) hard
drives are represented as sda. Drives are sometimes split up into sections
known as partitions, which are represented in the labeling system with num-
bers, as you’ll see next.

When systems have more than one hard drive, Linux simply names
them serially by incrementing the last letter in alphabetical order, so the
first drive is sda, and the second drive is sdb, the third drive is sdc, and so
on (see Table 10-1). The serial letter after sd is often referred to as the major
number.

Table 10-1: Device-Naming System

Device file Description

sda First SATA hard drive

sdb Second SATA hard drive

sdc Third SATA hard drive

sdd Fourth SATA hard drive

Drive Partitions
Some drives can be split into partitions in order to manage and separate
information. For instance, you may want to separate your hard drive so
that your swap file, home directory, and / directory are all on separate
partitions—you might want to do this for a number of reasons, including
to share resources and to relax the default permissions. Linux labels each
partition with a minor number that comes after the drive designation. This
way, the first partition on the first SATA drive would be sda1. The second
partition would then be sda2, the third sda3, and so on, as illustrated in
Table 10-2.

104 Chapter 10

Table 10-2: Partition-Labeling System

Partition Description

sda1 The first partition (1) on the first (a) SATA drive

sda2 The second (2) partition on the first (a) drive

sda3 The third (3) partition on the first (a) drive

sda4 The fourth (4) partition on the first (a) drive

At times, you may want to view the partitions on your Linux system to
see which ones you have and how much capacity is available in each. You
can do this by using the fdisk utility. Using the -l switch with fdisk lists all
the partitions of all the drives, as shown in Listing 10-2.

kali >fdisk -l
Disk /dev/sda: 20GiB, 21474836480 bytes, 41943040 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x7c06cd70

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 39174143 39172096 18.7G 83 Linux
/dev/sda2 39176190 41940991 2764802 1.3G 5 Extended
/dev/sda5 39176192 41940991 2764800 1.3G 82 Linux swap / Solaris

Disk /dev/sdb: 29.8 GiB, 31999393792 bytes, 62498816 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0xc3072e18

Device Boot Start End Sectors Size Id Type
/dev/sdb1 32 62498815 62498784 29.8G 7 HPFS/NTFS/exFAT

Listing 10-2: Listing partitions with fdisk

As you can see in Listing 10-2, the devices sda1, sda2, and sda5 are
listed in the first stanza. These three devices make up the virtual disk from
my virtual machine, which is a 20GB drive with three partitions, including
the swap partition (sda5), which acts like virtual RAM—similar to page
files in Windows—when RAM capacity is exceeded.

If you scan down Listing 10-2 to the third stanza, you see a second
device output designated sdb1—the b label tells us that this drive is sepa-
rate from the first three devices. This is my 64GB flash drive. Note that
fdisk indicates that it is an HPFS/NTFS/ExFAT filesystem type. These file
types—High Performance File System (HPFS), New Technology File System
(NTFS), and Extended File Allocation Table (exFAT)—are not native to
Linux systems but rather to macOS and Windows systems. It’s worth being

Filesystem and Storage Device Management 105

able to recognize file types native to different systems when you investigate.
The filesystem might indicate what kind of machine the drive was format-
ted on, which can be valuable information. Kali is able to utilize USB flash
drives created on many different operating systems.

As you saw in Chapter 1, the Linux filesystem is structured significantly
differently than are Windows and other proprietary operating systems. On
top of this, the way files are stored and managed is different in Linux, too.
New versions of Windows use an NTFS filesystem, whereas older Windows
systems use File Allocation Table (FAT) systems. Linux uses a number of
different types of filesystems, but the most common are ext2, ext3, and
ext4. These are all iterations of the ext (or extended) filesystem, with ext4
being the latest.

Character and Block Devices
Something else to note about the naming of device files in the /dev direc-
tory is that the first position contains either c or b. You can see this in List
ing 10-1 at the start of most of the entries, and it looks something like this:

crw------- 1 root root 10, 175 May 16 12:44 agpgart

These letters represent the two ways that devices transfer data in and
out. The c stands for character, and these devices are known, as you might
expect, as character devices. External devices that interact with the system
by sending and receiving data character by character, such as mice or key-
boards, are character devices.

The b stands for the second type: block devices. They communicate in
blocks of data (multiple bytes at a time) and include devices like hard drives
and DVD drives. These devices require higher-speed data throughput and
therefore send and receive data in blocks (many characters or bytes at a
time). Once you know whether a device is a character or block device, you
can easily get more information about it, as you’ll see next.

List Block Devices and Information with lsblk
The Linux command lsblk, short for list block, lists some basic information
about each block device listed in /dev. The result is similar to the output
from fdisk -l, but it will also display devices with multiple partitions in a
kind of tree, showing each device with its partitions as branches, and does
not require root privileges to run. In Listing 10-3, for example, we see sda,
with its branches sda1, sda2, and sda5.

kali >lsblk
Name MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
fd0 2:0 1 4K 0 disk
sda1 8:0 0 20G 0 disk
|-sda1 8:1 0 18.7G 0 part /
|-sda2 8:2 0 1K 0 part
|-sda5 8:5 0 1.3G 0 part [SWAP]

106 Chapter 10

sdb 8:16 1 29.8G 0 disk
|-sdb1 8.17 1 29.8G 0 disk /media
sr0 11:0 1 2.7G 0 rom

Listing 10-3: Listing block device information with lsblk

The output may include the floppy drive as fd0 and DVD drive as sr0,
even though neither is on my system—this is simply a holdover from legacy
systems. We can also see information on the mount point of the drive—this is
the position at which the drive was attached to the filesystem. Note that the
hard drive sda1 is mounted at / and the flash drive is mounted at /media.
You’ll see more on the significance of this in the next section.

Mounting and Unmounting
Most modern operating systems, including most new versions of Linux,
automount storage devices when they’re attached, meaning the new flash
drive or hard drive is automatically attached to the filesystem. For those
new to Linux, mounting might be a foreign subject.

A storage device must be first physically connected to the filesystem and
then logically attached to the filesystem in order for the data to be made
available to the operating system. In other words, even if the device is physi-
cally attached to the system, it is not necessarily logically attached and avail-
able to the operating system. The term mount is a legacy from the early days
of computing when storage tapes (before hard drives) had to be physically
mounted to the computer system—think of those big computers with spin-
ning tape drives you might have seen old sci-fi movies.

As mentioned, the point in the directory tree where devices are attached
is known as the mount point. The two main mount points in Linux are /mnt
and /media. As a convention, devices such as external USB devices and flash
drives can be manually mounted at /mnt, but when automatically mounted,
the /media directory is used (though technically any directory can be used).

Mounting Storage Devices Yourself
In some versions of Linux, you need to mount a drive manually in order to
access its content, so this is a skill worth learning. To mount a drive on the
filesystem, use the mount command. The mount point for the device should
be an empty directory; if you mount a device on a directory that has subdi-
rectories and files, the mounted device will cover the contents of the direc-
tory, making them invisible and unavailable. So, to mount the new hard
drive sdb1 at the /mnt directory, you would enter the following:

kali >mount /dev/sdb1 /mnt

That hard drive should then be available for access. If you want to
mount the flash drive sdc1 at the /media directory, you would enter this:

kali >mount /dev/sdc1 /media

Filesystem and Storage Device Management 107

The filesystems on a system that are mounted at boot-time are kept in a
file at /etc/fstab (short for filesystem table), which is read by the system at every
bootup.

Unmounting with umount
If you’re coming from a Mac or Windows background, you’ve probably
unmounted a drive without knowing it. Before you remove a flash drive
from your system, you “eject” it to keep from causing damage to the files
stored on the device. Eject is just another word for unmount.

Similar to the mount command, you can unmount a second hard drive
by entering the umount command followed by the file entry of the device in
the /dev directory, such as /dev/sdb. Note that the command is not spelled
unmount but rather umount (no n).

kali >umount /dev/sdb1

You cannot unmount a device that is busy, so if the system is reading or
writing to the device, you will just receive an error.

Monitoring Filesystems
In this section, we look at some commands for monitoring the state of the
filesystem—a skill necessary for any hacker or system administrator. We’ll get
some info about mounted disks and then check for and fix errors. Storage
devices are particularly error prone, so it’s worth learning this skill.

Getting Information on Mounted Disks
The command df (for disk free) will provide us with basic information on
any hard disks or mounted devices, such as CD, DVD, and flash drives,
including how much space is being used and how much is available (see
Listing 10-4). Without any options, df defaults to all mounted drives. If
you want to check a different drive, simply follow the df command with
the drive representation you want to check (for example, df sdb).

kali >df
Filesystem 1K-Blocks Used Available Use% Mounted on
rootfs 19620732 17096196 1504788 92% /
udev 10240 0 10240 0% /dev
--snip--

/dev/sdb1 29823024 29712544 110480 99% /media/USB3.0

Listing 10-4: Getting information on disks and mounted devices with df

The first line of output here shows category headers, and then we get
the information. The disk space is given in 1KB blocks. On the second
line, we see that rootfs has 19,620,732 one-kilobyte blocks, of which it is

108 Chapter 10

using 17,096,196 (or about 92 percent), leaving 1,504,788 available. The
df command also tells us that this filesystem is mounted on the top of the
filesystem /.

In the last line, you can see my USB flash drive. Note that it is designated
/dev/sdb1, is nearly 100 percent full, and is mounted at /media/USB3.0.

As a recap, my virtual disk on this system is designated sda1, which
breaks down as follows:

sd  SATA hard drive

a  First hard drive

1  First partition on that drive

My 64GB flash drive is designated as sdb1, and my external drive as sdc1.

Checking for Errors
The fsck command (short for filesystem check) checks the filesystem for errors
and repairs the damage, if possible, or else puts the bad area into a bad blocks
table to mark it as bad. To run the fsck command, you need to specify the
device file to check. It’s important to note that you must unmount the drive
before running a filesystem check. If you fail to unmount the mounted
device, you will receive the error message shown in Listing 10-5.

kali >fsck
fsck from util-linux 2.20.1
e2fsck 1.42.5 (29-Jul-2012)
/dev/sda1 is mounted
e2fsck: Cannot continue, aborting.

Listing 10-5: Trying (and failing) to run an error check on a mounted drive

So, the first step when performing a filesystem check is to unmount the
device. In this case, I will unmount my flash drive to do a filesystem check:

kali >umount /dev/sdb1

I can add the -p option to have fsck automatically repair any problems
with the device, like so:

kali >fsck -p /dev/sdb1

With the device unmounted, I can now check for any bad sectors or
other problems with the device, as follows:

kali >fsck -p /dev/sdb1
fsck from util-linux 2.30.2
exfatfsck 1.2.7
Checking file system on /dev/sdb1.
File system version 1.0
Sector size 512 bytes

Filesystem and Storage Device Management 109

Cluster size 32 KB
Volume size 7648 MB
Used space 1265 MB
Available space 6383 MB
Totally 20 directories and 111 files.
File system checking finished. No errors found.

Summary
Understanding how Linux designates and manages its devices is crucial
for any Linux user and hacker. Hackers will need to know what devices
are attached to a system and how much space is available. Because storage
devices often develop errors, we can check and repair those errors with
fsck. The dd command is capable of making a physical copy of a device,
including any deleted files.

E X E RCISE S

Before you move on to Chapter 11, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Use the mount and umount commands to mount and unmount your flash
drive.

2.	 Check the amount of disk space free on your primary hard drive.

3.	 Check for errors on your flash drive with fsck.

4.	 Use the dd command to copy the entire contents of one flash drive to
another, including deleted files.

5.	 Use the lsblk command to determine basic characteristics of your block
devices.

11
T H E L O G G I N G S Y S T E M

For any Linux user, it’s crucial to be know­
ledgeable in the use of the log files. Log

files store information about events that
occur when the operating system and applica­

tions are run, including any errors and security alerts.
Your system will log information automatically based
on the series of rules that I will show you how to con­
figure in this chapter.

As a hacker, the log files can be a trail to your target’s activities and
identity. But it can also be a trail to your own activities on someone else’s
system. A hacker therefore needs to know what information they can gather,
as well as what can be gathered about their own actions and methods in
order to hide that evidence.

On the other side, anyone securing Linux systems needs to know how
to manage the logging functions to determine whether a system has been
attacked and then decipher what actually happened and who did it.

112 Chapter 11

This chapter shows you how to examine and configure log files, as well
as how to remove evidence of your activity and even disable logging alto­
gether. First, we’ll look at the daemon that does the logging.

The rsyslog Logging Daemon
Linux uses a daemon called syslogd to automatically log events on your com­
puter. Several variations of syslog, including rsyslog and syslog-ng, are used
on different distributions of Linux, and even though they operate very simi­
larly, some minor differences exist. Since Kali Linux is built on Debian, and
Debian comes with rsyslog by default, we focus on that utility in this chap­
ter. If you want to use other distributions, it’s worth doing a little research
on their logging systems.

Let’s take a look at rsyslog on your system. We’ll search for all files
related to rsyslog. First, open a terminal in Kali and enter the following:

kali >locate rsyslog
/etc/rsyslog.conf
/etc/rsyslog.d
/etc/default/rsyslog
/etc/init.d/rsyslog
/etc/logcheck/ignore.d.server/rsyslog
/etc/logrotate.d/rsyslog
/etc/rc0.d/K04rsyslog
--snip--

As you can see, numerous files contain the keyword rsyslog—some of
which are more useful than others. The one we want to examine is the con­
figuration file rsyslog.conf.

The rsyslog Configuration File
Like nearly every application in Linux, rsyslog is managed and configured
by a plaintext configuration file located, as is generally the case in Linux, in
the /etc directory. In the case of rsyslog, the configuration file is located at
/etc/rsyslog.conf. Open that file with any text editor, and we’ll explore what’s
inside (here, I use Leafpad):

kali >leafpad /etc/rsyslog.conf

You should see something like Listing 11-1.

#/etc/rsyslog.conf Configuration file for rsyslog.

For more information see
/usr/share/doc/rsyslog-doc/html/rsyslog_conf.html

#################
MODULES
#################

The Logging System 113

module(load="imuxsock") # provides support for local system logging
module(load="imklog") # provides kernel logging support
#module(load="immark") # provides --MARK-- message capability

provides UDP syslog reception
#module(load="imudp")
#input(type="imudp" port="514")

provides TCP syslog reception
#module(load="imtcp")
#input(type="imtcp" port="514")

###########################
GLOBAL DIRECTIVES
###########################
--snip--

Listing 11-1: A snapshot of the rsyslog.conf file

As you can see, the rsyslog.conf file comes well documented with numer­
ous comments explaining its use. Much of this information will not be use­
ful to you at this moment, but if you navigate down to below line 55, you’ll
find the Rules section. This is where you can set the rules for what your
Linux system will automatically log for you.

The rsyslog Logging Rules
The rsyslog rules determine what kind of information is logged, what pro­
grams have their messages logged, and where that log is stored. As a hacker,
this allows you to find out what is being logged and where those logs are
written so you can delete or obscure them. Scroll to about line 55 and you
should see something like Listing 11-2.

###############
RULES
###############
#
First some standard log files. Log by facility.
#
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
1pr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log

#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#

114 Chapter 11

mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Listing 11-2: Finding the logging rules in rsyslog.conf

Each line is a separate logging rule that says what messages are logged
and where they’re logged to. The basic format for these rules is as follows:

facility.priority action

The facility keyword references the program, such as mail, kernel, or
lpr, whose messages are being logged. The priority keyword determines
what kind of messages to log for that program. The action keyword, on
the far right, references the location where the log will be sent. Let’s look
at each section more closely, beginning with the facility keyword, which
refers to whatever software is generating the log, whether that’s the kernel,
the mail system, or the user.

The following is a list of valid codes that can be used in place of the
facility keyword in our configuration file rules:

auth, authpriv  Security/authorization messages

cron  Clock daemons

daemon  Other daemons

kern  Kernel messages

lpr  Printing system

mail  Mail system

user  Generic user-level messages

An asterisk wildcard (*) in place of a word refers to all facilities. You
can select more than one facility by listing them separated by a comma.

The priority tells the system what kinds of messages to log. Codes are
listed from lowest priority, starting at debug, to highest priority, ending at
panic. If the priority is *, messages of all priorities are logged. When you spec­
ify a priority, messages of that priority and higher are logged. For instance, if
you specify a priority code of alert, the system will log messages classified
as alert and higher priority, but it won’t log messages marked as crit or any
priority lower than alert.

Here’s the full list of valid codes for priority:

•	 debug

•	 info

•	 notice

•	 warning

•	 warn

•	 error

•	 err

The Logging System 115

•	 crit

•	 alert

•	 emerg

•	 panic

The codes warn, error, and panic have all been deprecated and should
not be used.

The action is usually a filename and location where the logs should be
sent. Note that generally, log files are sent to the /var/log directory with a
filename that describes the facility that generated them, such as auth. This
means, for example, that logs generated by the auth facility would be sent to
/var/log.auth.log.

Let’s look at some examples of log rules:

mail.* /var/log/mail

This example will log mail events of all (*) priorities to /var/log/mail.

kern.crit /var/log/kernel

This example will log kernel events of critical (crit) priority or higher
to /var/log/kernel.

.emerg :omusmsg:

This last example will log all events of the emergency (emerg) priority to
all logged-on users. With these rules, the hacker can determine where the
log files are located, change the priorities, or even disable specific logging
rules.

Automatically Cleaning Up Logs with logrotate
Log files take up space, so if you don’t delete them periodically, they will
eventually fill your entire hard drive. On the other hand, if you delete your
log files too frequently, you won’t have logs to investigate at some future
point in time. You can use logrotate to determine the balance between
these opposing requirements by rotating your logs.

Log rotation is the process of regularly archiving log files by moving them
to some other location, leaving you with a fresh log file. That archived loca­
tion will then get cleaned up after a specified period of time.

Your system is already rotating log files using a cron job that employs the
logrotate utility. You can configure the logrotate utility to choose the regu­
larity of your log rotation with the /etc/logrotate.conf text file. Let’s open it
with a text editor and take a look:

kali >leafpad /etc/logrotate.conf

116 Chapter 11

You should see something like Listing 11-3.

see "man logrotate" for details
rotate log files weekly

u weekly

keep 4 weeks worth of backlogs
v rotate 4

w # create new (empty) log files after rotating old ones
create

x # uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
include /etc/logrotate.d

system-specific logs may also be configured here

--snip--

Listing 11-3: The logrotate configuration file

First, you can set the unit of time your rotate numbers refer to u. The
default here is weekly, meaning any number after the rotate keyword always
refers to weeks.

Further down, you can see the setting for how often to rotate logs—the
default setting is to rotate logs every four weeks v. This default configura­
tion will work for most people, but if you want to keep your logs longer for
investigative purposes or shorter to clear them out quicker, this is the set­
ting you should change. For instance, if you check your log files every week
and want to save storage space, you could change this setting to rotate 1. If
you have plenty of storage for your logs and want to keep a semi-permanent
record for forensic analysis later, you could change this setting to rotate 26
to keep your logs for six months or rotate 52 to keep them for one year.

By default, a new empty log file is created when old ones are rotated
out w. As the comments in the configuration file advise, you can also
choose to compress your rotated log files x.

At the end of each rotation period, the log files are renamed and pushed
toward the end of the chain of logs as a new log file is created, replacing the
current log file. For instance, /var/log.auth will become /var/log.auth.1, then
/var/log.auth.2, and so on. If you rotate logs every four weeks and keep four
set of backups, you will have /var/log.auth.4, but no /var/log.auth.5, meaning
that /var/log.auth.4 will be deleted rather than being pushed to /var/log/
auth.5. You can see this by using the locate command to find /var/log/
auth.log log files with a wildcard, as shown here:

kali >ls /var/log/auth.log*
/var/log/auth.log.1

The Logging System 117

/var/log/auth.log.2
/var/log/auth.log.3
/var/log/auth.log.4

For more details on the many ways to customize and use the logrotate
utility, see the man logrotate page. This is an excellent resource to learn
about the functions you can use and the variables you can change to cus­
tomize how your logs are handled. Once you become more familiar with
Linux, you’ll get a better sense of how often you need to log and what
options you prefer, so it’s worth revisiting the logrotate.conf file.

Remaining Stealthy
Once you’ve compromised a Linux system, it’s useful to disable logging and
remove any evidence of your intrusion in the log files to reduce the chances
of detection. There are many ways to do this, and each carries its own risks
and level of reliability.

Removing Evidence
First, you’ll want to remove any logs of your activity. You could simply open
the log files and precisely remove any logs detailing your activity, line by
line, using the file deletion techniques you learned in Chapter 2. However,
this could be time-consuming and leave time gaps in the log files, which
would look suspicious. Also, deleted files can generally be recovered by a
skilled forensic investigator.

A better and more secure solution is to shred the log files. With other
file deletion systems, a skilled investigator is still able to recover the deleted
files (deleted files are simply made available to be overwritten by the file­
system; they still exist until they are overwritten), but suppose there was a
way to delete the file and overwrite it several times, making it much harder
to recover. Lucky for us, Linux has a built-in command, appropriately
named shred, for just this purpose.

To understand how the shred command works, take a quick look at the
help screen by entering the following command:

kali >shred --help
Usage: shred [OPTION]...FILE...
Overwrite the specified FILE(s) repeatedly in order to make it harder
for even very expensive hardware probing to recover data
--snip--

As you can see from the full output on your screen, the shred command
has many options. In its most basic form, the syntax is simple:

shred <FILE>

118 Chapter 11

On its own, shred will delete the file and overwrite it several times—
by default, shred overwrites four times. Generally, the more times the file is
overwritten, the harder it is to recover, but keep in mind that each overwrite
takes time, so for very large files, shredding may become time-consuming.

Two useful options to include are the -f option, which changes the per­
missions on the files to allow overwriting if a permission change is neces­
sary, and the –n option, which lets you choose how many times to overwrite
the files. As an example, we’ll shred the log files in /var/log/auth.log 10 times
using the following command:

kali >shred -f -n 10 /var/log/auth.log.*

We need the –f option to give us permission to shred auth files, and we
follow the –n option with the desired number of times to overwrite. After
the path of the file we want to shred, we include the wildcard asterisk so
we’re shredding not just the auth.log file, but also any logs that have been
created with logrotate, such as auth.log.1, auth.log.2, and so on.

Now try to open a log file:

kali >leafpad /var/log/auth.log.1

Once you’ve shredded a file, you’ll see that the contents are indecipher­
able gibberish, as shown in Figure 11-1.

Figure 11-1: A shredded log file

Now if the security engineer or forensic investigator examines the log
files, they will find nothing of use because none of it is recoverable!

Disabling Logging
Another option for covering your tracks is to simply disable logging. When
a hacker takes control of a system, they could immediately disable logging
to prevent the system from keeping track of their activities. This, of course,
requires root privileges.

To disable all logging, the hacker could simply stop the rsyslog daemon.
Stopping any service in Linux uses the same syntax, shown here (you’ll see
more on this in Chapter 12):

service servicename start|stop|restart

The Logging System 119

So, to stop the logging daemon, you could simply enter the following
command:

kali >service rsyslog stop

Now Linux will stop generating any log files until the service is
restarted, enabling you to operate without leaving behind any evidence
in the log files!

Summary
Log files track nearly everything that happens on your Linux system. They
can be an invaluable resource in trying to analyze what has occurred,
whether it be a malfunction or a hack. For the hacker, log files can be evi­
dence of their activities and identity. However, an astute hacker can remove
and shred these files and disable logging entirely, thus leaving no evidence
behind.

E X E RCISE S

Before you move on to Chapter 12, try out the skills you learned from this chapter
by completing the following exercises:

1.	 Use the locate command to find all the rsyslog files.

2.	 Open the rsyslog.conf file and change your log rotation to one week.

3.	 Disable logging on your system. Investigate what is logged in the file
/var/log/syslog when you disable logging.

4.	 Use the shred command to shred and delete all your kern log files.

12
U S I N G A N D A B U S I N G S E R V I C E S

In Linux terminology, a service is an appli-
cation that runs in the background wait-

ing for you to use it. Your Linux system has
dozens of services preinstalled. Of these, the

most well known is the ubiquitous Apache Web Server,
which is used for creating, managing, and deploying
web servers, but there are so many more. For the pur-
poses of this chapter on services, I have selected just
four that are of particular importance to the hacker:
Apache Web Server, OpenSSH, MySQL/MariaDB,
and PostgreSQL.

In this chapter, you’ll learn how to set up a web server with Apache,
physically spy with OpenSSH, access data with MySQL/MariaDB, and store
your hacking information with PostgreSQL

122 Chapter 12

Starting, Stopping, and Restarting Services
Before we begin to work with these four crucial services, let’s start by exam-
ining how to start, stop, and restart services in Linux.

Some services can be stopped and started via the GUI in Kali Linux,
much as you would on an operating system like Windows or Mac. However,
some services require use of the command line, which we’ll look at here.
Here is the basic syntax for managing services:

service servicename start|stop|restart

To start the apache2 service (web server or HTTP service), you would
enter the following:

kali >service apache2 start

To stop the Apache web server, enter:

kali >service apache2 stop

Usually, when you make a configuration change to an application
or service by altering its plaintext configuration file, you need to restart
the service to capture the new configuration. Thus, you would enter the
following:

kali >service apache2 restart

Now that you understand how to start, stop, and restart services from
the command line, let’s move on to the four most critical Linux services to
hackers.

Creating an HTTP Web Server with the Apache Web Server
The Apache Web Server is probably the most commonly used service on
Linux systems. Apache is found on over 55 percent of the world’s web serv-
ers, so any self-respecting Linux admin should be familiar with it. As a
hacker aspiring to hack websites, it’s critical to understand the inner work-
ings of Apache, websites, and the backend databases of these sites. You can
also use Apache to set up your own web server, from which you could serve
up malware via cross-site scripting (XSS) to anyone who visits your site, or
you could clone a website and redirect traffic to your site via abuse of the
Domain Name System (DNS). In either of these cases, a basic knowledge of
Apache is required.

Using and Abusing Services 123

Starting with Apache
If you have Kali running on your system, Apache is already installed. Many
other Linux distros have it installed by default as well. If you don’t have
Apache installed, you can download and install it from the repositories by
entering the following:

kali >apt-get install apache2

The Apache Web Server is often associated with the MySQL database
(which we will look at in the next section) and these two services are very
often paired with a scripting language such as Python or PHP to develop
web applications. This combination of Linux, Apache, MySQL, and PHP
or Python forms a powerful and robust platform for the development and
deployment of web-based applications, known collectively as LAMP. These
are the most widely used tools for developing websites in the Linux world—
and they’re very popular in the Microsoft world too, where they’re generally
referred to as WAMP, with the W standing for Windows.

From the command line enter the following:

kali >service apache2 start

Now that Apache is running in the background, it should be able to
serve up its default web page. Enter http://localhost/ in your favorite web
browser to bring up the web page, which should look something like
Figure 12-1.

Figure 12-1: The Apache2 Web Server default page

As you can see, Apache displays “It works” as its default web page. Now
that you know your Apache Web Server is working, let’s customize it!

124 Chapter 12

Editing the index.html File
Apache’s default web page is at /var/www/html/index.html. You can edit the
index.html file to serve up whatever information you want, so let’s create our
own. For this, you can use any text editor you please; I’ll be using Leafpad.
Open up /var/www/html/index.html and you should see something like
Listing 12-1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" I>

 u <title>Apache2 Debian Default Page: It works</title>
 <style type="text/css" media="screen">
 * {
 margin: Opx Opx Opx Opx;
 padding: Opx Opx Opx Opx;
 }
body, html {
 padding: 3px 3px 3px 3px;
 background-color: #D8DBE2;
 font-family: Verdana, sans-serif;
 font-size: 11pt;
 text-align: center;
}
div.main_page {
 position: relative;
 display: table;
--snip--

Listing 12-1: The Apache Web Server index.html file

Note here that the default web page has exactly the text that was dis-
played when we opened our browser to localhost, but in HTML format u.
All we need to do is edit or replace this file to have our web server display
the information we want.

Adding Some HTML
Now that we have the web server up and running and the index.html file
open, we can add whatever text we’d like the web server to serve up. We
will create some simple HTML blocks.

Let’s create this page. In a new file in your text editor, enter the code
shown in Listing 12-2.

<html>
<body>

<h1>Hackers-Arise Is the Best! </h1>

Using and Abusing Services 125

<p> If you want to learn hacking, Hackers-Arise.com </p>
<p> is the best place to learn hacking!</p>

</body>
</html>

Listing 12-2: Some simple HTML to add to the index.html file

Once you have entered the text exactly as it appears in Listing 12-2,
save this file as /var/www/html/index.html and close your text editor. Your
text editor will then prompt you that the file already exists. That’s okay. Just
overwrite the existing /var/www/html/index.html file.

Seeing What Happens
Having saved our /var/www/html/index.html file, we can check to see what
Apache will serve up. Navigate your browser once again to http://localhost,
and you should see something like Figure 12-2.

Figure 12-2: New Hackers-Arise website

Apache has served up our web page just as we created it!

OpenSSH and the Raspberry Spy Pi
SSH is an acronym for Secure Shell and is basically what enables us to connect
securely to a terminal on a remote system—a replacement for the insecure
telnet that was so common decades ago. When we’re building a web server,
SSH enables us to create an access list (a list of users who can use this service),
authenticate users with encrypted passwords, and encrypt all communica-
tion. This reduces the chance of unwanted users using the remote terminal
(due to the added authentication process) or intercepting our communica-
tion (due to encryption). Probably the most widely used Linux SSH service
is OpenSSH, which is installed on nearly every Linux distribution, includ-
ing Kali.

System administrators often use SSH to manage remote systems, and
hackers often use SSH to connect to compromised remote systems, so we’ll
do the same here. In this example, we use SSH to set up a remote Raspberry
Pi system for spying, something I call the “Raspberry Spy Pi.” For this, you’ll
need a Raspberry Pi and the attendant Raspberry Pi camera module.

126 Chapter 12

Before we do that, though, start OpenSSH on your Kali system with the
now familiar command:

kali >service ssh start

We’ll be using SSH to build and control a remote spying Raspberry Pi.
If you’re not already familiar with it, the Raspberry Pi is a tiny but powerful,
credit card–sized computer that works great as a remote spying tool. We
will employ a Raspberry Pi with a camera module to use as a remote spying
device. You can purchase a Raspberry Pi at nearly any electronics retailer,
including Amazon, for less than $50, and you can get the camera module
for about $15.

Here, we’ll use the Raspberry Spy Pi on the same network as our Kali
system, which allows us to use private, internal IP addresses. Of course,
when hacking in the real world, you’d probably want to set it up on another
remote network, but that would be a touch more difficult and beyond the
scope of this book.

Setting Up the Raspberry Pi
Make certain that your Raspberry Pi is running the Raspbian operating
system; this is simply another Linux distribution specifically ported for
the Raspberry Pi CPU. You can find download and installation instruc-
tions for Raspbian at https://www.raspberrypi.org/downloads/raspbian/. Nearly
everything you’ve learned in this book applies to the Raspbian OS on the
Raspberry Pi as well as Kali, Ubuntu, and other Linux distributions.

Once you have your Raspbian OS downloaded and installed, you’ll
need to connect your Raspberry Pi to a monitor, mouse, and keyboard
and then connect it to the internet. If this is all new to you, check out the
instructions at https://www.raspberrypi.org/learning/hardware-guide/. With
everything set up, log in with the username pi and the password raspberry.

Building the Raspberry Spy Pi
The first step is to make certain that SSH is running and enabled on the
Raspberry Spy Pi. SSH is usually off by default, so to enable it, go to the
Preferences menu and launch Raspberry Pi Configuration. Then go to the
Interfaces tab and, next to SSH, click Enabled (if it is not already checked)
and click OK.

When SSH is enabled, you can start it on your Raspberry Spy Pi by
opening a terminal and entering the following:

$ pi >service ssh start

Next you need to attach your camera module. If you’re using a Raspberry
Pi version 3 board, there’s only one place to connect it. Switch the Pi off,

Using and Abusing Services 127

attach the module to the camera port, and then switch it on again. Note that
the camera is very fragile and must never come into contact with the general-
purpose input/output (GPIO) pins; otherwise, it might short and die.

Now, with the SSH service up and running, place the Raspberry Spy
Pi somewhere within your home, school, or some other location you want
to spy on. It must, of course, be connected to the local area network,
either by Ethernet cable or, ideally, via Wi-Fi. (The new Raspberry Pi 3 and
Raspberry Pi Zero both have built-in Wi-Fi.)

Now, you need to obtain the IP address of your Raspberry Pi. As you
learned in Chapter 3, you can get a Linux device’s IP address by using
ifconfig:

pi >ifconfig

The IP address of my Pi is 192.168.1.101, but make certain you are using
the IP address of your Raspberry Spy Pi wherever my address appears in this
chapter. Now, from your Kali system, you should be able to connect directly
to and control your Raspberry Spy Pi and use it as a remote spying system.
In this simple example, your system will need to be on the same network as
the Pi.

To connect to the remote Raspberry Spy Pi via SSH from your Kali
system, enter the following, remembering to use your own Pi’s IP address:

kali >ssh pi@192.168.1.101
pi@192.168.1.101's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, the extent
permitted by applicable law
last login: Tues Jan. 1 12:01:01 2018
pi@raspberyypi:: $

The Spy Pi will then prompt you for a password. In this case, the default
password is raspberry, unless you’ve changed it.

Configuring the Camera
Next, we need to configure the camera. To do so, start the Raspberry Pi
configuration tool by entering the following command:

pi >sudo raspi-config

This should start a graphical menu like the one shown in Figure 12-3.

128 Chapter 12

Figure 12-3: The Raspberry Pi configuration tool

Scroll down to 6 Enable Camera and press enter. Now, scroll to the bot-
tom of this menu and select Finish and press enter, as shown in Figure 12-4.

Figure 12-4: Finishing the configuration

When the configuration tool asks if you want to reboot, as shown in
Figure 12-5, select Yes and press enter again.

Figure 12-5: Reboot the Pi to enable the changes.

Now your Raspberry Spy Pi camera should be enabled and ready for
spying!

Using and Abusing Services 129

Starting to Spy
Once your Raspberry Spy Pi has rebooted and you have logged in to it via
SSH from your Kali terminal, you are ready to start using it to spy by taking
still pictures.

The Raspbian operating system has an application named raspistill
that we will be using to take pictures from our little Raspberry Spy Pi.
Enter raspistill into the terminal to see the tool’s help screen and all of
its options:

pi@raspberrypi: raspistill
raspistill Camera App v1.3.8
Runs camera for specific time, and takes JPG capture at end if requested
usage: raspistill [options]
Image parameter commands
--snip--

Let’s now use the Raspberry Spy Pi to take some remote spying pictures!
The raspistill command has numerous options you should explore, but
here we’ll simply use the defaults. To take a picture and save it as a JPEG,
enter the following:

pi@raspberrypi: raspistill -v -o firstpicture.jpg
raspistill Camera App v1.3.8
width 2592, Height 1944, quality 85, filename firstpicture.jpg
Time delay 5000, Raw no
--snip--

We use the –v option to give us verbose output and the –o option to tell
raspistill we’re about to give it a filename to use; then we give the filename.
When we do a long listing on the Raspberry Spy Pi, we can see the file
firstpicture.jpg, as shown here:

pi@raspberrypi: ls -l
total 2452
drwxr-xr-x 2 pi pi 4096 Mar 18 2019 Desktop
drwxr-xr-x 2 pi pi 4096 Mar 18 2019 Documents
drwxr-xr-x 2 pi pi 4096 Mar 18 2019 Downloads
-rw-r--r-- 1 pi pi 2472219 Mar 18 2019 firstpicture.jpg
drwxr-xr-x 2 pi pi 4096 Mar 18 2019 Music
drwxr-xr-x 2 pi pi 4096 Mar 18 2019 Pictures
--snip--

We've taken our very first spy picture on our remote Raspberry Spy Pi
using SSH! Feel free to explore this versatile weapon further.

130 Chapter 12

Extracting Information from MySQL/MariaDB
MySQL is the most widely used database behind database-driven web
applications. In our modern era of Web 2.0 technologies, where nearly
every website is database driven, this means MySQL/MariaDB holds the
data for most of the web.

Databases are the “golden fleece” for hackers. They contain critical
information about users as well as confidential information such as credit
card numbers. For this reason, hackers are most often targeting databases.

Like Linux, MySQL and MariaDB are open source and general public
licensed (GPL), and you’ll find at least one of them preinstalled on nearly
every Linux distribution.

Being free, open source, and powerful, MySQL and MariaDB have
become the databases of choice for many web applications, including
popular websites such as WordPress, Facebook, LinkedIn, Twitter, Kayak,
Walmart.com, Wikipedia, and YouTube.

Other popular content management systems (CMSs) such as Joomla,
Drupal, and Ruby on Rails all use MySQL, too. You get the idea. If you want
to develop or attack the backend databases of web applications, you should
know a little SQL. In the following sections, I’ll assume you’re working from
MySQL, though the commands will work for either MariaDB or MySQL;
the output will just be a little different. Let’s get started.

PA S T A ND F U T UR E OF M YSQL

MySQL was first developed by MySQL AB of Sweden in 1995 and then was
purchased by Sun Microsystems in 2008, which in turn was purchased by
Oracle in 2009—so MySQL is now owned by Oracle. Oracle is the world’s
largest database software publisher, so the open source community has
significant trepidations about Oracle’s commitment to keeping MySQL open
source. As a result, there is now a fork of the MySQL database software called
“Maria” that is committed to keeping this software and its subsequent versions
open source. As a Linux admin or hacker, you should keep an eye on Maria.

Starting MySQL or MariaDB
Fortunately, Kali has either MySQL or MariaDB already installed (if you’re
using another distribution, you can download and install MySQL from the
software repository or directly from https://www.mysql.com/downloads/).

To start your MySQL or MariaDB service, enter the following into the
terminal:

kali >service mysql start

Using and Abusing Services 131

Next, you need to authenticate yourself by logging in. Enter the follow-
ing and, when prompted for a password, just press enter:

kali >mysql -u root -p
Enter password:
Welcome to MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.6.30-1 (Debian)
Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement
mysql >

In the default configuration of MySQL or MariaDB, the root user’s
password is empty. Obviously, this is a major security vulnerability, and you
should remedy this by adding a password after your first login. Note that
usernames and passwords for your operating system and MySQL are sepa-
rate and distinct. Let’s change the password for the MySQL root user now
in order to be safe.

Interacting with SQL
SQL is an interpreted programming language for interfacing with a data-
base. The database is often a relational database, meaning data is stored
in multiple tables that interact and each table has values in one or more
columns and rows.

There are several implementations of SQL, each with its own commands
and syntax, but here are a few common commands:

select  Used to retrieve data

union   Used to combine the results of two or more select operations

insert  Used to add new data

update  Used to modify existing data

delete  Used to delete data

You can supply conditions to each command in order to be more spe-
cific about what you want to do. For example, the line

select user, password from customers where user='admin';

will return the values for the user and password fields for any user whose
user value is equal to “admin” in the customers table.

Setting a Password
Let’s see what users are already in our MySQL system by entering the
following. (Note that commands in MySQL are terminated with a
semicolon.)

132 Chapter 12

mysql >select user, host, password from mysql.user;
+--
| user | host | password
+--
|root |localhost |
--snip--

This shows that the root users have no password set. Let’s assign a
password to root. To do so we’ll first select a database to work with. MySQL
on your system will come with some databases already set up. Use the
show databases; command to see all the available databases:

mysql >show databases;
+-------------------------------+
| Database |
+-------------------------------+
| information_schema |
| mysql |
| performance_schema |
+-------------------------------+
3 rows in set (0.23 sec)

MySQL comes with three databases by default, two of which (information_
schema and performance_schema) are administrative databases that we won’t use
here. We’ll use the non-administrative database, mysql, which is included for
your own purposes. To begin using the mysql database, enter:

mysql >use mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

This command connects us to mysql. Now, we can set the password for
the root user to hackers-arise with the following command:

mysql >update user set password = PASSWORD("hackers-arise") where user = 'root';

This command will update the user by setting the user’s root password
to hackers-arise.

Accessing a Remote Database
To access a MySQL database on the localhost, we use the following syntax:

kali >mysql -u <username> -p

Using and Abusing Services 133

This command defaults to using the MySQL instance on the localhost
if it isn’t given a hostname or IP address. To access a remote database, then,
we need to provide the hostname or IP address of the system that is hosting
the MySQL database. Here’s an example:

kali >mysql -u root -p 192.168.1.101

This will connect us to the MySQL instance at 192.168.1.101 and prompt
us for a password. For demonstration purposes, I am connecting to a MySQL
instance on my local area network (LAN). If you have a system on your
network with MySQL installed, use its IP address here. I will assume you’ve
managed to bypass the password and have logged in to system as root (you
already know that by default, the mysql database has no password).

This opens up the MySQL command line interface, which provides us
with the mysql > prompt. As well as this command line interface, MySQL has
GUI interfaces—both native (MySQL Workbench) and third party (Navicat
and TOAD for MySQL). For you as a hacker, the command line interface
may be the best opportunity for exploiting the MySQL database, so we’ll
focus on that here. It’s unlikely that as an unauthorized entrant to the data-
base, you will be presented with an easy-to-use GUI.

N O T E 	 Remember that all commands must end in a semicolon or \g (unlike Microsoft’s SQL
Server) and that we can get help by entering help; or \h.

Now that we’re logged in as the system admin, we can navigate unim-
peded through the database. If we had logged in as a regular user, our
navigation would be limited by the permissions provided by the system
administrator for that user.

Connecting to a Database
With access to the system, we want to snoop around. Our next step is to find
out whether there are any databases worth accessing. Here is the command
to find which databases are on the accessed system:

mysql >show databases;
+-------------------------------+
| Database |
+-------------------------------+
| information schema |
| mysql |
| creditcardnumbers |
| performance_schema |
+-------------------------------+
4 rows in set (0.26 sec)

Aha! We’ve found a database worth exploring named creditcardnumbers.
Let’s connect to it.

134 Chapter 12

In MySQL, as in other database management systems (DBMS), we can
connect to the database we are interested in by entering use databasename;.

mysql >use creditcardnumbers;
Database changed

The Database changed response indicates that we are now connected to
the creditcardnumbers database.

Of course, it should go without saying that it’s unlikely a database
admin would be so accommodating as to name a database something
as easily recognizable as creditcardnumbers, so you may need to do a bit of
exploring to find a database of interest.

Database Tables
We are now connected to the creditcardnumbers database and can do a bit of
exploring to see what information it might hold. Data in a database is orga-
nized into tables, and each table might hold a different set of related data.
We can find out what tables are in this database by entering the following
command:

mysql >show tables;
+-----------------------------------+
| Tables_in_creditcardnumbers |
+-----------------------------------+
| cardnumbers |
+-----------------------------------+
1 row in set (0.14 sec)

Here, we can see that this database has just one table in it, called
cardnumbers. Generally, databases will have numerous tables in them, so it’s
likely you’ll have to do a bit more snooping. In this sample database, we are
fortunate to be able to focus our attention on this single table to extract the
hacker’s golden fleece!

Now that we have a table we want to examine, we need to understand
the structure of that table. Once we know how the table is laid out, we can
extract the relevant information.

You can see the structure of the table using the describe statement,
like so:

mysql >describe cardnumbers;
+---------------+--------------+---------+-----------+---------+---------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+---------+-----------+---------+---------+
customers	varchar(15)	YES		NULL	
address	varchar(15)	YES		NULL	
city	varchar(15)	YES		NULL	
state	varchar(15)	YES		NULL	
cc	int(12)	NO		0	
+---------------+--------------+---------+-----------+---------+---------+

Using and Abusing Services 135

MySQL responds with the critical information on the structure of our
table of interest. We can see the name of each field as well as the data type
it holds (often the text type varchar or integer type int). We can also see
whether it will accept NULL values; the key, if any exists (the key links tables);
any default values a field might have; and any extra information at the end,
such as notes.

Examining the Data
To actually see the data in the table, we use the SELECT command. The SELECT
command requires you to know the following information:

•	 The table that holds the data you want to view

•	 The columns within that table that hold the data you want to view

We lay this out in the following format:

SELECT columns FROM table;

As a handy shortcut to look at data from all the columns, we can use an
asterisk as a wildcard instead of typing out every column name we want to
look at. So, to see a dump of all the data from the cardnumbers table, we enter
the following:

mysql >SELECT * FROM cardnumbers;
+-----------+---------------+-------------+---------+--------------+
| customers | address | city | state | cc |
+-----------+---------------+-------------+---------+--------------+
Jones	1 Wall St	NY	NY	12345678
Sawyer	12 Piccadilly	London	UK	234567890
Doe	25 Front St	Los Angeles	CA	4567898877
+-----------+---------------+-------------+---------+--------------+

As you can see, MySQL has displayed all the information from the
cardnumbers table to our screen. We have found the hacker’s golden fleece!

PostgreSQL with Metasploit
PostgreSQL, or just Postgres, is another open source relational database
often used in very large, internet-facing applications due to its ability to
scale easily and handle heavy workloads. It was first released in July 1996
and is maintained by a substantial group of developers known as the
PostgreSQL Global Development Group.

PostgreSQL is also installed by default in Kali, but if you are using
another Linux distribution, it will likely be in your repository and you can
install it by entering the following command:

kali >apt-get postgres install

136 Chapter 12

As a hacker, you will find PostgreSQL particularly important because
it is the default database of the most widely used penetration testing and
hacking framework, Metasploit. Metasploit uses PostgreSQL to store its
modules, as well as the results of scans and exploits, for ease of use in a pen-
etration test or hack. For that reason, we will be using PostgreSQL here in
the context of Metasploit.

As with nearly all the services in Linux, we can start PostgreSQL by
entering service application start, like so:

kali >service postgresql start

With PostgreSQL up and running, let’s start Metasploit:

kali >msfconsole

Note that when Metasploit has completed starting up, you will see an
msf > prompt.

Teaching you how to use Metasploit for hacking and exploitation pur-
poses is beyond the scope of this book, but here we’ll set up the database
that Metasploit will store its information in.

With Metasploit running, we can set up PostgreSQL with the following
command so that it stores data from any Metasploit activity on your system:

msf >msfdb init
[*] exec :msfdb init
Creating database use 'msf'
Enter password for new role
Enter it again:
Creating databases 'msf' and 'msf_test'
Creating configuration file /usr/share/metasploit-framework/config/database.yml
Creating initial database schema

Next, we need to log in to Postgres as root. Here, we precede the com-
mand with su, the “switch user” command, to obtain root privileges:

msf >su postgres
[*] su postgres
postgres@kali:/root$

When you log in to Postgres, you will see that the prompt has changed
to postgres@kali:/root$, representing the application, the hostname, and
the user.

In the next step, we need to create a user and password, like so:

postgres@kali:/root$ createuser msf_user -P
Enter Password for new role:
Enter it again:

Using and Abusing Services 137

We create the username msf_user using the –P (uppercase P) option with
the createuser command. Then enter your desired password twice. Next, you
need to create the database and grant permissions for msf_user. Name the
database hackers_arise_db, as shown here:

postgres@kali:/root$ createdb --owner=msf_user hackers_arise_db
postgres@kali:/root$ exit

When you exit from Postgres with the exit command, the terminal will
fall back into the msf > prompt.

Next, we have to connect our Metasploit console, msfconsole, to our
PostgreSQL database by defining the following:

•	 The user

•	 The password

•	 The host

•	 The database name

In our case, we can connect msfconsole to our database with the follow-
ing command:

msf >db_connect msf_user:password@127.0.0.1/hackers_arise_db

You will, of course, need to provide the password you used earlier. The
IP address is that of your local system (localhost), so you can use 127.0.0.1
unless you built this database on a remote system.

Lastly, we can check the status of the PostgreSQL database to make
sure it’s connected:

msf >db_status
[*] postgresql connected to msf

As you can see, Metasploit responds that the PostgreSQL database is
connected and ready to use. Now when we do a system scan or run exploits
with Metasploit, the results will be stored in our PostgreSQL database. In
addition, Metasploit now stores its modules in our Postgres database, mak-
ing searches for the right module much easier and faster!

Summary
Linux has numerous services that run in the background until the user
needs them. The Apache Web Server is the most widely used, but a hacker
should be familiar with MySQL, SSH, and PostgreSQL for various tasks,
too. In this chapter, we covered the absolute basics of getting started with
these services. Once you’re comfortable with your Linux system, I urge you
to go out and explore each of these services further.

138 Chapter 12

E X E RCISE S

Before you move on to Chapter 13, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Start your apache2 service through the command line.

2.	 Using the index.html file, create a simple website announcing your arrival
into the exciting world of hacking.

3.	 Start your SSH service via the command line. Now connect to your Kali
system from another system on your LAN.

4.	 Start your MySQL database service and change the root user password to
hackers-arise. Change to the mysql database.

5.	 Start your PostgreSQL database service. Set it up as described in this
chapter to be used by Metasploit.

13
B E C O M I N G S E C U R E A N D

A N O N Y M O U S

Today, nearly everything we do on the
internet is tracked. Whoever is doing the

tracking—whether it be Google tracking our
online searches, website visits, and email or the

National Security Agency (NSA) cataloging all our
activities—our every online move is being recorded,
indexed, and then mined for someone’s benefit. The average individual—
and the hacker, in particular—needs to understand how to limit this track-
ing and remain relatively anonymous on the web to limit this ubiquitous
surveillance.

In this chapter, we look at how you can navigate the World Wide Web
anonymously (or as close as you can get) using four methods:

•	 The Onion Network

•	 Proxy servers

•	 Virtual private networks

•	 Private encrypted email

140 Chapter 13

No one method is sure to keep your activities safe from prying eyes, and
given enough time and resources, anything can be tracked. However, these
methods will likely make the tracker’s job much more difficult.

How the Internet Gives Us Away
To begin, let’s discuss at a high level some of the ways our activities on the
internet are tracked. We won’t go into all tracking methods, or into too much
detail about any one method, as that would be beyond the scope of this book.
Indeed, such a discussion could take up an entire book on its own.

First, your IP address identifies you as you traverse the internet. Data
sent from your machine is generally tagged with your IP address, making
your activities easy to track. Second, Google and other email services will
“read” your email, looking for keywords to more efficiently serve you ads.
Although there are many more sophisticated methods that are far more
time and resource intensive, these are the ones we try to prevent in this
chapter. Let’s start by taking a look at how IP addresses give us away on the
internet.

When you send a packet of data across the internet, it contains the IP
addresses of the source and destination for the data. In this way, the packet
knows where it is going and where to return the response. Each packet hops
through multiple internet routers until it finds its destination and then
hops back to the sender. For general internet surfing, each hop is a router
the packet passes through to get to its destination. There can be as many as
20–30 hops between the sender and the destination, but usually any packet
will find its way to the destination in fewer than 15 hops.

As the packet traverses the internet, anyone intercepting the packet can
see who sent it, where it has been, and where it’s going. This is one way web-
sites can tell who you are when arrive and log you in automatically, and it’s
also how someone can track where you’ve been on the internet.

To see what hops a packet might make between you and the destination,
you can use the traceroute command, as shown next. Simply enter traceroute
and the destination IP address or domain, and the command will send out
packets to the destination and trace the route of those packets.

kali >traceroute google.com
traceroute to google.com (172.217.1.78), 30 hops max, 60 bytes packets
1 192.168.1.1 (192.168.1.1) 4.152 ms 3.834 ms 32.964 ms
2 10.0.0.1 (10.0.0.1) 5.797 ms 6.995 ms 7.679 ms
3 96.120.96.45 (96.120.96.45) 27.952 ms 30.377 ms 32.964 ms
--snip--
18 lgal15s44-in-f14.le100.net (172.217.1.78) 94.666 ms 42.990 ms 41.564 ms

As you can see, www.google.com is 18 hops across the internet from me.
Your results will likely be different because your request would be com-
ing from a different location and because Google has many servers across
the globe. In addition, packets don’t always take the same route across the

Becoming Secure and Anonymous 141

internet, so you might send another packet from your address to the same
site and receive a different route. Let’s see how we can disguise all this with
the Tor network.

The Onion Router System
In the 1990s, the US Office of Naval Research (ONR) set out to develop a
method for anonymously navigating the internet for espionage purposes.
The plan was to set up a network of routers that was separate from the
internet’s routers, that could encrypt the traffic, and that only stored the
unencrypted IP address of the previous router—meaning all other router
addresses along the way were encrypted. The idea was that anyone watching
the traffic could not determine the origin or destination of the data. This
research became known as “The Onion Router (Tor) Project” in 2002, and
it’s now available to anyone to use for relatively safe and anonymous naviga-
tion on the web.

How Tor Works
Packets sent over Tor are not sent over the regular routers so closely moni-
tored by so many but rather are sent over a network of over 7,000 routers
around the world, thanks to volunteers who allow their computers to be used
by Tor. On top of using a totally separate router network, Tor encrypts the
data, destination, and sender IP address of each packet. At each hop, the
information is encrypted and then decrypted by the next hop when it’s
received. In this way, each packet contains information about only the pre-
vious hop along the path and not the IP address of the origin. If someone
intercepts the traffic, they can see only the IP address of the previous hop,
and the website owner can see only the IP address of the last router that
sent the traffic (see Figure 13-1). This ensures relative anonymity across
the internet.

Annie

+

++

Bill

+ Tor node
Encrypted path
Clear path

+

+

Figure 13-1: How Tor uses encrypted traffic data

142 Chapter 13

To enable the use of Tor, just install the Tor browser from https://www
.torproject.org/. Once installed, it will look something like Figure 13-2, and
you can use it like any old internet browser. By using this browser, you’ll be
navigating the internet through a separate set of routers and will be able to
visit sites without being tracked by Big Brother. Unfortunately, the tradeoff
is that surfing via the Tor browser can be a lot slower; because there are not
nearly as many routers, the bandwidth is limited in this network.

Figure 13-2: The landing page for the Tor browser

In addition to being capable of accessing nearly any website on the tra-
ditional internet, the Tor browser is capable of accessing the dark web. The
websites that make up the dark web require anonymity, so they allow access
only through the Tor browser, and they have addresses ending in .onion for
their top-level domain (TLD). The dark web is infamous for illegal activity,
but a number of legitimate services are also available there. A word of cau-
tion, however: when accessing the dark web, you may come across material
that many will find offensive.

Security Concerns
The intelligence and spy services of the United States and other nations
consider the Tor network a threat to national security, believing such an
anonymous network enables foreign governments and terrorists to com-
municate without being watched. As a result, a number of robust, ambi-
tious research projects are working to break the anonymity of Tor.

Tor’s anonymity has been broken before by these authorities and will
likely be broken again. The NSA, as one instance, runs its own Tor routers,
meaning that your traffic may be traversing the NSA’s routers when you use

https://www.torproject.org/
https://www.torproject.org/

Becoming Secure and Anonymous 143

Tor. If your traffic is exiting the NSA’s routers, that’s even worse, because
the exit router always knows your destination. The NSA also has a method
known as traffic correlation, which involves looking for patterns in incoming
and outgoing traffic, that has been able to break Tor’s anonymity. Though
these attempts to break Tor won’t affect Tor’s effectiveness at obscuring
your identity from commercial services, such as Google, they may limit the
browser’s effectiveness in keeping you anonymous from spy agencies.

Proxy Servers
Another strategy for achieving anonymity on the internet is to use proxies,
which are intermediate systems that act as middlemen for traffic: the user
connects to a proxy, and the traffic is given the IP address of the proxy
before it’s passed on (see Figure 13-3). When the traffic returns from
the destination, the proxy sends the traffic back to the source. In this
way, traffic appears to come from the proxy and not the originating IP
address.

Your IP address
65.55.125.1289

Web serverYour ISP

Proxy serverYo
ur

IP
ad

dre
ss

65
.55

.12
5.1

28
9 IP proxy server

172.23.26.8

Figure 13-3: Running traffic through a proxy server

Of course, the proxy will likely log your traffic, but an investigator would
have to get a subpoena or search warrant to obtain the logs. To make your
traffic even harder to trace, you can use more than one proxy, in a strategy
known as a proxy chain, which we’ll look at a little later in this chapter.

Kali Linux has an excellent proxying tool called proxychains that you
can set up to obscure your traffic. The syntax for the proxychains command
is straightforward, as shown here:

kali >proxychains <the command you want proxied> <arguments>

The arguments you provide might include an IP address. For example,
if you wanted to use proxychains to scan a site with nmap anonymously, you
would enter the following:

kali >proxychains nmap -sT -Pn <IP address>

144 Chapter 13

This would send the nmap –sS stealth scan command to the given IP
address through a proxy. The tool then builds the chain of proxies itself,
so you don’t have to worry about it.

Setting Proxies in the Config File
In this section, we set a proxy for the proxychains command to use. As
with nearly every application in Linux/Unix, configuration of proxychains
is managed by the config file—specifically /etc/proxychains.conf. Open
the config file in your text editor of choice with the following command
(replacing leafpad with your chosen editor if necessary):

kali >leafpad /etc/proxychains.conf

You should see a file like the one shown in Listing 13-1.

proxychains.conf VER 3.1
HTTP, SOCKS4, SOCKS5 tunneling proxifier with DNS.

The option below identifies how the ProxyList is treated.
only one option should be uncommented at time,
otherwise the last appearing option will be accepted
#
dynamic_chain
#
Dynamic - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain
(dead proxies are skipped)
otherwise EINTR is returned to the app
#
strict chain
#
Strict - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
all proxies must be online to play in chain
otherwise EINTR is returned to the app

--snip--

Listing 13-1: The proxychains.conf file

Scroll down this file to line 61, and you should see the ProxyList section,
as shown in Listing 13-2.

[ProxyList]
add proxy here...
meanwhile

Becoming Secure and Anonymous 145

defaults set to "tor"
socks4 127.0.0.1 9050

Listing 13-2: The section of the config file for adding proxies

We can add proxies by entering the IP addresses and ports of the proxies
we want to use in this list. For now, we’ll use some free proxies. You can find
free proxies by googling “free proxies” or using the site http://www.hidemyna
.me, as shown in Figure 13-4. Note, however, that using free proxies in real-life
hacking activity is not a good idea. I’ll cover this in more detail later in the
chapter. The example used here is just for educational purposes.

Figure 13-4: Free proxies from http://www.hidemy.name

Fill in the details in the form or just click search; then add one of the
resulting proxies to your proxychains.conf file using the following format:

Type IPaddress Port

Here’s an example:

 [ProxyList]
add proxy here...
socks4 114.134.186.12 22020
meanwhile
defaults set to "tor"
socks4 127.0.0.1 9050

http://www.hidemyna.me
http://www.hidemyna.me

146 Chapter 13

It’s important to note that proxychains defaults to using Tor if you
don’t enter any proxies of your own. The last line in Listing 13-2 directs
proxychains to send traffic first through the host at 127.0.0.1 on port 9050
(the default Tor configuration). If you’re not adding your own proxies and
want to use Tor, leave this as it is. If you are not using Tor, you’ll need to
comment out this line (add a # before it).

As much as I like Tor, as mentioned, it is usually very slow. Also, because
the NSA has broken Tor, I am much less likely to depend on it for anonym-
ity. I therefore comment out this line and add my own set of proxies.

Let’s test it out. In this example, I am going to open the browser Firefox
and have it navigate to https://www.hackers-arise.com/ anonymously by send-
ing the traffic through a proxy.

The command is as follows:

kali >proxychains firefox www.hackers-arise.com

This successfully opens https://www.hackers-arise.com/ in Firefox through
my chosen proxy and returns the results to me. To anyone tracing this traffic,
it appears that it was my proxy that navigated to https://www.hackers-arise.com/
rather than my IP address.

Some More Interesting Options
Now that we have proxychains working, let’s look at some other options we
can configure through the proxychains.conf file. As we now have it set up, we
are simply using a single proxy. However, we can put in multiple proxies and
use all of them, we can use a limited number from the list, or we can have
proxychains change the order randomly. Let’s try all these options.

Adding More Proxies

First, let’s add some more proxies to our list. Go back to http://www.hidemy
.name and find some more proxy IP addresses. Then add a few more of
these proxies to your proxychains.conf file, like so:

[ProxyList]
add proxy here...
socks4 114.134.186.12 22020
socks4 188.187.190.59 8888
socks4 181.113.121.158 335551

Now save this config file and try running the following command:

kali >proxychains firefox www.hackers-arise.com

You won’t notice any difference, but your packet is now traveling
through several proxies.

http://www.hidemyna.me
http://www.hidemyna.me

Becoming Secure and Anonymous 147

Dynamic Chaining

With multiple IPs in our proxychain.conf file, we can set up dynamic chaining,
which runs our traffic through every proxy on our list and, if one of the
proxies is down or not responding, automatically goes to the next proxy in
the list without throwing an error. If we didn’t set this up, a single failing
proxy would break our request.

Go back into your proxychains configuration file, find the dynamic_chain
line (line 10), and uncomment it, as shown next. Also make sure you com-
ment out the strict_chain line if it isn’t already.

dynamic_chain
#
Dynamic – Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain
--snip--

This will enable dynamic chaining of our proxies, thus allowing for
greater anonymity and trouble-free hacking. Save the config file and feel
free to try it out.

Random Chaining

Our final proxy trick is the random chaining option, where proxychains will
randomly choose a set of IP addresses from our list and use them to create
our proxy chain. This means that each time we use proxychains, the proxy
will look different to the target, making it harder to track our traffic from
its source. This option is also considered “dynamic” because if one of the
proxies is down, it will skip to the next one.

Go back inside the /etc/proxychains.conf file and comment out the lines
dynamic_chain and strict_chain by adding a # at the start of each line; then
uncomment the random_chain line. We can only use one of these three
options at a time, so make certain you comment out the other options
before using proxychains.

Next, find and uncomment the line with chain_len and then give it a rea-
sonable number. This line determines how many of the IP addresses in your
chain will be used in creating your random proxy chain.

dynamic_chain
#
Dynamic – Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain
#
strict_chain
#
Strict - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
all proxies must be online to play in chain

148 Chapter 13

otherwise EINTR is returned to the app
#
random_chain
Random - Each connection will be done via random proxy
(or proxy chain, see chain_len) from the list.
this option is good to test your IDS :)

Makes sense only if random_chain
chain_len = 3

Here, I have uncommented chain_len and given it a value of 3, meaning
proxychains will now use three proxies from my list in the /etc/proxychains.conf
file, choosing them randomly and moving onto the next one if a proxy is
down. Note that although this method certainly enhances your anonymity,
it also increases the latency of your online activities.

Now that you know how to use proxychains, you can do your hacking
with relative anonymity. I say “relative” because there is no surefire way to
remain anonymous with the NSA and FSB spying on our online activities—
but we can make detection much harder with the help of proxychains.

Security Concerns
As a last note on proxy security, be sure to choose your proxies wisely:
proxychains is only as good as the proxies you use. If you are intent on
remaining anonymous, do not use a free proxy, as mentioned earlier.
Hackers use paid-for proxies that can be trusted. In fact, the free proxies
are likely selling your IP address and browsing history. As Bruce Schneier,
the famous cryptographer and security expert, once said, “If something
is free, you’re not the customer; you’re the product.” In other words, any
free product is likely gathering your data and selling it. Why else would
they offer a proxy for free?

Although the IP address of your traffic leaving the proxy will be anon-
ymous, there are other ways for surveillance agencies to identify you. For
instance, the owner of the proxy will know your identity and, if pressured
enough by espionage or law enforcement agencies with jurisdiction, may
offer up your identity to protect their business. It’s important to be aware
of the limitations of proxies as a source of anonymity.

Virtual Private Networks
Using a virtual private network (VPN) can be an effective way to keep your
web traffic relatively anonymous and secure. A VPN is used to connect to an
intermediary internet device such as a router that sends your traffic to its
ultimate destination tagged with the IP address of the router.

Using a VPN can certainly enhance your security and privacy, but it’s not
a guarantee of anonymity. The internet device you connect to must record or
log your IP address to be able to properly send the data back to you, so any-
one able to access these records can uncover information about you.

Becoming Secure and Anonymous 149

The beauty of VPNs is that they are simple and easy to work with. You
can open an account with a VPN provider and then seamlessly connect to
the VPN each time you log on to your computer. You would use your browser
as usual to navigate the web, but it will appear to anyone watching that your
traffic is coming from the IP address and location of the internet VPN device
and not your own. In addition, all traffic between you and the VPN device is
encrypted, so even your internet service provider can’t see your traffic.

Among other things, a VPN can be effective in evading government-
controlled content and information censors. For instance, if your national
government limits your access to websites with a particular political mes-
sage, you can likely use a VPN based outside your country in order to access
that content. Some media corporations, such as Netflix, Hulu, and HBO,
limit access to their content to IP addresses originating from their own
nation. Using a VPN based in a nation that those services allow can often
get you around those access limitations.

Some of the best and most popular commercial VPN services, accord-
ing to CNET, are the following:

•	 IPVanish

•	 NordVPN

•	 ExpressVPN

•	 CyberGhost

•	 Golden Frog VPN

•	 Hide My Ass (HMA)

•	 Private Internet Access

•	 PureVPN

•	 TorGuard

•	 Buffered VPN

Most of these VPN services charge $50–$100 per year, and many offer
a free 30-day trial. To find out more about how to set up a VPN, choose one
from the list and visit the website. You should find download, installation,
and usage instructions that are pretty easy to follow.

The strength of a VPN is that all your traffic is encrypted when it leaves
your computer, thus protecting you against snooping, and your IP address
is cloaked by the VPN IP address when you visit a site. As with a proxy
server, the owner of the VPN has your originating IP address (otherwise
they couldn’t send your traffic back to you). If they are pressured by espio-
nage agencies or law enforcement, they might give up your identity. One
way to prevent that is to use only VPNs that promise not to store or log
any of this information (and hope they are being truthful). In this way, if
someone insists that the VPN service provider turn over its data on its users,
there is no data.

150 Chapter 13

Encrypted Email
Free commercial email services such as Gmail, Yahoo!, and Outlook Web
Mail (formerly Hotmail) are free for a reason: they are vehicles for tracking
your interests and serving up advertisements. As mentioned already, if a ser-
vice is free, you are the product, not the customer. In addition, the servers
of the email provider (Google, for example) have access to the unencrypted
contents of your email, even if you’re using HTTPS.

One way to prevent eavesdropping on your email is to use encrypted
email. ProtonMail, shown in Figure 13-5, encrypts your email from end to
end or browser to browser. This means that your email is encrypted on
ProtonMail servers—even the ProtonMail administrators can’t read your
email.

ProtonMail was founded by a group of young scientists at the CERN
supercollider facility in Switzerland. The Swiss have a long and storied his-
tory of protecting secrets (remember those Swiss bank accounts you’ve heard
so much about?), and ProtonMail’s servers are based in the European Union,
which has much stricter laws regarding the sharing of personal data than
does the United States. ProtonMail does not charge for a basic account but
offers premium accounts for a nominal fee. It is important to note that when
exchanging email with non-ProtonMail users, there is the potential for some
or all of the email not to be encrypted. See the ProtonMail support know
ledge base for full details.

Figure 13-5: The ProtonMail login screen

Becoming Secure and Anonymous 151

Summary
We are constantly being surveilled by commercial firms and national intel-
ligence agencies. To keep your data and web travels secure, you need to
implement at least one of the security measures discussed in this chapter.
By employing them in combination, you can minimize your footprint on
the web and keep your data much more secure.

E X E RCISE S

Before you move on to Chapter 14, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Run traceroute to your favorite website. How many hops appear between
you and your favorite site?

2.	 Download and install the Tor browser. Now, browse anonymously around
the web just as you would with any other browser and see if you notice
any difference in speed.

3.	 Try using proxychains with the Firefox browser to navigate to your favorite
website.

4.	 Explore commercial VPN services from some of the vendors listed in this
chapter. Choose one and test a free trial.

5.	 Open a free ProtonMail account and send a secure greeting to
occupytheweb@protonmail.com.

14
U N D E R S T A N D I N G A N D I N S P E C T I N G

W I R E L E S S N E T W O R K S

The ability to scan for and connect to other
network devices from your system is crucial

to becoming a successful hacker, and with
wireless technologies like Wi-Fi (IEEE 802.11)

and Bluetooth being the standard, finding and con-
trolling Wi-Fi and Bluetooth connections is key. If
someone can hack a wireless connection, they can gain
entry to a device and access to confidential informa-
tion. The first step, of course, is to learn how to find
these devices.

In Chapter 3, we looked at some basic networking commands in Linux,
including some of the fundamentals of wireless networking, with a promise
of more wireless networking to come in Chapter 14. As promised, here we
examine two of the most common wireless technologies in Linux: Wi-Fi and
Bluetooth.

154 Chapter 14

Wi-Fi Networks
We’ll start with Wi-Fi. In this section, I’ll show you how to find, examine, and
connect to Wi-Fi access points. Before doing so, let’s spend a bit of time going
over some basic Wi-Fi terms and technologies to help you better understand
the output from a lot of the queries we’ll make in this chapter:

AP (access point)  This is the device wireless users connect to for
internet access.

ESSID (extended service set identifier)  This is the same as the SSID,
which we discussed in Chapter 3, but it can be used for multiple APs in
a wireless LAN.

BSSID (basic service set identifier)  This is the unique identifier of
each AP, and it is the same as the MAC address of the device.

SSID (service set identifier)  This is the name of the network.

Channels  Wi-Fi can operate on any one of 14 channels (1–14). In the
United States, Wi-Fi is limited to channels 1–11.

Power  The closer you are to the Wi-Fi AP, the greater the power, and
the easier the connection is to crack.

Security  This is the security protocol used on the Wi-Fi AP that is
being read from. There are three primary security protocols for Wi-Fi.
The original, Wired Equivalent Privacy (WEP), was badly flawed and eas-
ily cracked. Its replacement, Wi-Fi Protected Access (WPA), was a bit more
secure. Finally, WPA2-PSK, which is much more secure and uses a pre-
shared key (PSK) that all users share, is now used by nearly all Wi-Fi
APs (except enterprise Wi-Fi).

Modes  Wi-Fi can operate in one of three modes: managed, master, or
monitor. You’ll learn what these modes mean in the following section.

Wireless range  In the United States, a Wi-Fi AP must legally broadcast
its signal at an upper limit of 0.5 watts. At this power, it has a normal
range of about 300 feet (100 meters). High-gain antennas can extend
this range to as much as 20 miles.

Frequency  Wi-Fi is designed to operate on 2.4GHz and 5GHz. Modern
Wi-Fi APs and wireless network cards often use both.

Basic Wireless Commands
In Chapter 3, you were introduced to the basic Linux networking command
ifconfig, which lists each activated network interface on your system along
with some basic statistics, including (most importantly) the IP address of
each interface. Let’s take another look at your results from running ifconfig
and focus on the wireless connections this time.

kali >ifconfig
eth0Linkencap:EthernetHWaddr 00:0c:29:ba:82:0f
inet addr:192:168.181.131 Bcast:192.168.181.255 Mask:255.255.255.0
--snip--

Understanding and Inspecting Wireless Networks 155

lo Linkencap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
--snip--

u wlan0 Link encap:EthernetHWaddr 00:c0:ca:3f:ee:02

The Wi-Fi interface here is shown as wlan0 . In Kali Linux, Wi-Fi inter-
faces are usually designated as wlanX, with X representing the number of
that interface. In other words, the first Wi-Fi adapter on your system would
be labeled wlan0, the second wlan1, and so on.

If you just want to see your Wi-Fi interfaces and their statistics, Linux
has a specific command that’s similar to ifconfig but dedicated to wireless.
That command is iwconfig. When you enter it, only your wireless interfaces
and their key data are displayed:

kali >iwconfig
lo no wireless extensions

wlan0 IEEE 802.11bg ESSID:off/any
 Mode:Managed Access Point:Not-Associated Tx-Power=20 dBm
 Retry short limit:7 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off

eth0 no wireless extensions

Here, we see just the wireless interfaces, also known as network cards,
and key data about them, including the wireless standard utilized, whether
the ESSID is off, and the mode. The mode has three settings: managed,
which means it is ready to join or has joined an AP; master, which means it
is ready to act as or already is an AP; and monitor, which we’ll discuss a little
later in the chapter. We can also see whether any client has associated with
it and what its transmit power is, among other things. You can tell from this
example that wlan0 is in the mode required to connect to a Wi-Fi network
but is not connected to any yet. We will revisit this command again once the
wireless interface is connected to a Wi-Fi network.

If you are not certain which Wi-Fi AP you want to connect to, you can
see all the wireless access points your network card can reach using the
iwlist command. The syntax for iwlist is as follows:

iwlist interface action

You can perform multiple actions with iwlist. For our purposes, we’ll
use the scan action to see all the Wi-Fi APs in your area. (Note that with
a standard antenna, your range will be 300–500 feet, but this can be
extended with an inexpensive high-gain antenna.)

kali >iwlist wlan0 scan
wlan0 Scan completed:
 Cell 01 - Address: 88:AD:43:75:B3:82
 Channel:1

156 Chapter 14

 Frequency:2.412GHz (Channel 1)
 Quality=70/70 Signal level =-38 dBm
 Encryption key:off
 ESSID:"Hackers-Arise"
--snip--

The output from this command should include all Wi-Fi APs within
range of your wireless interface, along with key data about each AP, such as
the MAC address of the AP, the channel and frequency it is operating on, its
quality, its signal level, whether its encryption key is enabled, and its ESSID.

You will need the MAC address of the target AP (BSSID), the MAC
address of a client (another wireless network card), and the channel the AP
is operating on in order to perform any kind of hacking, so this is valuable
information.

Another command that is very useful in managing your Wi-Fi connec-
tions is nmcli (or the network manager command line interface). The Linux
daemon that provides a high-level interface for the network interfaces
(including the wireless ones) is known as the network manager. Generally,
Linux users are familiar with this daemon from its graphical user interface
(GUI), but it can also be used from the command line.

The nmcli command can be used to view the Wi-Fi APs near you and
their key data, as we did with iwlist, but this command gives us a little more
information. We use it in the format nmcli dev networktype, where dev is short
for devices and the type (in this case) is wifi, like so:

kali >nmcli dev wifi
* SSID MODE CHAN RATE SIGNAL BARS SECURITY
 Hackers-Arise Infra 1 54 Mbits/s 100 WPA1 WPA2
 Xfinitywifi Infra 1 54 Mbits/s 75 WPA2
 TPTV1 Infra 11 54 Mbits/s 44 WPA1 WPA2

--snip--

In addition to displaying the Wi-Fi APs within range and key data about
them, including the SSID, the mode, the channel, the rate of transfer, the
signal strength, and the security protocols enabled on the device, nmcli can
be used connect to APs. The syntax to connect to an AP is as follows:

nmcli dev wifi connect AP-SSID password APpassword

So, based on the results from our first command, we know there is an
AP with an SSID of Hackers-Arise. We also know it has WPA1 WPA2 security
(this means that the AP is capable of using both the older WPA1 and the
newer WPA2), which means we will have to provide the password to connect
to the network. Fortunately, as it’s our AP, we know the password is 12345678,
so we can enter the following:

kali >nmcli dev wifi connect Hackers-Arise password 12345678
Device 'wlan0' successfully activated with '394a5bf4-8af4-36f8-49beda6cb530'.

Understanding and Inspecting Wireless Networks 157

Try this on a network you know, and then when you have successfully
connected to that wireless AP, run iwconfig again to see what has changed.
Here’s my output from connecting to Hackers-Arise:

kali >iwconfig
lo no wireless extensions

wlan0 IEEE 802.11bg ESSID:"Hackers-Arise"
 Mode:Managed Frequency:2.452GHz Access Point:00:25:9C:97:4F:48
 Bit Rate=12 Mbs Tx-Power=20 dBm
 Retry short limit:7 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off
 Link Quality=64/70 Signal level=-46 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:13 Missed beacon:0

eth0 no wireless extensions

Note that now iwconfig has indicated that the ESSID is "Hackers-Arise"
and that the AP is operating at a frequency of 2.452GHz. In a Wi-Fi net-
work, it is possible for multiple APs to all be part of the same network, so
there may be many APs that make up the Hackers-Arise network. The MAC
address 00:25:9C:97:4F:48 is, as you might expect, the MAC of the AP
I am connected to. What type of security a Wi-Fi network uses, whether
it is running at 2.4GHz or 5GHz, what its ESSID is, and what the AP’s
MAC address is are all critical pieces of information that are necessary for
Wi-Fi hacking. Now that you know the basic commands, let’s get into some
hacking.

Wi-Fi Recon with aircrack-ng
One of the most popular exploits for new hackers to try is cracking Wi-Fi
access points. As mentioned, before you can even consider attacking a
Wi-Fi AP, you need the MAC address of the target AP (BSSID), the MAC
address of a client, and the channel the AP is operating on.

We can get all that information and more using the tools of the aircrack-
ng suite. I’ve mentioned this suite of Wi-Fi hacking tools a few times before,
and now it’s time to actually use it. This suite of tools is included in every
version of Kali, so you don’t need to download or install anything.

To use these tools effectively, you first need to put your wireless network
card into monitor mode so that the card can see all the traffic passing its way.
Normally, a network card captures only traffic destined specifically for that
card. Monitor mode is similar to promiscuous mode on wired network cards.

To put your wireless network card in monitor mode, use the airmon-ng
command from the aircrack-ng suite. The syntax for this command is simple:

airmon-ng start|stop|restart interface

158 Chapter 14

So, if you want to put your wireless network card (designated wlan0)
into monitor mode, you would enter the following:

kali >airmon-ng start wlan0

Found three processes that could cause trouble
If airodump-ng, aireplay-ng, or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill'
--snip--

PHY INTERFACE DRIVER Chipset
phy0 wlan0 rt18187 Realtek Semiconductor Corp RTL8187

 (mac8311 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)

--snip--

The stop and restart commands, respectively, stop monitor mode and
restart monitor mode if you run into trouble.

With your wireless card in monitor mode, you can access all the wireless
traffic passing by you within the range of your wireless network adapter and
antenna (standard is about 300–500 feet). Note that airmon-ng will rename
your wireless interface: mine has been renamed “wlan0mon,” though yours
may be different. Make certain to note the new designated name of your
wireless interface because you’ll need that information in the next step.

Now we’ll use another tool from the aircrack-ng suite to find key data
from the wireless traffic. The airodump-ng command captures and displays
the key data from broadcasting APs and any clients connected to those
APs or within the vicinity. The syntax here is straightforward: simply
plug in airdump-ng, followed by the interface name you got from running
airmon-ng just now. When you issue this command, your wireless card will
pick up crucial information (listed next) from all the wireless traffic of
the APs nearby:

BSSID  The MAC address of the AP or client

PWR  The strength of the signal

ENC  The encryption used to secure the transmission

#Data  The data throughput rate

CH  The channel the AP is operating on

ESSID  The name of the AP

kali >airodump-ng wlan0mon

CH 9][Elapsed: 28 s][2018-02-08 10:27

BSSID PWR Beacons #Data #/s CH MB ENC CIPHER AUTH ESSID
01:01:AA:BB:CC:22 -1 4 26 0 10 54e WPA2 CCMP PSK Hackers-
Arise

Understanding and Inspecting Wireless Networks 159

--snip--

BSSID Station PWR Rate Lost Frames Probe
(not associated) 01:01:AA:BB:CC:22
01:02:CC:DD:03:CF A0:A3:E2:44:7C:E5

Note that airodump-ng splits the output screen into an upper and lower
portion. The upper portion has information on the broadcasting APs,
including the BSSID, the power of the AP, how many beacon frames have
been detected, the data throughput rate, how many packets have traversed
the wireless card, the channel (1–14), the theoretical throughput limit, the
encryption protocol, the cipher used for encryption, the authentication type,
and the ESSID (commonly referred to as SSID). In the client portion, the
output tells us that one client is not associated, meaning it has been detected
but is not connected to any AP, and that another is associated with a station,
meaning it’s connected to the AP at that address.

Now you have all the information you need to crack the AP! Although
it’s beyond the scope of this book, to crack the wireless AP, you need the
client MAC address, the AP MAC address, the channel the target is operat-
ing on, and a password list.

So to crack the Wi-Fi password, you would open three terminals. In the
first terminal, you would enter commands similar to the following, filling in
the client and AP MAC addresses and the channel:

airodump-ng -c 10 --bssid 01:01:AA:BB:CC:22 -w Hackers-ArisePSK wlan0mon

This command captures all the packets traversing the AP on channel 10
using the -c option.

In another terminal, you can use the aireplay-ng command to knock off
(deauthenticate) anyone connected to the AP and force them to reauthen-
ticate to the AP, as shown next. When they reauthenticate, you can capture
the hash of their password that is exchanged in the WPA2-PSK four-way
handshake. The password hash will appear in the upper-right corner of the
airodump-ng terminal.

aireplay-ng --deauth 100 -a 01:02:CC:DD:03:CF –c A0:A3:E2:44:7C:E5 wlan0mon

Finally, in the final terminal, you can use a password list (wordlist.dic) to
find the password in the captured hash (Hackers-ArisePSK.cap), as shown here:

aircrack-ng -w wordlist.dic -b 01:01:AA:BB:CC:22 Hacker-ArisePSK.cap

Detecting and Connecting to Bluetooth
These days, nearly every gadget, mobile device, and system has Bluetooth
built in, including our computers, smartphones, iPods, tablets, speakers,
game controllers, keyboards, and many other devices. Being able to hack

160 Chapter 14

Bluetooth can lead to the compromise of any information on the device,
control of the device, and the ability to send unwanted info to and from the
device, among other things.

To exploit the technology, we need to understand how it works. An in-
depth understanding of Bluetooth is beyond the scope of this book, but I
will give you some basic knowledge that will help you scan for and connect
to Bluetooth devices in preparation for hacking them.

How Bluetooth Works
Bluetooth is a universal protocol for low-power, near-field communication
operating at 2.4–2.485GHz using spread spectrum, frequency hopping
at 1,600 hops per second (this frequency hopping is a security measure).
It was developed in 1994 by Ericsson Corp. of Sweden and named after
the 10th-century Danish king Harald Bluetooth (note that Sweden and
Denmark were a single country in the 10th century).

The Bluetooth specification has a minimum range of 10 meters, but
there is no limit to the upper range manufacturers may implement in their
devices. Many devices have ranges as large as 100 meters. With special
antennas, that range can be extended even farther.

Connecting two Bluetooth devices is referred to as pairing. Pretty much
any two Bluetooth devices can connect to each other, but they can pair only
if they are in discoverable mode. A Bluetooth device in discoverable mode
transmits the following information:

•	 Name

•	 Class

•	 List of services

•	 Technical information

When the two devices pair, they exchange a secret or link key. Each
stores this link key so it can identify the other in future pairings.

Every device has a unique 48-bit identifier (a MAC-like address) and
usually a manufacturer-assigned name. These will be useful pieces of data
when we want to identify and access a device.

Bluetooth Scanning and Reconnaissance
Linux has an implementation of the Bluetooth protocol stack called BlueZ
that we’ll use to scan for Bluetooth signals. Most Linux distributions, includ-
ing Kali Linux, have it installed by default. If yours doesn’t, you can usually
find it in your repository using the following command:

kali >apt-get install bluez

Understanding and Inspecting Wireless Networks 161

BlueZ has a number of simple tools we can use to manage and scan
Bluetooth devices, including the following:

hciconfig  This tool operates very similarly to ifconfig in Linux, but for
Bluetooth devices. As you can see in Listing 14-1, I have used it to bring
up the Bluetooth interface and query the device for its specs.

hcitool  This inquiry tool can provide us with device name, device ID,
device class, and device clock information, which enables the devices to
work synchronously.

hcidump  This tool enables us to sniff the Bluetooth communication,
meaning we can capture data sent over the Bluetooth signal.

The first scanning and reconnaissance step with Bluetooth is to check
whether the Bluetooth adapter on the system we’re using is recognized and
enabled so we can use it to scan for other devices. We can do this with the
built-in BlueZ tool hciconfig, as shown in Listing 14-1.

kali >hciconfig
hci0: Type: BR/EDR Bus: USB
 BD Address: 10:AE:60:58:F1:37 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING PSCAN INQUIRY
 RX bytes:131433 acl:45 sco:0 events:10519 errors:0
 TX bytes:42881 acl:45 sco:0 commands:5081 errors:0

Listing 14-1: Scanning for a Bluetooth device

As you can see, my Bluetooth adapter is recognized with a MAC address
of 10:AE:60:58:F1:37. This adapter has been named hci0. The next step is
to check that the connection is enabled, which we can also do with hciconfig
by providing the name and the up command:

kali >hciconfig hci0 up

If the command runs successfully, we should see no output, just a new
prompt.

Good, hci0 is up and ready! Let’s put it to work.

Scanning for Bluetooth Devices with hcitool

Now that we know our adapter is up, we can use another tool in the BlueZ
suite called hcitool, which is used to scan for other Bluetooth devices within
range.

Let’s first use the scanning function of this tool to look for Bluetooth
devices that are sending out their discover beacons, meaning they’re in dis-
covery mode, with the simple scan command shown in Listing 14-2.

kali >hcitool scan
Scanning...

162 Chapter 14

 72:6E:46:65:72:66 ANDROID BT
 22:C5:96:08:5D:32 SCH-I535

Listing 14-2: Scanning for Bluetooth devices in discovery mode

As you can see, on my system, hcitool found two devices, ANDROID BT
and SCH-I535. Yours will likely provide you with different output depend-
ing on what devices you have around. For testing purposes, try putting your
phone or other Bluetooth device in discovery mode and see if it gets picked
up in the scan.

Now let’s gather more information about the detected devices with the
inquiry function inq:

kali >hcitool inq
Inquiring...
 24:C5:96:08:5D:32 clock offset:0x4e8b class:0x5a020c
 76:6F:46:65:72:67 clock offset:0x21c0 class:0x5a020c

This gives us the MAC addresses of the devices, the clock offset, and the
class of the devices. The class indicates what type of Bluetooth device you
found, and you can look up the code and see what type of device it is by
going to the Bluetooth SIG site at https://www.bluetooth.org/en-us/specification/
assigned-numbers/service-discovery/.

The tool hcitool is a powerful command line interface to the Bluetooth
stack that can do many, many things. Listing 14-3 shows the help page with
some of the commands you can use. Take a look at the help page yourself to
see the full list.

kali >hcitool --help
hcitool - HCI Tool ver 5.50
Usage:
 hcitool [options] <command> [command parameters]

Options:
 --help Display help
 -i dev HCI device

Commands
 dev Display local devices
 inq Inquire remote devices
 scan Scan for remote devices
 name Get name from remote devices
--snip--

Listing 14-3: Some hcitool commands

Many Bluetooth-hacking tools you’ll see around simply use these com-
mands in a script, and you can easily create your own tool by using these
commands in your own bash or Python script—we’ll look at scripting in
Chapter 17.

https://www.bluetooth.org/en-us/specification/assigned-numbers/service-discovery
https://www.bluetooth.org/en-us/specification/assigned-numbers/service-discovery

Understanding and Inspecting Wireless Networks 163

Scanning for Services with sdptool

Service Discovery Protocol (SDP) is a Bluetooth protocol for searching for
Bluetooth services (Bluetooth is suite of services), and, helpfully, BlueZ
provides the sdptool tool for browsing a device for the services it provides.
It is also important to note that the device does not have to be in discovery
mode to be scanned. The syntax is as follows:

sdptool browse MACaddress

Listing 14-4 shows me using sdptool to search for services on one of the
devices detected earlier in Listing 14-2.

kali >sdptool browse 76:6E:46:63:72:66
Browsing 76:6E:46:63:72:66...
Service RecHandle: 0x10002
Service Class ID List:
 ""(0x1800)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 PSM: 31
 "ATT" (0x0007)
 uint16: 0x0001
 uint16: 0x0005

--snip--

Listing 14-4: Scanning with sdptool

Here, we can see that the sdptool tool was able to pull information on
all the services this device is capable of using. In particular, we see that this
device supports the ATT Protocol, which is the Low Energy Attribute Protocol.
This can provide us more clues as to what the device is and possibly poten-
tial avenues to interact with it further.

Seeing Whether the Devices Are Reachable with l2ping

Once we’ve gathered the MAC addresses of all nearby devices, we can send
out pings to these devices, whether they’re in discovery mode or not, to see
whether they are in reach. This lets us know whether they are active and
within range. To send out a ping, we use the l2ping command with the fol-
lowing syntax:

l2ping MACaddress -c NumberOfPackets

Listing 14-5 shows me pinging the Android device discovered in
Listing 14-2.

kali >l2ping 76:6E:46:63:72:66 -c 3
Ping: 76:6E:46:63:72:66 from 10:AE:60:58:F1:37 (data size 44)...
44 bytes 76:6E:46:63:72:66 id 0 time 37.57ms

164 Chapter 14

44 bytes 76:6E:46:63:72:66 id 1 time 27.23ms
44 bytes 76:6E:46:63:72:66 id 2 time 27.59ms

3 sent, 3 received, 0% loss

Listing 14-5: Pinging a Bluetooth device

This output indicates that the device with the MAC address
76:6E:46:63:72:66 is within range and reachable. This is useful know-
ledge, because we must know whether a device is reachable before we
even contemplate hacking it.

Summary
Wireless devices represent the future of connectivity and hacking. Linux
has developed specialized commands for scanning and connecting to Wi-Fi
APs in the first step toward hacking those systems. The aircrack-ng suite of
wireless hacking tools includes both airmon-ng and airodump-ng, which enable
us to scan and gather key information from in-range wireless devices. The
BlueZ suite includes hciconfig, hcitool, and other tools capable of scanning
and information gathering, which are necessary for hacking the Bluetooth
devices within range. It also includes many other tools worth exploring.

E X E RCISE S

Before you move on to Chapter 15, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Check your network devices with ifconfig. Note any wireless extensions.

2.	 Run iwconfig and note any wireless network adapters.

3.	 Check to see what Wi-Fi APs are in range with iwlist.

4.	 Check to see what Wi-Fi APs are in range with nmcli. Which do you find
more useful and intuitive, nmcli or iwlist?

5.	 Connect to your Wi-Fi AP using nmcli.

6.	 Bring up your Bluetooth adapter with hciconfig and scan for nearby dis-
coverable Bluetooth devices with hcitool.

7.	 Test whether those Bluetooth devices are within reachable distance with
l2ping.

15
M A N A G I N G T H E L I N U X K E R N E L

A N D L O A D A B L E K E R N E L M O D U L E S

All operating systems are made up of at least
two major components. The first and most

important of these is the kernel. The kernel is
at the center of the operating system and controls

everything the operating system does, including manag-
ing memory, controlling the CPU, and even controlling
what the user sees on the screen. The second element of
the operating system is often referred to as user land and
includes nearly everything else.

The kernel is designed to be a protected or privileged area that can only
be accessed by root or other privileged accounts. This is for good reason, as
access to the kernel can provide nearly unfettered access to the operating
system. As a result, most operating systems provide users and services access
only to user land, where the user can access nearly anything they need with-
out taking control of the operating system.

166 Chapter 15

Access to the kernel allows the user to change how the operating systems
works, looks, and feels. It also allows them to crash the operating system,
making it unworkable. Despite this risk, in some cases, the system admin
must very carefully access the kernel for operational and security reasons.

In this chapter, we’ll examine how to alter the way the kernel works
and add new modules to the kernel. It probably goes without saying that
if a hacker can alter the target’s kernel, they can control the system.
Furthermore, an attacker may need to alter how the kernel functions for
some attacks, such as a man-in-the middle (MITM) attack, where the hacker
places themselves between a client and server and can eavesdrop on or
alter the communication. First, we’ll take a closer look at the kernel struc-
ture and its modules.

What Is a Kernel Module?
The kernel is the central nervous system of your operating system, control-
ling everything it does, including managing interactions between hard-
ware components and starting the necessary services. The kernel operates
between the user applications you see and the hardware that runs every-
thing, like the CPU, memory, and hard drive.

Linux is a monolithic kernel that enables the addition of kernel modules.
As such, modules can be added and removed from the kernel. The kernel will
occasionally need updating, which might entail installing new device drivers
(such as video cards, Bluetooth devices, or USB devices), filesystem drivers,
and even system extensions. These drivers must be embedded in the kernel
to be fully functional. In some systems, to add a driver, you have to rebuild,
compile, and reboot the entire kernel, but Linux has the capability of adding
some modules to the kernel without going through that entire process. These
modules are referred to as loadable kernel modules, or LKMs.

LKMs have access to the lowest levels of the kernel by necessity, making
them an incredibly vulnerable target for hackers. A particular type of mal-
ware known as a rootkit embeds itself into the kernel of the operating systems,
often through these LKMs. If malware embeds itself in the kernel, the hacker
can take complete control of the operating system.

If a hacker can get the Linux admin to load a new module to the
kernel, the hacker not only can gain control over the target system but,
because they’re operating at the kernel level of the operating system, can
control what the target system is reporting in terms of processes, ports,
services, hard drive space, and almost anything else you can think of.

So, if a hacker can successfully tempt a Linux admin into installing a
video or other device driver that has a rootkit embedded in it, the hacker can
take total control of the system and kernel. This is the way some of the most
insidious rootkits take advantage of Linux and other operating systems.

Understanding LKMs is absolutely key to being an effective Linux
admin and being a very effective and stealthy hacker.

Let’s take a look at how the kernel can be managed for good and ill.

Managing the Linux Kernel and Loadable Kernel Modules 167

Checking the Kernel Version
The first step to understanding the kernel is to check what kernel your
system is running. There are at least two ways to do this. First, we can enter
the following:

kali >uname -a
Linux Kali 4.19.0-kalil-amd64 #1 SMP Debian 4.19.13-lkalil (2019-01-03) x86_64

The kernel responds by telling us the distribution our OS is running is
Linux Kali, the kernel build is 4.6.4, and the architecture it’s built for is the
x86_64 architecture. It also tells us it has symmetric multiprocessing (SMP)
capabilities (meaning it can run on machines with multiple cores or pro-
cessers) and was built with kernel version 4.19.13 on January 3, 2019. Your
output may be different, depending on which kernel was used in your build
and the CPU in your system. This information can be required when you
install or load a kernel driver, so it’s useful to understand how to get it.

One other way to get this information, as well as some other useful
information, is to use the cat command on the /proc/version file, like so:

kali >cat /proc/version
Linux version 4.19.0-kalil-amd64 (devel@kali.org) (gcc version 8.2.0 20190103
(Debian 8.2.0-13)) #1 SMP Debian 4.19.13-lkalil (2019-01-03)

Here you can see that the /proc/version file returned the same
information.

Kernel Tuning with sysctl
With the right commands, you can tune your kernel, meaning you can
change memory allocations, enable networking features, and even harden
the kernel against outside attacks.

Modern Linux kernels use the sysctl command to tune kernel options.
All changes you make with sysctl remain in effect only until you reboot the
system. To make any changes permanent, you have to edit the configuration
file for sysctl directly at /etc/sysctl.conf.

A word of warning: you need to be careful when using sysctl because
without the proper knowledge and experience, you can easily make your
system unbootable and unusable. Make sure you’ve considered what you’re
doing carefully before making any permanent changes.

Let’s take a look at the contents of sysctl now. By now, you should rec-
ognize the options we give with the command shown here:

kali >sysctl -a | less
dev.cdrom.autoclose = 1
dev.cdrom.autoeject = 0
dev.cdrom.check_media = 0
dev.cdrom.debug = 0
--snip--

168 Chapter 15

In the output, you should see hundreds of lines of parameters that a
Linux administrator can edit to optimize the kernel. There are a few lines
here that are useful to you as a hacker. As an example of how you might use
sysctl, we’ll look at enabling packet forwarding.

In the man-in-the middle (MITM) attack, the hacker places themselves
between communicating hosts to intercept information. The traffic passes
through the hacker’s system, so they can view and possibly alter the commu-
nication. One way to achieve this routing is to enable packet forwarding.

If you scroll down a few pages in the output or filter for “ipv4”
(sysctl -a | grep ipv4 | less), you should see the following somewhere in
the output:

net.ipv4.ip_dynaddr = 0
net.ipv4.ip_early_demux = 0
net.ipv4.ip_forward = 0
net.ipv4.ip_forward_use_pmtu = 0
--snip--

The line net.ipv4.ip_forward = 0 is the kernel parameter that enables the
kernel to forward on the packets it receives. In other words, the packets it
receives, it sends back out. The default setting is 0, which means that packet
forwarding is disabled.

To enable IP forwarding, change the 0 to a 1 by entering the following:

kali >sysctl -w net.ipv4.ip_forward=1

Remember that that sysctl changes take place at runtime but are lost
when the system is rebooted. To make permanent changes to sysctl, you
need to edit configuration file /etc/sysctl.conf. Let’s change the way the
kernel handles IP forwarding for MITM attacks and make this change
permanent.

To enable IP forwarding, open the /etc/sysctl.conf file in any text editor
such as leafpad and uncomment the line for ip_forward. Open /etc/sycstl.conf
with any text editor and take a look:

#/etc/sysctl.conf - Configuration file for setting system variables
See /etc/sysctl.d/ for additional system variables.
See sysctl.conf (5) for information.
#

#kernel.domainname = example.com

Uncomment the following to stop low-level messages on console.
#kernel.printk = 3 4 1 3

###
Functions previously found in netbase
#

Uncomment the next two lines to enable Spoof protection (reverse-path filter)
Turn on Source Address Verification in all interfaces to

Managing the Linux Kernel and Loadable Kernel Modules 169

prevent some spoofing attacks.
#net.ipv4.conf.default.rp_filter=1
#net.ipv4.conf.all.rp_filter=1

Uncomment the next line to enable TCP/IP SYN cookies
See http://lwn.net/Articles/277146

Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1

See http://lwn.net/Articles/277146/
Uncomment the next line to enable packet forwarding for IPv4

u #net.ipv4.ip_forward=1

The relevant line is at u; just remove the comment (#) here to enable
IP forwarding.

From an operating system–hardening perspective, you could use this file
to disable ICMP echo requests by adding the line net.ipv4.icmp_echo_ignore_
all=1 to make it more difficult—but not impossible—for hackers to find your
system. After adding the line, you will need to run the command sysctl -p.

Managing Kernel Modules
Linux has at least two ways to manage kernel modules. The older way is to
use a group of commands built around the insmod suite—insmod stands for
insert module and is intended to deal with modules. The second way, using
the modprobe command, we will employ a little later in this chapter. Here, we
use the lsmod command from the insmod suite to list the installed modules in
the kernel:

kali >lsmod
Module Size Used by
nfnetlink_queue 20480 0
nfnetlink_log 201480 0
nfnetlink 16384 2 nfnetlink_log, nfnetlink_queue
bluetooth 516096 0
rfkill 28672 2 bluetooth

--snip--

As you can see, the lsmod command lists all the kernel modules as well
as information on their size and what other modules may use them. So,
for instance, the nfnetlink module—a message-based protocol for commu-
nicating between the kernel and user space—is 16,384 bytes and used by
both the nfnetlink_log module and the nf_netlink_queue module.

From the insmod suite, we can load or insert a module with insmod and
remove a module with rmmod, which stands for remove module. These com-
mands are not perfect and may not take into account module dependen-
cies, so using them can leave your kernel unstable or unusable. As a result,
modern distributions of Linux have now added the modprobe command,

170 Chapter 15

which automatically loads dependencies and makes loading and removing
kernel modules less risky. We’ll cover modprobe in a moment. First, let’s see
how to get more information about our modules.

Finding More Information with modinfo
To learn more about any of the kernel modules, we can use the modinfo com-
mand. The syntax for this command is straightforward: modinfo followed
by the name of the module you want to learn about. For example, if you
wanted to retrieve basic information on the bluetooth kernel module you
saw when you ran the lsmod command earlier, you could enter the following:

kali >modinfo bluetooth
filename: /lib/modules/4.19.0-kali-amd64/kernel/net/bluetooth/bluetooth.ko
alias: net-pf-31
license: GPL
version: 2.22
description:Bluetooth Core ver 2.22
author: Marcel Holtman <marcel@holtmann.org>
srcversion: 411D7802CC1783894E0D188
depends: rfkill, ecdh_generic, crc16
intree: Y
vermagic: 4.19.0-kali1-amd64 SMP mod_unload modversions
parm: disable_esco: Disable eSCO connection creation (bool)
parm: disable_ertm: Disable enhanced retransmission mode (bool)

As you can see, the modinfo command reveals significant information
about this kernel module which is necessary to use Bluetooth on your system.
Note that among many other things, it lists the module dependencies: rfkill,
ecdh_generic, and crc16. Dependencies are modules that must be installed for
the bluetooth module to function properly.

Typically, this is useful information when troubleshooting why a partic-
ular hardware device is not working. Besides noting things like the depen-
dencies, you can get information about the version of the module and the
version of the kernel the module was developed for and then make sure
they match the version you are running.

Adding and Removing Modules with modprobe
Most newer distributions of Linux, including Kali Linux, include the modprobe
command for LKM management. To add a module to your kernel, you would
use the modprobe command with the -a (add) switch, like so:

kali >modprobe -a <module name>

To remove a module, use the -r (remove) switch with modprobe followed
by the name of the module:

kali >modprobe -r <module to be removed>

Managing the Linux Kernel and Loadable Kernel Modules 171

A major advantage of using modprobe instead of insmod is that modprobe
understands dependencies, options, and installation and removal proce-
dures and it takes all of these into account before making changes. Thus, it
is easier and safer to add and remove kernel modules with modprobe.

Inserting and Removing a Kernel Module
Let’s try inserting and removing a test module to help you familiarize your-
self with this process. Let’s imagine that you just installed a new video card
and you need to install the drivers for it. Remember, drivers for devices are
usually installed directly into the kernel to give them the necessary access
to function properly. This also makes drivers fertile ground for malicious
hackers to install a rootkit or other listening device.

Let’s assume for demonstration purposes (don’t actually run these com-
mands) that we want to add a new video driver named HackersAriseNewVideo.
You can add it to your kernel by entering the following:

kali >modprobe -a HackersAriseNewVideo

To test whether the new module loaded properly, you can run the dmesg
command, which prints out the message buffer from the kernel, and then
filter for “video” and look for any alerts that would indicate a problem:

kali >dmesg | grep video

If there are any kernel messages with the word “video” in them, they
will be displayed here. If nothing appears, there are no messages contain-
ing that keyword.

Then, to remove this same module, you can enter the same command
but with the -r (remove) switch:

kali >modprobe -r HackersAriseNewVideo

Remember, the loadable kernel modules are a convenience to a Linux
user/admin, but they are also a major security weakness and one that pro-
fessional hackers should be familiar with. As I said before, the LKMs can be
the perfect vehicle to get your rootkit into the kernel and wreak havoc!

Summary
The kernel is crucial to the overall operation of the operating system, and
as such, it is a protected area. Anything that’s inadvertently added to the
kernel can disrupt the operating system and even take control of it.

LKMs enable the system administrator to add modules directly into the
kernel without having to rebuild the entire kernel each time they want to
add a module.

172 Chapter 15

If a hacker can convince the system admin to add a malicious LKM, the
hacker can take complete control of the system, often without the system
admin even being aware.

E X E RCISE S

Before you move on to Chapter 16, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Check the version of your kernel.

2.	 List the modules in your kernel.

3.	 Enable IP forwarding with a sysctl command.

4.	 Edit your /etc/sysctl.conf file to enable IP forwarding. Now, disable IP
forwarding.

5.	 Select one kernel module and learn more about it using modinfo.

16
A U T O M A T I N G T A S K S W I T H

J O B S C H E D U L I N G

Like anyone using Linux, the hacker often
has jobs, scripts or other tasks, that they

want to run periodically. You might, for
example, want to schedule automatic regular file

backups of your system, or maybe you want to rotate
log files as we did in Chapter 11. The hacker, on the
other hand, may also want to have their system run
the MySQLscanner.sh script from Chapter 8 every
night or while they’re at work or school. These are all examples of sched-
uling automatic jobs. Scheduling jobs allows you to run tasks without
having to think about it, and you can schedule jobs to run when you’re
otherwise not using your system so you have plenty of free resources.

The Linux admin—or the hacker for that matter—may also want to
set certain scripts or services to start automatically when their system boots
up. In Chapter 12, we looked at using the PostgreSQL database in associa-
tion with the hacker/pentest framework Metasploit. Rather than manually

174 Chapter 16

starting the PostgreSQL database every time before starting Metasploit, you
can have PostgreSQL—or any service or script—start automatically when
the system boots up.

In this chapter, you’ll learn more about how to use the cron daemon
and crontab to set up scripts to run automatically, even while the system is
unattended. You’ll also learn how to set up startup scripts that automatically
run whenever the system is booted, which will provide you with the neces-
sary services that you’ll need to run during your busy day of hacking.

Scheduling an Event or Job to Run on an Automatic Basis
The cron daemon and the cron table (crontab) are the most useful tools
for scheduling regular tasks. The first, crond, is a daemon that runs in the
background. The cron daemon checks the cron table for which commands
to run at specified times. We can alter the cron table to schedule a task or
job to execute regularly on a particular day or date, at a particular time
daily, or every so many weeks or months.

To schedule these tasks or jobs, enter them into the cron table file,
located at /etc/crontab. The cron table has seven fields: the first five are used
to schedule the time to run the task, the sixth field specifies the user, and
the seventh field is used for the absolute path to the command you want to
execute. If we were using the cron table to schedule a script, we could simply
put the absolute path to the script in the seventh field.

Each of the five time fields represents a different element of time:
the minute, hour, day of the month, month, and day of the week, in that
order. Every element of time must be represented numerically, so March
is represented as 3 (you cannot simply input “March”). Days of the week
begin at 0, which is Sunday, and end at 7, which is also Sunday. Table 16-1
summarizes this.

Table 16-1: Time Representations for Use in the crontab

Field Time unit Representation

1 Minute 0–59

2 Hour 0–23

3 Day of the month 1–31

4 Month 1–12

5 Day of the week 0–7

So, if we had written a script to scan the globe for vulnerable open
ports and wanted it to run every night at 2:30 am, Monday through Friday,
we could schedule it in the crontab file. We will walk through the process of
how to get this information into the crontab shortly, but first let’s discuss the
format we need to follow, shown in Listing 16-1.

Automating Tasks with Job Scheduling 175

M H DOM MON DOW USER COMMAND
30 2 * * 1-5 root /root/myscanningscript

Listing 16-1: The format for scheduling commands

The crontab file helpfully labels the columns for you. Note that the first
field provides the minute (30), the second field provides the hour (2), the
fifth field provides the days (1-5, or Monday through Friday), the sixth field
defines the user (root), and the seventh field is the path to the script. The
third and fourth fields contain asterisks (*) because we want this script to
run every day Monday through Friday regardless of the day of the month
or the month.

In Listing 16-1, the fifth field defines a range for the day of the week by
using a dash (-) between the numbers. If you want to execute a script on
multiple noncontiguous days of the week, you can separate those days with
commas (,). Thus, Tuesday and Thursday would be 2,4.

To edit crontab, you can run the crontab command followed by the -e
(edit) option:

kali >crontab -e
Select an editor. To change later, run 'select-editor'.
1. /bin/nano <----easiest
2. /usr/bin/mcedit
3. /usr/bin/vim.basic
4. /usr/bin/vim.gtk
5. /usr/bin/vim.tiny
Choose 1-5 [1]:

The first time you run this command, it will ask which editor you would
like to use. The default is /bin/nano, the option that tells you it’s the easiest.
If you choose this option, the terminal will open directly to crontab.

Another option, and often a better one for the newcomer to Linux, is to
open crontab directly in your favorite text editor, which you can do like so:

kali >leafpad /etc/crontab

I’ve used this command to open crontab in Leafpad. You can see a snip-
pet of the file in Listing 16-2.

/etc/crontab: system-wide crontab
Unlike any other crontab, you don't have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
which no other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

176 Chapter 16

m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron II (cd / && run-parts
47 6 * * 7 root test -x /usr/sbin/anacron II (cd / && run-parts
52 6 1 * * root test -x /usr/sbin/anacron II (cd / && run-parts
#

Listing 16-2: The crontab file in use in a text editor

Now, to set a new regularly scheduled task, you simply need to enter a
new line and save the file.

Scheduling a Backup Task
Let’s view this utility first from the system administrator’s perspective. As a
system administrator, you’d often want to run backups of all your files after
hours, while the system is not being used and resources are readily avail-
able. (System backups tend to require system resources that are in short
demand during business hours.) The ideal time might be in the middle of
the night on the weekend. Rather than having to log in at 2 am on Saturday
night/Sunday morning (I’m sure you have other priorities at that time), you
could schedule the backup to start automatically at that time, even though
you’re not at your computer.

Note that the hour field uses a 24-hour clock rather than using am and pm,
so 1 pm is, for example, 13:00. Also, note that the days of the week (DOW)
start with Sunday (0) and end with Saturday (6).

To create a job, you simply need to edit the crontab file by adding a line
in the prescribed format. So, say you wanted to create a regular backup job
using a user account named “backup.” You would write a script for backing up
the system and save it as systembackup.sh in the /bin directory, then schedule
this backup to run every Saturday night/Sunday morning at 2 am by adding
the following line to crontab:

00 2 * * 0 backup /bin/systembackup.sh

Note that the * wildcard is used to indicate “any,” and using it in place
of a digit for the day of the month, month, or day of the week is read as “all”
days or months. If you read across this line, it says

1.	 At the top of the hour (00),

2.	 Of the second hour (2),

3.	 Of any day of the month (*),

4.	 Of any month (*),

5.	 On Sunday (0),

6.	 As the backup user,

7.	 Execute the script at /bin/systembackup.sh.

Automating Tasks with Job Scheduling 177

The cron daemon will then execute that script every Sunday morning at
2 am, every month.

If you only wanted the backup to run on the 15th and 30th of every
month, regardless of what days of the week those dates fell on, you could
revise the entry in crontab to appear as follows:

00 2 15,30 * * backup /root/systembackup.sh

Note that the day of the month (DOM) field now has 15,30. This tells
the system to run the script only on the 15th and 30th of every month, so
around every two weeks. When you want to specify multiple days, hours, or
months, you need to list them separated by a comma, as we did here.

Next, let’s assume the company requires you to be especially vigilant
with its backups. It can’t afford to lose even a day of data in the event of
power outage or system crash. You would then need to back up the data
every weeknight by adding the following line:

00 23 * * 1-5 backup /root/systembackup.sh

This job would run at 11 pm (hour 23), every day of the month, every
month, but only on Monday through Friday (days 1–5). Especially note that
we designated the days Monday through Friday by providing an interval of
days (1-5) separated by a dash (-). This could have also been designated as
1,2,3,4,5; either way works perfectly fine.

Using crontab to Schedule Your MySQLscanner
Now that you understand the basics of scheduling a job with the crontab
command, let’s schedule the MySQLscanner.sh script, which seeks out open
MySQL ports, that you built in Chapter 8. This scanner searches for systems
running MySQL by looking for open port 3306.

To enter your MySQLscanner.sh to the crontab file, edit the file to provide
the particulars of this job, just as we did with the system backups. We’ll
schedule it to run during the day while you’re at work so it doesn’t take up
resources when you’re using your home system. To do this, enter the follow-
ing line in your crontab:

00 9 * * * user /usr/share/MySQLsscanner.sh

We’ve set up the job to run at 00 minutes, at the ninth hour, every day of
the month (*), every month (*), every day of the week (*), and to run it as a
regular user. We simply need to save this crontab file to schedule the job.

Now, let’s say you wanted to be particularly careful and only run this
scanner on weekends and at 2 am when it’s less likely that anyone is watch-
ing the network traffic. You also only want it to run in the summer, June
through August. Your job would now look like this:

00 2 * 6-8 0,6 user /usr/share/MySQLsscanner.sh

178 Chapter 16

You would add this to your crontab like so:

/etc/crontab: system-wide crontab
Unlike any other crontab, you don't have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
which none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron II (cd / && run-parts --report /etc/cron.daily)
47 6 * * 7 root test -x /usr/sbin/anacron II (cd / && run-parts --report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron II (cd / && run-parts --report /etc/cron.monthly)
00 2 * 6-8 0,6 user /usr/share/MySQLsscanner.sh

Now, your MySQLscanner.sh will only run on weekends in June, July, and
August at 2 am.

crontab Shortcuts
The crontab file has some built-in shortcuts you can use instead of a specify-
ing the time, day, and month every time. These include the following:

•	 @yearly

•	 @annually

•	 @monthly

•	 @weekly

•	 @daily

•	 @midnight

•	 @noon

•	 @reboot

So, if you wanted the MySQL scanner to run every night at midnight,
you could add the following line to the crontab file:

@midnight user /usr/share/MySQLsscanner.sh

Using rc Scripts to Run Jobs at Startup
Whenever you start your Linux system, a number of scripts are run to set up
the environment for you. These are known as the rc scripts. After the kernel
has initialized and loaded all its modules, the kernel starts a daemon known

Automating Tasks with Job Scheduling 179

as init or initd. This daemon then begins to run a number of scripts found in
/etc/init.d/rc. These scripts include commands for starting many of the ser-
vices necessary to run your Linux system as you expect.

Linux Runlevels
Linux has multiple runlevels that indicate what services should be started
at bootup. For instance, runlevel 1 is single-user mode, and services such
as networking are not started in runlevel 1. The rc scripts are set to run
depending on what runlevel is selected:

0  Halt the system

1  Single-user/minimal mode

2–5  Multiuser modes

6  Reboot the system

Adding Services to rc.d
You can add services for the rc.d script to run at startup using the update-rc.d
command. This command enables you to add or remove services from the
rc.d script. The syntax for update-rc.d is straightforward; you simply list the
command followed by the name of the script and then the action to perform,
like so:

kali >update-rc.d <name of the script or service> <remove|defaults|disable|enable>

As an example of how you can use update-rc.d, let’s assume you always
want the PostgreSQL database to start upon system boot so that your
Metasploit framework can use it to store pentesting and hacking results.
You would use update-rc.d to add a line to your rc.d script to have it up and
running every time you boot your system.

Before you do that, let’s check whether PostgreSQL is running on your
system already. You can do so using the ps command and piping it to a filter
looking for PostgreSQL using grep, like so:

kali >ps aux | grep postgresql
root 3876 0.0 0.0 12720 964pts/1 S+ 14.24 0.00 grep postgresql

This output tells us that the only process ps found running for PostgreSQL
was the very command we ran looking for it, so there is no PostgreSQL data-
base running on this system presently.

Now, let’s update our rc.d to have PostgreSQL run automatically at
bootup:

kali >update-rc.d postgresql defaults

180 Chapter 16

This adds the line to the rc.d file. You need to reboot the system for the
change to take place. Once you’ve done that, let’s again use the ps command
with grep to look for a PostgreSQL process:

kali >ps aux | grep postgresql
postgresql 757 0.0 0.1 287636 25180 ? S March 14
0.00 /usr/lib/postgresql/9.6/bin/postgresql -D
/var/lib/postgresql/9.6/main
-c config_file=/etc/postgresql/9.6/main/postgresql.conf
root 3876 0.0 0.0 12720 964pts/1 S+ 14.24 0.00 grep postgresql

As you can see, PostgreSQL is running without you ever entering any
commands manually. It automatically starts when your system boots up,
ready and waiting to be used with your Metasploit!

Adding Services to Your Bootup via a GUI
If you’re more comfortable working from a GUI to add services at startup,
you can download the rudimentary GUI-based tool rcconf from the Kali
repository, like so:

kali >apt-get install rcconf

Once it has completed its installation, you can start rcconf by entering
the following:

kali >rcconf

This will open a simple GUI like the one in Figure 16-1. You can then
scroll through the available services, select the ones you want to start upon
bootup, and click OK.

Figure 16-1: The rcconf GUI for adding services to startup

Automating Tasks with Job Scheduling 181

In this figure, you can see the PostgreSQL service listed second from
last. Press the spacebar to select this service, press tab to highlight <Ok>,
and then press enter. The next time you boot Kali, PostgreSQL will start
automatically.

Summary
Both system administrators and hackers often need to schedule services,
scripts, and utilities to run at regular intervals. Linux enables you to schedule
nearly any script or utility to run on a regular basis using the cron daemon,
which runs these jobs from the cron table. In addition, you can have services
start automatically at bootup by using the command update-rc.d or the GUI-
based tool rcconf to update the rc.d scripts.

E X E RCISE S

Before you move on to Chapter 17, try out the skills you learned from this
chapter by completing the following exercises:

1.	 Schedule your MySQLscanner.sh script to run every Wednesday at 3 PM.

2.	 Schedule your MySQLscanner.sh script to run every 10th day of the month
in April, June, and August.

3.	 Schedule your MySQLscanner.sh script to run every Tuesday through
Thursday at 10 AM.

4.	 Schedule your MySQLscanner.sh script to run daily at noon using the
shortcuts.

5.	 Update your rc.d script to run PostgreSQL every time your system boots.

6.	 Download and install rcconf and add the PostgreSQL and MySQL data-
bases to start at bootup.

17
P Y T H O N S C R I P T I N G B A S I C S

F O R H A C K E R S

Basic scripting skills are critical to becoming
a master hacker. Without having developed

some basic scripting skills, a beginner hacker
who simply uses tools created by someone else

will be condemned to the realm of script kiddies. This
means that you will be limited to using tools developed by someone else,
which decreases your probability of success and increases your probability
of detection by antivirus (AV) software, intrusion detection systems (IDSs),
and law enforcement. With some scripting skills, you can elevate yourself
to the upper echelon of the master hackers!

In Chapter 8, we covered bash scripting basics and built some simple
scripts, including MySQLScanner.sh, which finds systems running the ubi­
quitous MySQL database system. In this chapter, we begin looking at the
scripting language most widely used by hackers: Python. Many of the most
popular hacker tools are written in Python, including sqlmap, scapy, the
Social-Engineer Toolkit (SET), w3af, and many more.

Python has some important features that make it particularly well-
suited for hacking, but probably most importantly, it has a huge variety

184 Chapter 17

of libraries—prebuilt modules of code that can be imported externally
and reused—that provide some powerful functionality. Python ships with
over 1,000 modules built in, and many more are available in various other
repositories.

Building hacking tools is possible in other languages too, such as
bash, Perl, and Ruby, but Python’s modules make building these tools
much easier.

Adding Python Modules
When you install Python, you also install its set of standard libraries and
modules that provide an extensive range of capabilities, including built-in
data types, exception handling, numeric and math modules, file handling,
cryptographic services, internet data handling, and interaction with internet
protocols (IPs).

Despite all the power offered by these standard libraries and modules,
you may need or want additional third-party modules. The third-party
modules available for Python are extensive and are probably the reason
most hackers prefer Python for scripting. You can find a comprehensive
list of third-party modules at PyPI (the Python Package Index, shown in
Figure 17-1) at http://www.pypi.org/.

Figure 17-1: The Python Package Index

Using pip
Python has a package manager specifically for installing and manag­
ing Python packages known as pip (Pip Installs Packages). Since we are
working with Python 3 here, you will need pip for Python 3 to download

Python Scripting Basics for Hackers 185

and install packages. Pip should be included by default, but if you need to,
you can download and install pip from the Kali repository by entering the
following:

kali >apt-get install python3-pip

Now, to download modules from PyPI, you can simply enter this:

kali >pip3 install <package name>

When you download these packages, they are automatically placed in the
/usr/local//lib/<python-version>/dist-packages directory. So, for instance, if you
had used pip to install the Python implementation of the SNMP protocol for
Python 3.7, you would find it at /usr/local/lib/python3.6/pysnmp. If you aren’t
sure where a package has been placed on your system (sometimes different
distributions of Linux use different directories), you can enter pip3 followed
by show and the package name, as shown here:

kali >pip3 show pysnmp
Name: pysnmp
Version: 4.4.4
Summary: SNMP library for Python
Home-page: https://github.com/etingof/pysnmp
Author: Ilya Etingof <etingof@gmail.com>
Author-email: etingof@gmail.com
License: BSD
Location: usr/local/lib/python3.6/dist-packages
Requires: ptsmi, pyansl, pycryptodomex

You can see this gives you a lot of information about the package,
including the directory that holds it.

As an alternative to using pip, you can download a package directly
from the site (make certain that is downloaded to the proper directory),
unpack it (see Chapter 9 on how to unpack software), and then run the
following:

kali >python3 setup.py install

This will install any unpacked packages that haven’t yet been installed.

Installing Third-Party Modules
To install a third-party module created by another member of the Python
community (as opposed to an officially released Python package), you can
simply use wget to download it from wherever it is being stored online, uncom­
press the module, and then run the python setup.py install command.

As an example, let’s download and install the Python module for the
port-scanning tool we used in Chapter 8, nmap, from its online repository
at https://xael.org.

186 Chapter 17

First, we need to download the module from xael.org:

kali >wget http://xael.org/norman/python/python-nmap/python-nmap-0.3.4.tar.gz
--2019-03-10 17:48:32-- http://xael.org/norman/python/python-nmap/python-nmap-
0.3.4.tar.gz
Resolving xael.org (xael.org)...195.201.15.13
Connecting to xael.org (xael.org)|195.201.15.13|:80...connected.

--snip--

2019-03-10 17.48:34 (113 KB/s) - 'python-nmap-0.3.4.tar.gz' saved
[40307/40307]

Here, you can see we use the wget command and the full URL for the
package. After the package has downloaded, you need to uncompress it
with tar, as you learned in Chapter 9:

kali >tar -xzf python-nmap-0.3.4.tar.gz

Then change directories to the newly created directory:

kali >cd python-nmap-.03.4/

Finally, in that directory, install the new module by entering the
following:

kali >~/python-nmap-0.3.4 >python setup.py install
running install
running build
running build_py
creating build

--snip--

running install_egg_info
writing /usr/local/lib/python2.7/dist-packages/python_nmap-0.3.4.egg.info

Innumerable other modules can be obtained this way as well. Once
you’ve installed this nmap module, you can use it in your Python scripts
by importing the module. More on this later. Now let’s get started on some
scripting.

Getting Started Scripting with Python
Now that you know how to install modules in Python, I want to cover some
of the basic concepts and terminology of Python, then the basic syntax.
After that, you’ll write some scripts that will be useful to hackers every­
where and that I hope will demonstrate the power of Python.

Python Scripting Basics for Hackers 187

Just as with bash or any other scripting language, we can create Python
scripts using any text editor. For this chapter, to keep things simple, I advise
you to use a simple text editor such as Leafpad, but it’s useful to know that a
number of integrated development environments, or IDEs, are available for use
with Python. An IDE is like a text editor with other capabilities built in, such
as color-coding, debugging, and compiling capabilities. Kali has the IDE
PyCrust built in, but there are many more IDEs available to download, of
which the best is arguably JetBrain’s PyCharm. This is an excellent IDE with a
lot of enhancements that make learning Python easier and quicker. There is
a professional version for purchase and a community edition that is free. You
can find them at https://www.jetbrains.com/pycharm/.

Once you’ve completed this chapter, if you want to keep learning Python,
PyCharm is an excellent tool that will help you in your development. For now,
we will use a basic text editor like Leafpad to keep things simple.

Note that learning any programming language takes time and a lot of
hard work. Be patient with yourself—attempt to master each of the small
scripts I provide before moving on.

FOR M AT T ING IN PY T HON

One difference between Python and some other scripting languages is that
formatting is critically important in Python. The Python interpreter uses the for-
matting to determine how code is grouped. The particulars of the formatting
are less important than simply being consistent, particularly with your indenta-
tion levels.

If you have a group of code lines that you start with double indentation,
for example, you must be consistent with the double indentation throughout
the entire block in order for Python to recognize that these code lines belong
together. This is different from scripting in other programming languages, where
formatting is optional and a best practice, but not required. You’ll notice this as
you go through and practice; it’s something to always keep in mind!

Variables
Now, on to some more practical concepts in Python. A variable is one of the
most basic data types in programming, and you encountered it earlier in
Chapter 8 with bash scripting. In simple terms, a variable is a name associ­
ated with a particular value such that whenever you use that name in your
program, it will invoke the associated value.

The way it works is that the variable name points to data stored in a
memory location, which may contain any kind of value, such as an integer,
real number, string, floating-point number, Boolean (true or false state­
ment), list, or dictionary. We’ll briefly cover all of these in this chapter.

To become familiar with the basics, let’s create a simple script, shown in
Listing 17-1, in Leafpad and save it as hackers-arise_greetings.py.

188 Chapter 17

#! /usr/bin/python3

name="OccupyTheWeb"

print("Greetings to " + name + " from Hackers-Arise. The Best Place to Learn Hacking!")

Listing 17-1: Your first Python program

The first line simply tells your system that you want it to use the Python
interpreter to run this program, rather than any other language. The sec­
ond line defines a variable called name and assigns a value to it (in this case,
"OccupyTheWeb"). You should change this value to your own name. The value
of this variable is in the string character data format, meaning the content is
enclosed in quotation marks and is treated like text. You can put numbers
in strings, too, and they will be treated like text, in that you won’t be able to
use them in numerical calculations.

The third line creates a print() statement concatenating Greetings to
with the value in the name variable, followed by the text from Hackers-Arise.
The Best Place to Learn Hacking! A print() statement will display whatever you
pass to it within the parentheses on your screen.

Now, before you can run this script, you need to give yourself permission
to execute it. We need the chmod command to do that. (For more information
on Linux permissions, see Chapter 5).

kali >chmod 755 hackers-arise_greetings.py

Just as you did in Chapter 8 with bash scripting, to execute your script,
precede the script name with a period and forward slash. Your current
directory is not in the $PATH variable for security reasons, so we need to pre­
cede the script name with ./ to tell the system to look in the current direc­
tory for the filename and execute it.

To run this particular script, enter the following:

kali >./hackers-arise_greetings.py
Greetings to OccupyTheWeb from Hackers-Arise. The Best Place to Learn Hacking!

In Python, each variable type is treated like a class. A class is a kind of
template for creating objects. See “Object-Oriented Programming (OOP)”
on page 192 for more information. In the following script, I have attempted
to demonstrate a few of the types of variables. Variables can hold more than
just strings. Listing 17-2 shows some variables containing different data types.

#! /usr/bin/python3

HackersAriseStringVariable = "Hackers-Arise Is the Best Place to Learn
Hacking"

HackersAriseIntegerVariable = 12

Python Scripting Basics for Hackers 189

HackersAriseFloatingPointVariable = 3.1415

HackersAriseList = [1, 2, 3, 4, 5, 6]

HackersAriseDictionary = {'name': 'OccupyTheWeb', 'value' : 27}

print(HackersAriseStringVariable)

print(HackersAriseIntegerVariable)

print(HackersAriseFloatingPointVariable)

Listing 17-2: A series of data structures associated with variables

This creates five variables that contain different data types: a string,
treated as text; an integer, which is a number type without decimals that
can be used in numerical operations; a float, which is a number type with
decimals that can also be used in numerical operations; a list, which is a
series of values stored together; and a dictionary, which is an unordered set
of data where each value is paired with a key, meaning each value in the
dictionary has a unique identifying key. This is useful for when you want to
refer to or change a value by referring to a key name. For example, say you
have a dictionary called fruit_color configured like the following:

fruit_color = {'apple': 'red', 'grape': 'green', orange: 'orange'}

If later in your script you want get the fruit_color of the grape, you simply
call it by its key:

 print(fruit_color['grape'])

You could also change values for particular keys; for example, here we
change the color of the apple:

 fruit_color['apple']= 'green'

We will discuss lists and dictionaries in more detail later in the chapter.
Create this script in any text editor, save it as secondpythonscript.py, and

then give yourself permission to execute it, like so:

kali >chmod 755 secondpythonscript.py

When we run this script, it prints the values of the string variable, the
integer variable, and the floating-point number variable, like so:

kali >./secondpythonscript.py
Hackers-Arise Is the Best Place to Learn Hacking
12
3.1415

190 Chapter 17

N O T E 	 In Python, there is no need to declare a variable before assigning a value to it, as in
some other programming languages.

Comments
Like any other programming and scripting language, Python has the capabil­
ity for adding comments. Comments are simply parts of your code—words,
sentences, and even paragraphs—that explain what the code is meant to do.
Python will recognize comments in your code and ignore them. Although
comments are not required, they’re incredibly helpful for when you come
back to your code two years later and can’t remember what it should do.
Programmers often use comments to explain what a certain block of code
does or to explain the logic behind choosing a particular method of coding.

Comments are ignored by the interpreter. This means that any lines
designated as comments are skipped by the interpreter, which simply
continues until it encounters a legitimate line of code. Python uses the #
symbol to designate the start of single-line comment. If you want to write
multiline comments, you can use three double quotation marks (""") at the
start and end of the comment section.

As you can see in the following script, I have added a short, multiline
comment to our simple hackers-arise_greetings.py script.

#! /usr/bin/python3
"""
This is my first Python script with comments. Comments are used to help explain code to
ourselves and fellow programmers. In this case, this simple script creates a greeting for
the user.
"""
name = "OccupyTheWeb"
print ("Greetings to "+name+" from Hackers-Arise. The Best Place to Learn Hacking!")

When we execute the script again, nothing changes compared to the
last time it was executed, as you can see here:

kali >./hackers-arise_greetings.py
Greetings to OccupyTheWeb from Hackers-Arise. The Best Place to Learn Hacking!

It runs exactly the same as it did in Listing 17-1, but now we have some
info about our script when we return to the code at a later time.

Functions
Functions in Python are bits of code that perform a particular action. The
print() statement you used earlier, for example, is a function that displays
whatever values you pass to it. Python has a number of built-in functions
you can immediately import and use. Most of them are available on your
default installation of Python in Kali Linux, although many more are

Python Scripting Basics for Hackers 191

available from the downloadable libraries. Let’s take a look at just a few of
the thousands of functions available to you:

•	 exit() exits from a program.

•	 float() returns its argument as a floating-point number. For example,
float(1) would return 1.0.

•	 help() displays help on the object specified by its argument.

•	 int() returns the integer portion of its argument (truncates).

•	 len() returns the number of elements in a list or dictionary.

•	 max() returns the maximum value from its argument (a list).

•	 open() opens the file in the mode specified by its arguments.

•	 range() returns a list of integers between two values specified by its
arguments.

•	 sorted() takes a list as an argument and returns it with its elements in
order.

•	 type() returns the type of its argument (for example, int, file, method,
function).

You can also create your own functions to perform custom tasks. Since
there are so many already built into the language, it’s always worth checking
whether a function already exists before going through the effort of build­
ing it yourself. There are many ways to do this check. One is to look at the
official Python documentation available at https://docs.python.org. Choose
the version you are working with and then select Library Reference.

Lists
Many programming languages use arrays as a way to store multiple separate
objects. An array is a list of values that can be retrieved, deleted, replaced,
or worked with in various ways by referencing a particular value in the
array by its position in the list, known as its index. It’s important to note
that Python, like many other programming environments, begins counting
indexes at 0, so the first element in a list is index 0, the second is index 1,
the third is index 2, and so on. So, for instance, if we wanted to access the
third value in the array, we could do so with array[2]. In Python, there are a
few implementations of arrays, but probably the most common implementa­
tion is known as lists.

Lists in Python are iterable, which means that the list can provide
successive elements when you run all the way through it (see “Loops” on
page 198). This is useful because quite often when we use lists, we are
looking through them to find a certain value, to print out values one by
one, or to take values from one list and put them into another list.

So, let’s imagine we need to display the fourth element in our list
HackersAriseList from Listing 17-2. We can access that element and print
it by calling the list’s name, HackersAriseList, followed by the index of the
element we want to access enclosed in square brackets.

192 Chapter 17

To test this, add the following line to the bottom of your secondpythonscript
.py script to print the element at index 3 in HackersAriseList:

--snip--

print (HackersAriseStringVariable)

print (HackersAriseIntegerVariable)

print (HackersAriseFloatingPointVariable)

print (HackersAriseList[3])

When we run this script again, we can see that the new print statement
prints 4 alongside the other output:

kali >./secondpythonscript.py
Hackers-Arise Is the Best Place to Learn Hacking
12
3.1415
4

Modules
A module is simply a section of code saved into a separate file so you can use
it as many times as you need in your program without having to type it all
out again. If you want to use a module or any code from a module, you need
to import it. As discussed earlier, using standard and third-party modules is
one of the key features that makes Python so powerful for the hacker. If we
wanted to use the nmap module we installed earlier, we would add the follow­
ing line to our script:

import nmap

Later in this chapter, we will use two very useful modules: socket and
ftplib.

Object-Oriented Programming (OOP)
Before we delve deeper into Python, it’s probably worth taking a few
minutes to discuss the concept of object-oriented programming (OOP).
Python, like many programming languages today (C++, Java, and Ruby, to
name a few) adheres to the OOP model.

Figure 17-2 shows the basic concept behind OOP: the language’s main
tool is the object, which has properties in the form of attributes and states, as
well as methods that are actions performed by or on the object.

Python Scripting Basics for Hackers 193

Object

Method
Function or procedure

Property
Attribute or state

Figure 17-2: Illustration of object-oriented programming

The idea behind OOP-based programming languages is to create
objects that act like things in the real world. For example, a car is an object
that has properties, such as its wheels, color, size, and engine type; it also
has methods, which are the actions the car takes, such as accelerating and
locking the doors. From the perspective of natural human language, an
object is a noun, a property is an adjective, and a method is generally a verb.

Objects are members of a class, which is basically a template for creating
objects with shared initial variables, properties, and methods. For instance,
say we had a class called cars; our car (a BMW) would be a member of the
class of cars. This class would also include other objects/cars, such as
Mercedes and Audi, as shown in Figure 17-3.

Class

Car

Objects

BMW

Audi

Mercedes

Figure 17-3: OOP classes and objects

Classes may also have subclasses. Our car class has a BMW subclass, and
an object of that subclass might be the model 320i.

Each object would have properties (make, model, year, and color) and
methods (start, drive, and park), as shown in Figure 17-4.

Properties
make
model
year
color

Car

BMW

320i

Methods
start
drive
park

Figure 17-4: OOP properties and methods

194 Chapter 17

In OOP languages, objects inherit the characteristics of their class, so the
BMW 320i would inherit the start, drive, and park methods from class car.

These OOP concepts are crucial to understanding how Python and other
OOP languages work, as you will see in the scripts in the following sections.

Network Communications in Python
Before we move on to more Python concepts, let’s use what you’ve learned
so far to write a couple of hacking scripts to do with network connections.

Building a TCP Client
We’ll create a network connection in Python using the socket module. I’ve
already mentioned that Python comes with a library of modules for a multi­
tude of tasks. In this case, we will need the socket module to create a TCP
connection. Let’s see it in action.

Take a look at the script in Listing 17-3 named HackersAriseSSHBanner
Grab.py (I know, it’s a long name, but bear with me here). A banner is what
an application presents when someone or something connects to it. It’s kind
of like an application sending a greeting announcing what it is. Hackers use
a technique known as banner grabbing to find out crucial information about
what application or service is running on a port.

#! /usr/bin/python3

u import socket

v s = socket.socket()

w s.connect(("127.0.0.1", 22))

x answer = s.recv(1024)

y print(answer)

s.close()

Listing 17-3: A banner-grabbing Python script

First, we import the socket module u so we can use its functions and
tools. Here, we’re going to use the networking tools from the socket module
to take care of interfacing a connection over the network for us. A socket
provides a way for two computer nodes to communicate with each other.
Usually, one is a server and one is a client.

Then we create a new object, named s, instantiated from the socket
class from the socket module v. This way, we can now use this object to
perform further actions, such as connecting and reading data.

We then use the connect() method from the socket module w to make a
network connection to a special IP and port. Remember that methods are
functions that are available for a particular object. The syntax is object

Python Scripting Basics for Hackers 195

.method (for example, socket.connect). In this case, I’m connecting to IP
address 127.0.0.1, which is the IP address pointing back to localhost, the
same machine this script is running on, and port 22, which is the default
SSH port. You can test this on another instance of Linux or Kali. Most have
port 22 open by default.

Once you make the connection, there are a number of things you can
do. Here, we use the receive method recv to read 1024 bytes of data from
the socket x and store them in a variable named answer; these 1024 bytes
will contain the banner information. Then we print the contents of that
variable to the screen with the print() function y to see what data has been
passed over that socket, allowing us to spy on it! On the final line, we close
the connection.

Save this script as HackersAriseSSHBannerGrab.py and then change its
permissions using the chmod command so that you can execute it.

Let’s run this script to connect to another Linux system (you might use
an Ubuntu system or even another Kali system) on port 22. If SSH is running
on that port, we should be able to read the banner into our answer variable
and print it to the screen, as shown here:

kali >./HackersAriseSSHBannerGrab.py
SSH-2.0-OpenSSH_7.3p1 Debian-1

We have just created a simple banner-grabbing Python script! We can
use this script to find out what application, version, and operating system
are running at that IP address and port. This gives us key information a
hacker needs before attacking a system. This is essentially what the website
Shodan.io does for nearly every IP address on the planet, and it catalogs and
indexes this information for us to search.

Creating a TCP Listener
We just created a TCP client that can make a connection to another TCP/IP
address and port and then spy on the information being transmitted. That
socket can also be used to create a TCP listener, to listen to connections
from outsiders to your server. Let’s try doing that next.

In the Python script shown in Listing 17-4, you’ll create a socket on any
port of your system that, when someone connects to that socket, collects
key information about the connector’s system. Enter the script and save it as
tcp_server.py. Make sure to give yourself execute permissions with chmod.

#! /usr/bin/python3

import socket

u TCP_IP = "192.168.181.190"
TCP_PORT = 6996
BUFFER_SIZE = 100

v s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

196 Chapter 17

w s.bind((TCP_IP, TCP_PORT))
x s.listen(1)

y conn, addr = s.accept()
print('Connection address: ', addr)

while True:

 data=conn.recv(BUFFER_SIZE)
 if not data:
 break
 print("Received data: ", data)
 conn.send(data) #echo

conn.close()

Listing 17-4: A TCP-listening Python script

We declare that we want the script to run with the Python interpreter
and then import the socket module as before, so we can use its capabilities.
We then define variables to hold information for the TCP/IP address, the
port to listen on, and the buffer size of the data we want to capture from
the connecting system u.

We define the socket v and bind the socket to the IP address and port w
using the variables we just created. We tell the socket to listen using the
listen() method from the socket library x.

We then capture the IP address and port of the connecting system
using the socket library’s accept method, and we print that information to
the screen so the user can see it y. Notice the while True: syntax here; we’ll
discuss this more later in the chapter, but for now just know that it is used
to run the indented code that comes after it indefinitely, meaning Python
keeps checking for data until the program is stopped.

Finally, we place the information from the connecting system into a
buffer, print it, and then close the connection.

Now, open a browser and browse to http://localhost:6996 to go to the
6996 port designated in our script. Run the tcp_server.py script, and you
should be able to connect and collect key information about that system,
including the IP address and port of the connecting system, as shown here:

kali >./tcp_server.py
Connection Address: ('192.168.181.190', 45368)
Received data: Get /HTTP/1.1
Host:192.168.181.190:6996
User -Agent:Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gec

--snip---

This is critical information for a hacker to gather before deciding on an
exploit. Exploits (or hacks) are very specific to the operating system, appli­
cation, and even language being used, so the hacker needs to know as much
information as possible about the target before proceeding. This act of

Python Scripting Basics for Hackers 197

gathering information prior to a hack is often referred to as reconnaissance.
You just developed a tool that will gather key reconnaissance information
on a potential target, very similar to the popular hacker tool p0F!

Dictionaries, Loops, and Control Statements
Let’s keep expanding your understanding of Python and then use every­
thing you’ve learned so far to build a password cracker for an FTP server.

Dictionaries
Dictionaries hold information as unordered pairs, where each pair contains
a key and an associated value. We can use a dictionary to store a list of items
and give each item a label so we can use and refer to that item individually.
We might use a dictionary to store, for example, user IDs and their associ­
ated names, or to store known vulnerabilities associated with a specific host.
Dictionaries in Python act like associative arrays in other languages.

Like lists, dictionaries are iterable, meaning we use a control structure
such as a for statement to go through the entire dictionary, assigning each
element of the dictionary to a variable until we come to the end of the
dictionary.

Among other things, you might use this structure in building a pass­
word cracker that iterates through each password stored in a dictionary
until one works or until the cracker comes to the end of the dictionary.

The syntax for creating a dictionary is as follows:

dict = {key1:value1, key2:value2, key3:value3...}

Note that for dictionaries, you use curly brackets and separate items
with a comma. You can include as many key-value pairs as you like.

Control Statements
Control statements allows your code to make decisions based on some condi­
tion. There are a number of ways in Python to control the flow of the script.

Let’s look at some of these structures in Python.

The if Statement

The if structure in Python, as in many other programming languages
including bash, is used to check whether a condition is true or not and
run different sets of code for each scenario. The syntax looks like this:

if conditional expression:
 run this code if the expression is true

The if statement contains a condition that might be something like
if variable < 10, for example. If the condition is met, the expression evaluates
to true, and then the code that follows, known as the control block, is executed.

198 Chapter 17

If the statement evaluates to false, then the statements in the control block
are skipped over and not executed.

In Python, lines that introduce a control block must end with a colon,
and the control block must be indented. This indentation identifies the
control block to the interpreter. The next statement that is not indented is
outside the control block and therefore not part of the if statement, and
this is how Python knows where to skip to if the condition is not met.

if...else

The if...else structure in Python looks like this:

if conditional expression:
 *** # run this code when the condition is met
else:
 *** # run this code when the condition is not met

As before, first the interpreter checks the condition in the if expres­
sion. If it evaluates to true, the interpreter executes the statements in the
control block. If the conditional statement evaluates to false, the control
block following the else statement is executed instead.

For example, here we have a code snippet that checks the value of a user
ID; if it is 0 (the root user in Linux is always UID 0), then we print the mes­
sage “You are the root user.” Else, if it is any other value, we print the message
“You are NOT the root user.”

if userid == 0:
 print("You are the root user")
else:
 print("You are NOT the root user")

Loops
Loops are another very useful structure in Python. Loops enable the pro­
grammer to repeat a code block multiple times, depending on a value or a
condition. The two kinds of loops are while and for.

The while Loop

The while loop evaluates a Boolean expression (an expression that can evalu­
ate only to true or false) and continues execution while the expression evalu­
ates to true. For example, we could create a code snippet that prints each
number from 1 to 10 and then exits the loop, like so:

count = 1
while (count <= 10):
 print(count)
 count += 1

The indented control block then runs for as long as the condition is true.

Python Scripting Basics for Hackers 199

The for Loop

The for loop can assign values from a list, string, dictionary, or other iter­
able structure to an index variable each time through the loop, allowing us
to use each item in the structure one after the other. For example, we can
use a for loop to attempt passwords until we find a match, like so:

for password in passwords:
 attempt = connect(username, password)

 if attempt == "230":

 print("Password found: " + password)

 sys.exit(0)

In this code snippet, we create a for statement that continues through a
list of passwords we have provided and attempts to connect with a username
and password. If the connection attempt receives a 230 code, which is the
code for a successful FTP connection, the program prints "Password found:"
and then the password. It then exits. If it does not get a 230, it will continue
through each of the remaining passwords until it receives a 230 or until it
exhausts the list of passwords.

Improving Our Hacking Scripts
Now with a bit more background in Python looping structures and condi­
tional statements, let’s return to our banner-grabbing script and add some
capabilities.

We’ll add a list of ports that we want to grab the banner from, rather
than just listening on one port, and then loop through the list using a for
statement. In this way, we can search for and grab banners for multiple
ports and display them to the screen.

First, let’s create a list and put additional ports in it. Open HackersArise
SSHBannerGrab.py, and we’ll work from there. Listing 17-5 shows the full
code. Note that the grayed-out lines have stayed the same; the black lines
are the ones you need to change or add. We’ll try to grab banners for
ports 21 (ftp), 22 (ssh), 25 (smtp), and 3306 (mysql).

#! /usr/bin/python3

import socket

u Ports = [21, 22, 25, 3306]

v for Port in Ports:

 s = socket.socket()

200 Chapter 17

 print('This Is the Banner for the Port')

 print(Port)

w s.connect(("192.168.1.101", Port))

 answer = s.recv (1024)

 print(answer)

 s.close()

Listing 17-5: Improving the banner grabber

We create a list called Ports u and add four elements, each representing
a port. Then we create a for statement that iterates through that list four
times, since it has four items v.

Remember that when you’re using a for loop, the code associated with
the loop must be indented beneath the for statement.

We need to alter the program to reflect the use of a variable from the
list on each iteration through. To do so, we create a variable named Port
and assign it to the value from the list at each iteration. Then we use that
variable in our connection w.

When the interpreter comes to that statement, it will attempt to connect
to whichever port is assigned to the variable at the IP address.

Now, if you run this script on a system with all the ports listed open and
enabled, you should see something like Listing 17-6.

kali >./HackersArisePortBannerGrab.py
This is the Banner for the Port
21
220 (vsFTPd 2.3.4)

This Is the Banner for the Port
22
SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

This Is the Banner for the Port
25
220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

This Is the Banner for the Port
3306
5.0.51a-3ubuntu5

Listing 17-6: Output for the port banner grabber

Note that the script has found port 21 open with vsFTPd 2.3.4 running
on it, port 22 open with OpenSSH 4.7 running on it, port 25 with Postfix,
and port 3306 with MySQL 5.0.51a.

Python Scripting Basics for Hackers 201

We have just successfully built a multiport banner-grabbing tool in
Python to perform reconnaissance on a target system. The tool tells us
which service is running on the port and the version of that service! This
is key information a hacker needs before proceeding with an attack.

Exceptions and Password Crackers
Any code you write will be at risk of errors or exceptions. In programming
terms, an exception is anything that disrupts the normal flow of your code—
usually an error caused by incorrect code or input. To deal with possible
errors, we use exception handling, which is simply code that handles a par­
ticular problem, presents an error message, or even uses an exception for
decision making. In Python, we have the try/except structure to handle
these errors or exceptions.

A try block tries to execute some code, and if an error occurs,
the except statement handles that error. In some cases, we can use the
try/except structure for decision making, similar to if...else. For instance,
we can use try/except in a password cracker to try a password and, if an
error occurs due to the password not matching, move to the next pass­
word with the except statement. Let’s try that now.

Enter the code in Listing 17-7 and save it as ftpcracker.py; we’ll go through
it in a moment. This script asks the user for the FTP server number and the
username of whichever FTP account they want to crack. It then reads in
an external text file containing a list of possible passwords and tries each
one in an effort to crack into the FTP account. The script does this until it
either succeeds or runs out of passwords.

#! /usr/bin/python3

import ftplib

u server = input(FTP Server: ")

v user = input("username: ")

w Passwordlist = input ("Path to Password List > ")

x try:

 with open(Passwordlist, 'r') as pw:

 for word in pw:

y word = word.strip('\r\n')

z try:

 ftp = ftplib.FTP(server)

 ftp.login(user, word)

202 Chapter 17

{ print(Success! The password is ' + word)

| except ftplib.error_perm as exc:
 print('still trying...', exc)

except Exception as exc:

 print ('Wordlist error: ', exc)

Listing 17-7: FTP password cracker Python script

We’re going to use tools from the ftplib module for the FTP protocol,
so first we import that. Next, we create a variable named server and another
variable named user, which will store some commands for user input. Your
script will prompt the user to enter the IP address of the FTP server u and
the username for the account v the user is trying break into.

Then we ask the user for the path to the password list w. You can find
numerous password lists in Kali Linux by entering locate wordlist in a
terminal.

We then begin the try block of code that will use the password list pro­
vided by the user to attempt to crack the password for the username supplied
by the user.

Note that we use a new Python function called strip() y. This function
removes all the leading and trailing characters of a string (in this case, from
the word). This is necessary because iterating over the lines in this list will
leave the newline characters ('\n' and '\r') at the end of the word. The
strip() function removes these and leaves just the string of characters of the
potential password. If we don’t strip the newline characters, we will get a
false negative.

Then, we use a second try z block. Here, we use the ftplib module to
first connect to the server using the IP address the user supplied and then
try the next password from the password list on that account.

If the combination of the username and password results in an error,
the block exits and goes to the except clause |, where it prints still trying
and the text of the login error exception. Then, it returns to the top of the
for clause and grabs the next password from the password list to try.

If the combination succeeds, the successful password is printed to the
screen {. The final line picks up any other situations that would otherwise
result in errors and displays them. An example would be if the user input
something the program couldn’t process, such as bad path to the wordlist
or a missing wordlist.

Now, let's run this script against the FTP server at 192.168.1.101 and see
whether we can crack the password of the root user. I am using a password
list named bigpasswordlist.txt in my working directory. You may need to pro­
vide the entire path to whichever password list you are using if it is not in
your working directory (for example, /usr/share/bigpasswordlist.txt).

kali >./ftpcracker.py
FTP Server: 192.168.1.101

Python Scripting Basics for Hackers 203

username: root
Path to PasswordList >bigpasswordlist.txt

still trying...
still trying...
still trying...

--snip--

Success! The password is toor

As you can see, ftpcracker.py successfully found the password for the user
root and presented it onscreen.

Summary
To graduate beyond script-kiddie status, a hacker must master a scripting
language, and Python is generally a good first choice for its versatility and
relatively small learning curve. The majority of hacking tools are written in
Python, including sqlmap, scapy, and many others. Here, you have learned
some Python fundamentals you can use to build some useful, yet simple
hacker tools, including a banner grabber and an FTP password cracker. To
learn more Python, I strongly recommend No Starch Press’s excellent book
Automate the Boring Stuff with Python (2015) by Al Sweigart.

E X E RCISE S

Try out the skills you learned from this chapter by completing the following
exercises:

1.	 Build the SSH banner-grabbing tool from Listing 17-5 and then edit it to do
a banner grab on port 21.

2.	 Rather than hardcoding the IP address into the script, edit your banner-
grabbing tool so that it prompts the user for the IP address.

3.	 Edit your tcp_server.py to prompt the user for the port to listen on.

4.	 Build the FTPcracker in Listing 17-7 and then edit it to use a wordlist for
user variable (similar what we did with the password) rather than prompt-
ing the user for input.

5.	 Add an except clause to the banner-grabbing tool that prints “no answer”
if the port is closed.

Symbols & Numbers
""" (comment) characters, 190
(comment) character, 83
#! (shebang) characters, 82
--help command, 8–9
-? (help) command, 9
-h (help) command, 8–9
. (execute) command, 84, 90
.. (move up level) command option, 7
/ (forward) command, 26
32-bit/64-bit CPU types, xxv
: (return true) command, 84, 90
[[(conditional test) command, 91

A
access. See also permissions

network, 31, 32
remote databases, 132–133
restricted internet, 148–149

access lists. See also wordlists, 125
access points (AP), 31, 154, 155–156, 157
Advanced Packaging Tool (apt),

40–44
aircracking suite, 9, 157–159
aireplay-ng command, 159
airmon-ng command, 157–158
airodump-ng command, 158–159
anonymity

IP address tracking, 140–141
with proxy servers, 143–148
with Tor network, 141–143
with VPNs, 148–149

Apache Web Server service, 122–125
apt (Advanced Packaging Tool), 40–45
apt-cache command, 40
apt-get command, 40–43
archiving, 94–96, 115
ARM architecture, xxvi
arrays, 191
at daemon, 69
automount, 106

B
background processes, 68–69
backup scheduling task, 176–177
bad blocks table, 108
banner-grabbing, 194–195, 199–201
banners, 194
bash (Bourne-again shell)

common commands, 90–91
overview, 2, 4, 72, 82

Bcast (broadcast address), 30
bg (background) command, 90
/bin directories, 5, 76
binaries

defined, 2
in Linux filesystem, 5
search commands, 10

BIND (Berkeley Internet Name
Domain), 34

black hat hackers, 86
block devices, 105–106
Bluetooth, 159–164

overview, 159–160
scanning, 160–164

Bluetooth SIG site, 162
BlueZ protocol stack, 160–161
bootloader, xxxiv
break command, 90
broadcast address

changing, 32
information, 30

broadcast command option, 32
BSSID (basic service set identifier),

154, 158–159
bunzip2 command, 97
Butler, Max “Max Vision”, 86–87
bzip2 command, 97

C
case sensitivity, 2
cat (concatenation) command, 13–14,

22, 167
cd (change directory) command, 7

I N D E X

206 Index

channels (CH), Wi-Fi, 154, 158,
158–159

character devices, 105
chgrp (change group) command, 51
chmod (change mode) command, 52–55,

56, 58
chown (change owner) command, 50
classes and subclasses, 193–194
command directories, 76–77
command line interface (CLI), 2
comment characters, 83, 190
compress command, 97
compression, 93–94, 96–97
concatenation, 13–14, 22, 67
configuration files, 5
connect method, 194–195
continue command, 90
control statements, 197–199
copy commands

bit by bit, 98–99
file, 15

cp (copy file) command, 15
CPU types, xxv
createuser command, 137
cron daemon, 174
cron table, 174–178
crond command, 69, 174
crontab command, 175–176

D
daemons, 32, 69
dark web, 142
databases. See also MySQL databases

hacking, 87, 130
db_status command, 137
dd command, 98–99
Debian distribution, xxv
deleted file copy, 98–99
denial-of-service (DoS) attacks, 31
describe command, 134
/dev directory, 102–106
device drivers, as hacking target, 171
df (disk free) command, 107–108
dhclient command, 33
dhcp daemon, 32
DHCPDISCOVER request, 33
DHCPOFFER request, 33
DHSCP servers, 32–33, 35
dict statement, 197
dictionaries, 197
dig command, 33–34

directories. See also filesystems
changing, 7
creating, 15
Linux filesystem, 5
listing content, 7–8, 51–52
naming, 2
and PATH variable, 76–77
permissions, 51–52
present working, 6
removing, 16
searching, 11–12

disk space, xxix, 107–108
dmesg command, 171
DNS (Domain Name System), 33–35

changing servers, 34–35
information, 33–34

E
eavesdropping, 150, 166
echo command, 35, 83, 90
email encryption services, 150
encryption

email, 150
with VPNs, 149
wireless security (ENC), 158

env (environment) command, 72
environment variables. See also shell

variables
changing values, 73–74
command directories, 76–77
concepts, 71–72
shell prompt, 75–76
user-defined, 77–78
viewing, 72–73

espionage, xxiii, 141, 148, 149
ESSID (extended service set identifier),

154, 158–159
/etc/apt/sources.list file, 44
/etc/crontab file, 174–176
/etc directory, 5
/etc/fstab file, 107
/etc/hosts file, 36
/etc/init.d/rc file, 179
/etc/logrotate.conf file, 115–117
/etc/proxychains.conf file, 144
/etc/resolv.conf file, 34–35
/etc/rsyslog.conf file, 112–115
/etc/shadow file, 57
/etc/sysctl.conf file, 167, 168
eth0 interface, 30
ethical hacking, xxii–xxiii

Index 207

eval (evaluate expression) command, 90
exception handling, 201
exec command, 90
execute permissions, 55–56, 57–58,

83–84
exit command, 90
exploits, 196–197
export command, 74, 75–76, 90

F
fdisk utility, 104
fg (foreground) command, 69, 90
file content. See text
file types, 104–105
files. See also log files; text

archiving, 94–96
compressing, 96–97
copying, 15, 97–98
creating, 13–15
listing, 7–8, 51–52
moving, 15–16
naming, 2
ownership, 50–51
removing, 16
renaming, 15–16
searching for, 10–12

filesystems
Linux structure, 4–5
monitoring, 107–109
navigating, 6–8
searching, 9–12
storage devices in, 102–106, 107

filtering with keywords, 12–13, 22–23,
63–64, 73

find command, 11–12, 59
flash drives, 104–105, 106
for loop, 199
frequency, Wi-Fi, 154
fsck (filesystem check) command,

108–109
ftplib module, 201–202

G
getopts command, 91
git clone command, 46–47
github, 46
Google internet tracking, 140
Grand Unified Bootloader (GRUB),

xxxiv–xxxv

gray hat hackers, 86–87
grep command, 12–13, 22, 24, 63, 73
GRUB (Grand Unified Bootloader),

xxxiv–xxxv
gzip command, 96–97

H
hacking

malicious, 86–87
as profession, xxi–xxiii
and scripting skills, 183

hard drive partitions, xxxiii
hciconfig command, 161
hcidump command, 161
hcitool command, 161–162
head (view file) command, 20–21, 23
help commands, 8–9
hidden file switch, 8
history file size, 73–74
HISTSIZE (history file) variable, 73
home directory, 2, 5
hosts file, 36
html code example, 124–125
HTTP vs. Torrent, xxv–xxvi
HWaddr. See MAC address

I
IDEs (integrated development

environments), 187
if statement, 197–198
ifconfig command, 29–30, 31–32,

154–155
if...else statement, 198
import statement, 192
index.html file, 124–125
init daemon, 179
insmod (insert module) suite, 169
IP forwarding, 168–169
IP (Internet Protocol) addresses

analyzing, 29–30
changing, 31
domain name mapping, 36
requesting new, 32–33
scanner script, 87–88
tracking, 140–141

.iso file extension, xxx
iterable lists, 191
iwconfig command, 30–31, 155, 157
iwlist command, 155–156

208 Index

J
job scheduling, 173–178
jobs command, 91

K
Kali

desktop, 3–5
downloads, xxv–xxvi
installation, xxix–xxxi
login, xxxv–xxxvi
overview, 2
setup, xxxi–xxxv

kernel, 62, 165–166, 167–169
kernel modules. See also loadable kernel

modules, 166, 169–171
KEY statements, 72
kill command, 67–68
kill signals, 67
killall command, 67–68

L
l2ping command, 163–164
LAMP tools, 123
less command, 25–26
/lib directory, 5
libraries, 5
Linux

advantages of, xxiv
case sensitivity, 2
distributions, xxv
runlevels, 179

LKMs. See loadable kernel modules
(LKMs)

lo (loopback address) information, 30
loadable kernel modules (LKMs). See

also kernel modules, 166,
169–171, 171–172

localhost, 30
locate command, 10
log files, 115–118

rotating, 115–117
shredding, 117–118

logging systems
concepts, 111
configuration and rules, 112–115
disabling, 118–119

login checking, 6
logrotate utility, 115–117
loopback address, 30
loops, 198–199

lossy vs. lossless compression, 94
ls (list) command, 7–8, 51–52
lsblk (list block) command, 105–106
lsmod (list modules) command, 169

M
MAC address

displaying, 30, 156
spoofing, 32

man-in-the-middle (MITM) attacks,
166, 168

man (manual) command, 9, 23
managed mode, 31
manual pages, 9
Mask information, 30
master mode, 155
/media directory, 5, 106–107
message logging. See logging systems
Metasploit, 63, 136–137
methods, 193–194, 195
military hacking, xxiii
MITM (man-in-the-middle) attacks,

166, 168
mkdir (make directory) command, 15
/mnt directory, 5, 106
mobile devices, xxiv–xxv, xxvi
modinfo command, 170
modprobe command, 169, 170–171
monitor mode, 155, 157–158
more command, 25
mount points, 106
mounting/unmounting devices,

106–107
mv (move/rename) file command, 16
MySQL/MariaDB databases, 130–135

accessing, 132–133
connecting to, 133–134
information, 131–132
tables, 134–135

MySQL Scanner script
code example, 87–90
scheduling, 177–178

mysql service, 130–135

N
nameservers, 33–35
National Security Agency (NSA),

139, 143
netmask command option, 32
network cards, 155, 157

Index 209

network connection scripts, 194–197
network intrusion detection system

(NIDS), 19
network manager, 156
network mask

changing, 32
display, 30

networks. See also Wi-Fi networks
analyzing, 29–31
changing information, 31–33

nfnetlink module, 169
nice (process priority) command,

65–66
NIDS (network intrusion detection

system), 19
nl (number lines) command, 22, 23
nmap (network map) command, 86,

87–88
nmcli (network manager command line

interface) command, 156

O
object-oriented programming (OOP),

192–194
objects, 193–194, 195
octal digits, 53
.onion addresses, 142
Onion Router system, 141–143
OOP. See object-oriented

programming (OOP)
open source code, xxiv, xxv
OpenSSH service, 125–126

P
packet forwarding, 168–169
pairing Bluetooth, 160
partitions

defined, xxxiii
labeling system, 103–104

passwd command, 4
passwords

changing, 4
cracking, 31, 159, 201–203
root user, xxxii–xxxiii, 132–133

PATH variable, 76–77
penetration testing, xxiii
permissions, 49–59

changing, 52–57
checking, 51–52
concepts, 49–50

granting, 50–51, 83–84
special, 57–59

PID (process ID), 62, 63
pip (Pip Installs Packages) manager,

184–185
piping, 12–13
ports

banner-grabbing script, 199–201
connecting to, 194–195
scanning, 86–90

PostgreSQL (Postgres) databases,
135–137

postgresql service, 136–137
power (PWR) and Wi-Fi, 154, 158,

158–159
priority

message logging, 114–115
processes, 64–66

privilege escalation, 58
/proc/version file, 167
process ID (PID), 62, 63
processes, 61–69

background and foreground,
68–69

concepts, 61–62
information on, 12–13, 62–64
killing, 66–68
managing priority of, 64–66
scheduling, 69

.profile file, 57
promiscuous mode, 31
properties, 193
ProtonMail, 150
proxy servers, 143–148

choosing, 148
concepts, 143–144
setting up, 144–148

proxychains command, 143–148
ps (processes) command, 12–13, 62–63
PS1 (shell prompt) variable, 75–76
PSK (pre-shared key), 154
pwd (present working directory)

command, 6
Python language

comments, 190
functions, 190–191
installing, 184–186
learning, 183–184, 187, 203
lists, 191–192
modules, 192
variables, 187–190

Python Package Index (PyPI), 184

210 Index

R
Raspberry Pi

architecture, xxvi
Spy project, 125–129

Raspbian operating system, 126, 129
raspistill application, 129
rc scripts, 178–180
rcconf tool, 180–181
read command, 85, 91
readonly command, 91
reconnaissance, 160–164, 197
renice command, 65, 66
repositories, 40, 43–44, 185
resource usage, 64
rm (remove) command, 16
rmdir (remove directory) command, 16
rmmod (remove module) command, 169
/root directory, 5
root user

defined, 2
passwords, xxxii–xxxiii, 131, 132
privileges, 5, 6, 50, 65, 66

rootkits, 166, 171
rsyslog daemon, 112, 119
runlevels, 179

S
/sbin directories, 76
scheduling

with at, 69
with crond, 174–178
at startup, 178–181

script variables, 84–85, 89
scripts

concepts, 2, 81
examples, 86–90
executing (running), 83–84
scheduling, 174–178
writing, 82–85

SDP (Service Discovery Protocol), 163
sdptool command, 163
security. See also permissions

and loadable kernel modules,
171–172

and surveillance, 142–143, 148, 149
Wi-Fi protocol, 154

sed (stream editor) command, 24
SELECT command, 135
service command, 119, 122
Service Discovery Protocol (SDP), 163

services
defined, 121
scheduling at startup, 179–181
starting, stopping, restarting, 122

set command, 72–73, 91
SGID bit, 58–59
.sh file extension, 85
shebang (#!), 82
shell prompt, 75–76
shell variables, 71–72
shells, 2, 82
shift command, 91
show command, 134
shred command, 117–118
Snort, 19–20, 21
socket module, 194–196
software managers and installers, 40,

45–46
software packages

defined, 39
installing, 40–41
removing, 41–42
updating and upgrading, 42–43

sources.list file, 43–44
spy camera project, 125–129
SQL (Structured Query Language)

commands, 131
SSH (Secure Shell), 125–126
SSID (service set identifier), 154
sticky bit permission bit, 58
storage devices, 102–109

monitoring and checking, 107–109
mounting and unmounting,

106–107
representation of, 102–106

strip() function, 202
su (switch user) command, 136
SUID bit, 57–59
surveillance concerns, 142–143,

148, 149
Synaptic Package Manager, 45–46
sysctl command, 167–169
syslogd daemon, 112
system administrator. See root user

T
tail (view file) command, 21–22, 23
tar (archive) command, 94–96
.tar file extension, 95
tarballs/tar files, 94–96
TCP client script, 194–195

Index 211

TCP connect scan, 86, 88–90
TCP listening script, 195–197
terminals, 2, 4, 68
test command, 91
text

concatenating to file, 13–14
displaying, 20–23, 24–26
find and replace, 23–24

text editors, 82, 187
.tgz file extension, 96
times command, 91
top (resource usage) command, 64, 66
Tor network, 141–143
torrent downloads, xxv–xxvi
touch command, 14–15
traceroute command, 140
trap command, 91
try/except statements, 201–202
type command, 91

U
UGO (user, group, and others) syntax,

54–55
umask (unmask) values, 56–57, 91
umount (unmount) command, 107
uname command, 167
uncompress command, 97
unset command, 72–73, 78, 91
update-rc.d command, 179
USB flash drives, 104–105, 106
use command, 134
user-defined variables, 77–78
user land, 165
user types, 50

V
variables. See also environment variables

Python, 187–190
script, 84–85, 89
shell, 71–72

virtual machines, concepts and
installation, xxvi–xxvii

virtual private networks (VPNs),
148–149

VirtualBox
installation and setup, xxvi–xxix
installing Kali on, xxix–xxxi

virtualization software, xxxi
VPNs (virtual private networks),

148–149
vulnerability assessments, xxiii

W
wait command, 91
web server services, 122–125
WEP (Wired Equivalent Privacy)

protocol, 154
wget command, 185–186
whereis command, 10
which command, 10
while loops, 198
white hat hacking, xxiii
whoami command, 6
Wi-Fi networks, 154–159

basic commands, 154–157
hacking, 157–159

wildcards, 12
Windows vs. Linux, xxiv–xxv, 101
wireless network devices, 30–31, 153
wireless range, 154
wlan0 interface, 30, 31, 155
wordlists, 27, 159, 202
WPA (Wi-Fi Protected Access)

protocol, 154
WPA2-PSK protocol, 154

Z
zombie processes, 66, 67

L I N U X B A S I C S
F O R H A C K E R S
L I N U X B A S I C S
F O R H A C K E R S

G E T T I N G S T A R T E D W I T H N E T W O R K I N G ,

S C R I P T I N G , A N D S E C U R I T Y I N K A L I

O C C U P Y T H E W E B

SHELVE IN
:

COM
PUTERS/SECURITY

$34.95 ($45.95 CDN)

S T A R T H E R E .
H A C K E R ?
A S P I R I N G

S T A R T H E R E .
H A C K E R ?
A S P I R I N G

If you’re getting started along the exciting path of
hacking, cybersecurity, and pentesting, Linux Basics
for Hackers is an excellent first step. Using Kali Linux,
an advanced penetration testing distribution of Linux,
you’ll learn the basics of using the Linux operating
system and acquire the tools and techniques you’ll
need to take control of a Linux environment.

First, you’ll learn how to install Kali on a virtual machine
and get an introduction to basic Linux concepts. Next,
you’ll tackle broader Linux topics like manipulating text,
controlling file and directory permissions, and managing
user environment variables. You’ll then focus in on foun-
dational hacking concepts like security and anonymity
and learn scripting skills with bash and Python.

Practical tutorials and exercises throughout will reinforce
and test your skills as you learn how to:

• Cover your tracks by changing your network informa-
tion and manipulating the rsyslog logging utility

• Write a tool to scan for network connections, and
connect and listen to wireless networks

• Keep your internet activity stealthy using Tor, proxy
servers, VPNs, and encrypted email

• Write a bash script to scan open ports for potential
targets

• Use and abuse services like MySQL, Apache web
server, and OpenSSH

• Build your own hacking tools, such as a remote video
spy camera and a password cracker

Hacking is complex, and there is no single way in. Why
not start at the beginning with Linux Basics for Hackers?

A B O U T T H E A U T H O R

OccupyTheWeb is an infosec consultant, forensic
investigator, and trainer with more than 20 years in
the industry. He maintains the Hackers-Arise training
site (https://www.hackers-arise.com/) and trains US
military personnel, Department of Defense contractors,
and federal employees in information security and
hacking.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

COVERS
KALI LINUX

AND PYTHON 3 L
IN

U
X

 B
A

S
IC

S
 F

O
R

 H
A

C
K

E
R

S
L

IN
U

X
 B

A
S

IC
S

 F
O

R
 H

A
C

K
E

R
S

O
C

C
U

P
Y

T
H

E
W

E
B

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	What's in This Book
	What Is Ethical Hacking?
	Penetration Testing
	Military and Espionage

	Why Hackers Use Linux
	Linux Is Open Source
	Linux Is Transparent
	Linux Offers Granular Control
	Most Hacking Tools Are Written for Linux
	The Future Belongs to Linux/Unix

	Downloading Kali Linux
	Virtual Machines
	Installing VirtualBox
	Setting Up Your Virtual Machine
	Installing Kali on the VM

	Setting Up Kali

	Chapter 1: Getting Started with the Basics
	Introductory Terms and Concepts
	A Tour of Kali
	The Terminal
	The Linux Filesystem

	Basic Commands in Linux
	Finding Yourself with pwd
	Checking Your Login with whoami
	Navigating the Linux Filesystem
	Getting Help
	Referencing Manual Pages with man

	Finding Stuff
	Searching with locate
	Finding Binaries with whereis
	Finding Binaries in the PATH Variable with which
	Performing More Powerful Searches with find

	Filtering with grep
	Modifying Files and Directories
	Creating Files
	Creating a Directory
	Copying a File
	Renaming a File
	Removing a File
	Removing a Directory

	Go Play Now!
	Exercises

	Chapter 2: Text Manipulation
	Viewing Files
	Taking the Head
	Grabbing That Tail
	Numbering the Lines

	Filtering Text with grep
	Hacker Challenge: Using grep, nl, tail, and head

	Using sed to Find and Replace
	Viewing Files with more and less
	Controlling the Display with more
	Displaying and Filtering with less

	Summary
	Exercises

	Chapter 3: Analyzing and Managing Networks
	Analyzing Networks with ifconfig
	Checking Wireless Network Devices with iwconfig
	Changing Your Network Information
	Changing Your IP Address
	Changing Your Network Mask and Broadcast Address
	Spoofing Your MAC Address
	Assigning New IP Addresses from the DHCP Server

	Manipulating the Domain Name System
	Examining DNS with dig
	Changing Your DNS Server
	Mapping Your Own IP Addresses

	Summary
	Exercises

	Chapter 4: Adding and Removing Software
	Using apt to Handle Software
	Searching for a Package
	Adding Software
	Removing Software
	Updating Packages
	Upgrading Packages

	Adding Repositories to Your sources.list File
	Using a GUI-based Installer
	Installing Software with git
	Summary
	Exercises

	Chapter 5: Controlling File and Directory Permissions
	Different Types of Users
	Granting Permissions
	Granting Ownership to an Individual User
	Granting Ownership to a Group

	Checking Permissions
	Changing Permissions
	Changing Permissions with Decimal Notation
	Changing Permissions with UGO
	Giving Root Execute Permission on a New Tool

	Setting More Secure Default Permissions with Masks
	Special Permissions
	Granting Temporary Root Permissions with SUID
	Granting the Root User’s Group Permissions SGID
	The Outmoded Sticky Bit
	Special Permissions, Privilege Escalation, and the Hacker

	Summary
	Exercises

	Chapter 6: Process Management
	Viewing Processes
	Filtering by Process Name
	Finding the Greediest Processes with top

	Managing Processes
	Changing Process Priority with nice
	Killing Processes
	Running Processes in the Background
	Moving a Process to the Foreground

	Scheduling Processes
	Summary
	Exercises

	Chapter 7: Managing User Environment Variables
	Viewing and Modifying Environment Variables
	Viewing All Environment Variables
	Filtering for Particular Variables
	Changing Variable Values for a Session
	Making Variable Value Changes Permanent

	Changing Your Shell Prompt
	Changing Your PATH
	Adding to the PATH Variable
	How Not to Add to the PATH Variable

	Creating a User-Defined Variable
	Summary
	Exercises

	Chapter 8: Bash Scripting
	A Crash Course in Bash
	Your First Script: “Hello, Hackers-Arise!”
	Setting Execute Permissions
	Running HelloHackersArise
	Adding Functionality with Variables and User Input

	Your Very First Hacker Script: Scan for Open Ports
	Our Task
	A Simple Scanner
	Improving the MySQL Scanner

	Common Built-in Bash Commands
	Summary
	Exercises

	Chapter 9: Compressing and Archiving
	What Is Compression?
	Tarring Files Together
	Compressing Files
	Compressing with gzip
	Compressing with bzip2
	Compressing with compress

	Creating Bit-by-Bit or Physical Copies of Storage Devices
	Summary
	Exercises

	Chapter 10: Filesystem and Storage Device Management
	The Device Directory /dev
	How Linux Represents Storage Devices
	Drive Partitions
	Character and Block Devices
	List Block Devices and Information with lsblk

	Mounting and Unmounting
	Mounting Storage Devices Yourself
	Unmounting with umount

	Monitoring Filesystems
	Getting Information on Mounted Disks
	Checking for Errors

	Summary
	Exercises

	Chapter 11: The Logging System
	The rsyslog Logging Daemon
	The rsyslog Configuration File
	The rsyslog Logging Rules

	Automatically Cleaning Up Logs with logrotate
	Remaining Stealthy
	Removing Evidence
	Disabling Logging

	Summary
	Exercises

	Chapter 12: Using and Abusing Linux Services
	Starting, Stopping, and Restarting Services
	Creating an HTTP Web Server with the Apache Web Server
	Starting with Apache
	Editing the index.html File
	Adding Some HTML
	Seeing What Happens

	OpenSSH and the Raspberry Spy Pi
	Setting Up the Raspberry Pi
	Building the Raspberry Spy Pi
	Configuring the Camera
	Starting to Spy

	Extracting Information from MySQL
	Starting MySQL
	Interacting with MySQL
	Setting a MySQL Password

	Examining the Data
	Database Tables
	Connecting to a Database
	Accessing a Remote Database
	Summary
	Exercises
	PostgreSQL with Metasploit

	Chapter 13: Security and Anonymity
	How the Internet Gives Us Away
	The Onion Router System
	How Tor Works
	Security Concerns

	Proxy Servers
	Setting Proxies in the Config File
	Some More Interesting Options
	Security Concerns

	Virtual Private Networks
	Encrypted Email
	Summary
	Exercises

	Chapter 14: Wireless Networking: Wi-Fi and Bluetooth
	Wi-Fi Networks
	Basic Wireless Commands
	Wi-Fi Recon with aircrack-ng

	Detecting and Connecting to Bluetooth
	How Bluetooth Works
	Bluetooth Scanning and Reconnaissance

	Exercises

	Chapter 15: Managing the Linux Kernel and Loadable Kernel Modules
	What Is a Kernel Module?
	Checking the Kernel Version
	Kernel Tuning with sysctl
	Managing Kernel Modules
	Finding More Information with modinfo
	Adding and Removing Modules with modprobe
	Inserting and Removing a Kernel Module

	Summary
	Exercises

	Chapter 16: Job and Script Scheduling
	Scheduling an Event or Job to Run on an Automatic Basis
	Scheduling a Backup Task
	Using crontab to Schedule Your MySQLscanner
	crontab Shortcuts

	Using rc Scripts to Run Jobs at Startup
	Linux Runlevels
	Adding Services to rc.d

	Adding Services to Your Bootup via a GUI
	Summary
	Exercises

	Chapter 17: Python Scripting Basics for Hackers
	Adding Python Modules
	Using pip
	Installing Third-Party Modules

	Getting Started Scripting with Python
	Variables

	Functions
	Comments
	Lists
	Modules
	Object-Oriented Programming (OOP)
	Network Communications in Python
	Building a TCP Client
	Creating a TCP Listener

	Dictionaries, Loops, and Control Statements
	Dictionaries
	Control Statements
	Loops

	Improving Our Hacking Scripts
	Exceptions and Password Crackers
	Summary
	Exercises

	Index

