Unix Shell Programming

Learning the

C),RE"_LY® Cameron Newham & Bill Rosenblatt

Unix/Linux

O’REILLY"
Learning the bash Shell

Learning the bash Shell, Third Edition, is the definitive guide to bash, the Free Software
Foundation’s “Bourne Again Shell.” It's a freely available replacement for the UNIX
Bourne shell, and is the shell of choice for users of Linux, Mac OS X, BSD, and other
UNIX systems.

You'll find this guide valuable whether you're interested in bash as a user interface or for its powerful
programming capabilities. This book will teach you how to use bash’s advanced command-line
features, such as command history, command-line editing, and command completion.

This book also introduces shell programming, a skill no UNIX or Linux user should be without.
The book demonstrates what you can do with bash’s programming features. You'll learn about flow
control, signal handling, and command-line processing and 1/O. There is also a chapter on debugging
your bash programs.

Finally, Learning the bash Shell, Third Edition, shows you how to acquire, install, configure, and
customize bash, and gives advice to system administrators managing bash for their user communities.

This Third Edition covers all of the features of bash Version 3.0, while still applying to Versions 1.x
and 2.x. It includes a debugger for the bash shell, both as an extended example and as a useful
piece of working code. Since shell scripts are a significant part of many software projects, the book
also discusses how to write maintainable shell scripts. And, of course, it discusses the many features
that have been introduced to bash over the years: one-dimensional arrays, parameter expansion,
pattern-matching operations, new commands, and security improvements.

Unfailingly practical and packed with examples and questions for future study, Learning the bash
Shell, Third Edition, is a valuable asset for Linux and other UNIX users.

www.oreilly.com

US $34.95 CAN $48.95
ISBN-10: 0-596-00965-8

ISBN-13: 978-0-596-00965-6 =
53495 Safari ncuues
AETAMAIVIC ssoxsonwe FREE 45-Day

780596009656 Online Edition

Learning the bash Shell

Other resources from O'Reilly

Related titles

oreilly.com

e
(2

i g" ?’REILLY
HDUENET WORK

Conferences

O’REILLY NE:FWORK
Safari
Bookshelf.

Classic Shell Scripting Learning the Korn Shell
Unix Power Tools Linux in a Nutshell
Unix in a Nutshell SSH, The Secure Shell: The

Definitive Guide

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

THIRD EDITION

Learning the bash Shell

Cameron Newham and Bill Rosenblatt

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Sebastopol - Taipei - Tokyo

Learning the bash Shell, Third Edition
by Cameron Newham and Bill Rosenblatt

Copyright © 2005, 1998, 1995 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Colleen Gorman
Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

October 1995: First Edition.
January 1998: Second Edition.
April 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning the bash Shell, the image of a silver bass, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
%\é This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 978-0-596-00965-6
(M] 42.5# [9/09]

Preface

1.

Table of Contents

bashBasics

What Is a Shell?

Scope of This Book

History of UNIX Shells

Getting bash

Interactive Shell Use

Files

Input and Output

Background Jobs

Special Characters and Quoting
Help

Command-LineEditing

Enabling Command-Line Editing
The History List

emacs Editing Mode

vi Editing Mode

The fc Command

History Expansion

readline

Keyboard Habits

Customizing Your Environment

The .bash_profile, .bash_logout, and .bashrc Files
Aliases

~N O G W N

14
17
20
26

28
28
29
36
45
47
49
53

56
57

Options

Shell Variables

Customization and Subprocesses
Customization Hints

BasicShell Programming
Shell Scripts and Functions

Shell Variables

String Operators

Command Substitution

Advanced Examples: pushd and popd

FlowControl
if/else

for

case

select

while and until

Command-Line Options and Typed Variables
Command-Line Options

Typed Variables

Integer Variables and Arithmetic

Arrays

Input/Output and Command-Line Processing
I/0 Redirectors

String I/0O

Command-Line Processing

ProcessHandling
Process IDs and Job Numbers

Job Control

Signals

trap

Coroutines

Subshells

Process Substitution

60
62
75
79

81
86
91
99
103

108
122
128
131
134

137
145
146
157

162
168
180

198
198
201
207
214
217
219

Vi

Table of Contents

Debugging ShellPrograms 221

Basic Debugging Aids 221
A bash Debugger 230
bash Administrationl 251
Installing bash as the Standard Shell 251
Environment Customization 254
System Security Features 258
Shell Scripting 261
What’s That Do? 261
Starting Up 263
Potential Problems 265
Don’t Use bash 266
bashforYourSystem 267
Obtaining bash 267
Unpacking the Archive 268
What’s in the Archive 268
Who Do I Turn to? 273
RelatedShells 275
The Bourne Shell 276
The IEEE 1003.2 POSIX Shell Standard 278
The Korn Shell 280
pdksh 281
zsh 282
Shell Clones and Unix-like Platforms 282
ReferenceLists 285
Invocation 285
Prompt String Customizations 287
Built-In Commands and Reserved Words 288
Built-In Shell Variables 290
Test Operators 294
set Options 295
shopt Options 297
I/0 Redirection 298
emacs Mode Commands 300
vi Control Mode Commands 302

Table of Contents | vii

viii | Table of Contents

Preface

The first thing users of the UNIX or Linux operating systems come face to face with
is the shell. “Shell” is the UNIX term for a user interface to the system—something
that lets you communicate with the computer via the keyboard and the display.
Shells are just separate programs that encapsulate the system, and, as such, there are
many to choose from.

Systems are usually set up with a “standard” shell that new users adopt without
question. However, some of these standard shells are rather old and lack many fea-
tures of the newer shells. This is a shame, because shells have a large bearing on your
working environment. Since changing shells is as easy as changing hats, there is no
reason not to change to the latest and greatest in shell technology.

Of the many shells to choose from, this book introduces the Bourne Again shell
(bash for short), a modern general-purpose shell. Other useful modern shells are the
Korn shell (ksh) and the “Tenex C shell” (tcsh); both are also the subjects of O’Reilly
handbooks.

bash Versions

This book is relevant to all versions of bash, although older versions lack some of the
features of the most recent version.” You can easily find out which version you are
using by typing echo $BASH_VERSION. The earliest public version of bash was 1.0,
and the most recent is 3.0 (released in July 2004). If you have an older version, you
might like to upgrade to the latest one. Chapter 12 shows you how to go about it.

* Throughout this book we have clearly marked with footnotes the features that are not present in the earlier
versions.

Summary of bash Features

bash is a backward-compatible evolutionary successor to the Bourne shell that
includes most of the C shell’s major advantages as well as features from the Korn
shell and a few new features of its own. Features appropriated from the C shell
include:

* Directory manipulation, with the pushd, popd, and dirs commands.

* Job control, including the fg and bg commands and the ability to stop jobs with
CTRL-Z.

* Brace expansion, for generating arbitrary strings.

* Tilde expansion, a shorthand way to refer to directories.

* Aliases, which allow you to define shorthand names for commands or com-
mand lines.

* Command history, which lets you recall previously entered commands.
bash’s major new features include:

* Command-line editing, allowing you to use vi- or emacs-style editing commands
on your command lines.

* Key bindings that allow you to set up customized editing key sequences.

* Integrated programming features: the functionality of several external UNIX
commands, including test, expr, getopt, and echo, has been integrated into the
shell itself, enabling common programming tasks to be done more cleanly and
efficiently.

* Control structures, especially the select construct, which enables easy menu
generation.

* New options and variables that give you more ways to customize your environment.

* One dimensional arrays that allow easy referencing and manipulation of lists of
data.

* Dynamic loading of built-ins, plus the ability to write your own and load them
into the running shell.

Intended Audience

This book is designed to address casual UNIX and Linux users who are just above
the “raw beginner” level. You should be familiar with the process of logging in,
entering commands, and doing simple things with files. Although Chapter 1 reviews
concepts such as the tree-like file and directory scheme, you may find that it moves
too quickly if you're a complete neophyte. In that case, we recommend the O’Reilly
handbook, Learning the UNIX Operating System, by Jerry Peek, Grace Todino, and
John Strang.

x | Preface

If you’re an experienced user, you may wish to skip Chapter 1 altogether. But if your
experience is with the C shell, you may find that Chapter 1 reveals a few subtle dif-
ferences between the bash and C shells.

No matter what your level of experience is, you will undoubtedly learn many things
in this book that will make you a more productive bash user—from major features
down to details at the “nook-and-cranny” level that you may not have been aware of.

If you are interested in shell programming (writing shell scripts and functions that
automate everyday tasks or serve as system utilities), you should also find this book
useful. However, we have deliberately avoided drawing a strong distinction between
interactive shell use (entering commands during a login session) and shell program-
ming. We see shell programming as a natural, inevitable outgrowth of increasing
experience as a user.

Accordingly, each chapter depends on those previous to it, and although the first
three chapters are oriented toward interactive use only, subsequent chapters describe
interactive, user-oriented features in addition to programming concepts.

This book aims to show you that writing useful shell programs doesn’t require a
computing degree. Even if you are completely new to computing, there is no reason
why you shouldn’t be able to harness the power of bash within a short time.

Toward that end, we decided not to spend too much time on features of exclusive
interest to low-level systems programmers. Concepts like file descriptors and special
file types might only confuse the casual user, and anyway, we figure those of you
who understand such things are smart enough to extrapolate the necessary informa-
tion from our cursory discussions.

Code Examples

This book is full of examples of shell commands and programs designed to be useful
in your everyday life as a user, not just to illustrate the feature being explained. In
Chapter 4 and onwards, we include various programming problems, which we call
tasks, that illustrate particular shell programming concepts. Some tasks have solu-
tions that are refined in subsequent chapters. The later chapters also include pro-
gramming exercises, many of which build on the tasks in the chapter.

Feel free to use any code you see in this book and to pass it along to friends and
colleagues. We especially encourage you to modify and enhance it yourself.

If you want to try examples but you don’t use bash as your login shell, you must put
the following line at the top of each shell script:

#1/bin/bash

If bash isn’t installed as the file /bin/bash, substitute its pathname in the above.

Preface | xi

Chapter Summary

If you want to investigate specific topics rather than read the entire book through,
here is a chapter-by-chapter summary:

Chapter 1, bash Basics introduces bash and tells you how to install it as your login
shell. Then it surveys the basics of interactive shell use, including overviews of the
UNIX file and directory scheme, standard 1/0, and background jobs.

Chapter 2, Command-Line Editing discusses the shell’s command history mecha-
nism (including the emacs- and vi-editing modes), history substitution and the fc
history command, and key bindings with readline and bind.

Chapter 3, Customizing Your Environment covers ways to customize your shell envi-
ronment without programming by using the startup and environment files. Aliases,
options, and shell variables are the customization techniques discussed.

Chapter 4, Basic Shell Programming is an introduction to shell programming. It
explains the basics of shell scripts and functions, and discusses several important
“nuts-and-bolts” programming features: string manipulation operators, brace expan-
sion, command-line arguments (positional parameters), and command substitution.

Chapter 5, Flow Control continues the discussion of shell programming by describ-
ing command exit status, conditional expressions, and the shell’s flow-control
structures: if, for, case, select, while, and until.

Chapter 6, Command-Line Options and Typed Variables goes into depth about posi-
tional parameters and command-line option processing, then discusses special types
and properties of variables, integer arithmetic, and arrays.

Chapter 7, Input/Output and Command-Line Processing gives a detailed description
of bash 1/0. This chapter covers all of the shell’s I/O redirectors, as well as the line-
at-a-time I/O commands read and echo. It also discusses the shell’s command-
line processing mechanism and the eval command.

Chapter 8, Process Handling covers process-related issues in detail. It starts with a
discussion of job control, then gets into various low-level information about pro-
cesses, including process IDs, signals, and traps. The chapter then moves to a higher
level of abstraction to discuss coroutines and subshells.

Chapter 9, Debugging Shell Programs discusses various debugging techniques, like
trace and verbose modes, and the “fake” signal traps. It then presents in detail a use-
ful shell tool, written using the shell itself: a bash debugger.

Chapter 10, bash Administration gives information for system administrators, includ-
ing techniques for implementing system-wide shell customization and features
related to system security.

Chapter 11, Shell Scripting discusses ways to make bash scripts more maintainable.

xi | Preface

Chapter 12, bash for Your System shows you how to go about getting bash and how
to install it on your system. It also outlines what to do in the event of problems along
the way.

Appendix A, Related Shells compares bash to several similar shells, including the
standard Bourne shell, the POSIX shell standard, the Korn shell (ksh), the public-
domain Korn shell (pdksh), and the Z Shell (zsh).

Appendix B, Reference Lists contains lists of shell invocation options, built-in
commands, built-in variables, conditional test operators, options, I/O redirection, and
emacs- and vi-editing mode commands.

Appendix C, Loadable Built-Ins gives information on writing and compiling your
own loadable built-ins.

Appendix D, Programmable Completion looks at the basics of programmable
completion.

Conventions Used in This Handbook

We leave it as understood that when you enter a shell command, you press RETURN
at the end. RETURN is labeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are entered by holding down the
CTRL (or CTL, or CONTROL) key and pressing that letter. Although we give the
letter in uppercase, you can press the letter without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-]), BACK-
SPACE (same as CTRL-H), ESC, TAB, and DEL (sometimes labeled DELETE or
RUBOUT).

This book uses the following font conventions:

Italic
Used for UNIX filenames, commands not built into the shell (which are files
anyway), and shell functions. Italic is also used for dummy parameters that
should be replaced with an actual value, to distinguish the vi and emacs pro-
grams from their bash modes, and to highlight special terms the first time they
are defined.

Bold
Used for bash built-in commands, aliases, variables, and options, as well as com-
mand lines when they are within regular text. Bold is used for all elements typed
in by the user within regular text.

Constant Width
Used in examples to show the contents of files or the output from commands.

Preface | xiii

Constant Bold
Used in examples to show interaction between the user and the shell; any text
the user types in is shown in Constant Bold. For example:$ pwd/home/cam/
adventure/carrol $

Constant Italic
Used in displayed command lines for dummy parameters that should be
replaced with an actual value.

Reverse Video
Used in Chapter 2 to show the position of the cursor on the command line being
edited. For example:grep -1 Alice < ~cam/book/Biw

We use UNIX as a shorthand for “UNIX and Linux.” Purists will correctly insist that
Linux is not UNIX—but as far as this book is concerned, they behave identically.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/bash3
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

xiv | Preface

code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example “Learning the bash Shell, Third Edition, by
Cameron Newham and Bill Rosenblatt. Copyright 2005 O’Reilly Media, Inc., 0-596-
00965-8.”

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-

B§°a!°a" nology book, that means the book is available online through the
Trrrms O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments for the First Edition

This project has been an interesting experience and wouldn’t have been possible
without the help of a number of people. Firstly, I'd like to thank Brian Fox and Chet
Ramey for creating bash and making it the polished product it is today. Thanks also
to Chet Ramey for promptly answering all of my questions on bash and pointing out
my errors.

Many thanks to Bill Rosenblatt for Learning the korn Shell, on which this book is
based; Michael O’Reilly and Michael Malone at iiNet Technologies for their useful
comments and suggestions (and my net.connection!); Chris Thorne, Justin Twiss,
David Quin-Conroy, and my mum for their comments, suggestions, and correc-
tions; Linus Torvalds for the Linux operating system which introduced me to bash
and was the platform for all of my work on the book; Brian Fox for providing a short
history of bash; David Korn for information on the latest Korn shell. Thanks also to
Depeche Mode for “101” as a backdrop while I worked, Laurence Durbridge for
being a likable pest and never failing to ask “Finished the book yet?” and Adam (for
being in my book).

The sharp eyes of our technical reviewers picked up many mistakes. Thanks to Matt
Healy, Chet Ramey, Bill Reynolds, Bill Rosenblatt, and Norm Walsh for taking time
out to go through the manuscript.

The crew at O’Reilly were indispensable in getting this book out the door. I'd like to
thank Lenny Muellner for providing me with the formatting tools for the job, Chris
Reilley for the figures, and Edie Freedman for the cover design. On the production

Preface | xv

end, I'd like to thank David Sewell for his copyediting, Clairemarie Fisher O’Leary
for managing the production process, Michael Deutsch and Jane Ellin for their pro-
duction assistance, Ellen Siever for tools support, Kismet McDonough for providing
quality assurance, and Seth Maislin for the index.

I’'m grateful to Frank Willison for taking me up on my first piece of email to ORA:
“What about a book on bash?”

Last but by no means least, a big thank you to my editor, Mike Loukides, who
helped steer me through this project.

Acknowledgments for the Second Edition

Thanks to all the people at O’Reilly. Gigi Estabrook was the editor for the second
edition. Nicole Gipson Arigo was the production editor and project manager. Nancy
Wolfe Kotary and Ellie Fountain Maden performed quality control checks. Seth
Maislin wrote the index. Edie Freedman designed the cover, and Nancy Priest
designed the interior format of the book. Lenny Muellner implemented the format in
troff. Robert Romano updated the illustrations for the second edition.

Acknowledgments for the Third Edition

Thanks to the production people at O’Reilly and to the indexer.

Thanks to Chet Ramey for once again swiftly answering my queries on bash and for
providing helpful comments on the book. I'd also like to thank Ian Macdonald for
his feedback on Programmable Completion.

xi | Preface

CHAPTER 1
bash Basics

Since the early 1970s, when it was first created, the UNIX operating system has
become more and more popular. During this time it has branched out into different
versions, and taken on such names as Ultrix, AIX, Xenix, SunOS, and Linux. Start-
ing on minicomputers and mainframes, it has moved onto desktop workstations and
even personal computers used at work and home. No longer a system used only by
academics and computing wizards at universities and research centers, UNIX is used
in many businesses, schools, and homes. As time goes on, more people will come
into contact with UNIX.

You may have used UNIX at your school, office, or home to run your applications,
print documents, and read your electronic mail. But have you ever thought about the
process that happens when you type a command and hit RETURN?

Several layers of events take place whenever you enter a command, but we’re going
to consider only the top layer, known as the shell. Generically speaking, a shell is any
user interface to the UNIX operating system, i.e., any program that takes input from
the user, translates it into instructions that the operating system can understand, and
conveys the operating system’s output back to the user. Figure 1-1 shows the rela-
tionship between user, shell, and operating system.

Operating

'\/ Input = -=--=------- System
Z4

Figure 1-1. The shell is a layer around the UNIX operating system

User

There are various types of user interfaces. bash belongs to the most common cate-
gory, known as character-based user interfaces. These interfaces accept lines of tex-
tual commands that the user types in; they usually produce text-based output. Other
types of interfaces include the increasingly common graphical user interfaces (GUI),
which add the ability to display arbitrary graphics (not just typewriter characters)
and to accept input from a mouse or other pointing device, touch-screen interfaces
(such as those on some bank teller machines), and so on.

What Is a Shell?

The shell’s job, then, is to translate the user’s command lines into operating system
instructions. For example, consider this command line:

sort -n phonelist > phonelist.sorted

This means, “Sort lines in the file phonelist in numerical order, and put the result in
the file phonelist.sorted.” Here’s what the shell does with this command:

1. Breaks up the line into the pieces sort, -n, phonelist, >, and phonelist.sorted.
These pieces are called words.

2. Determines the purpose of the words: sort is a command, -n and phonelist are
arguments, and > and phonelist.sorted, taken together, are I/O instructions.

3. Sets up the I/O according to > phonelist.sorted (output to the file phonelist.
sorted) and some standard, implicit instructions.

4. Finds the command sort in a file and runs it with the option -n (numerical order)
and the argument phonelist (input filename).

Of course, each of these steps really involves several substeps, each of which includes
a particular instruction to the underlying operating system.

Remember that the shell itself is not UNIX—just the user interface to it. UNIX is one
of the first operating systems to make the user interface independent of the operat-
ing system.

Scope of This Book

In this book you will learn about bash, which is one of the most recent and powerful
of the major UNIX shells. There are two ways to use bash: as a user interface and as a
programming environment.

This chapter and the next cover interactive use. These two chapters should give you
enough background to use the shell confidently and productively for most of your
everyday tasks.

After you have been using the shell for a while, you will undoubtedly find certain
characteristics of your environment (the shell’s “look and feel”) that you would like

2 | Chapter1: bash Basics

to change, and tasks that you would like to automate. Chapter 3 shows several ways
of doing this.

Chapter 3 also prepares you for shell programming, the bulk of which is covered in
Chapter 4 through Chapter 6. You need not have any programming experience to
understand these chapters and learn shell programming. Chapter 7 and Chapter 8
give more complete descriptions of the shell’s I/O and process-handling capabilities,
while Chapter 9 discusses various techniques for debugging shell programs.

You’ll learn a lot about bash in this book; you’ll also learn about UNIX utilities and
the way the UNIX operating system works in general. It’s possible to become a virtu-
0s0 shell programmer without any previous programming experience. At the same
time, we've carefully avoided going into excessive detail about UNIX internals. We
maintain that you shouldn’t have to be an internals expert to use and program the
shell effectively, and we won’t dwell on the few shell features that are intended spe-
cifically for low-level systems programmers.

History of UNIX Shells

The independence of the shell from the UNIX operating system per se has led to the
development of dozens of shells throughout UNIX history—although only a few
have achieved widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven Bourne);
it was included in the first popular version of UNIX, Version 7, starting in 1979. The
Bourne shell is known on the system as sh. Although UNIX has gone through many,
many changes, the Bourne shell is still popular and essentially unchanged. Several
UNIX utilities and administration features depend on it.

The first widely used alternative shell was the C shell, or csh. This was written by Bill
Joy at the University of California at Berkeley as part of the Berkeley Software Distri-
bution (BSD) version of UNIX that came out a couple of years after Version 7.

The C shell gets its name from the resemblance of its commands to statements in the
C Programming Language, which makes the shell easier for programmers on UNIX
systems to learn. It supports a number of operating system features (e.g., job con-
trol; see Chapter 8) that were unique to BSD UNIX but by now have migrated to
most other modern versions. It also has a few important features (e.g., aliases; see
Chapter 3) that make it easier to use in general.

In recent years a number of other shells have become popular. The most notable of
these is the Korn shell. This shell is a commercial product that incorporates the best
features of the Bourne and C shells, plus many features of its own.” The Korn shell is

* The Korn shell can be downloaded for free but it comes with a license that will require payment if the shell
is used in certain situations.

History of UNIX Shells | 3

similar to bash in most respects; both have an abundance of features that make them
easy to work with. The advantage of bash is that it is free. For further information on
the Korn shell see Appendix A.

The Bourne Again Shell

The Bourne Again shell (named in punning tribute to Steve Bourne’s shell) was cre-
ated for use in the GNU project.” The GNU project was started by Richard Stallman
of the Free Software Foundation (FSF) for the purpose of creating a UNIX-compati-
ble operating system and replacing all of the commercial UNIX utilities with freely
distributable ones. GNU embodies not only new software utilities, but a new distri-
bution concept: the copyleft. Copylefted software may be freely distributed so long as
no restrictions are placed on further distribution (for example, the source code must
be made freely available).

bash, intended to be the standard shell for the GNU system, was officially “born” on
Sunday, January 10, 1988. Brian Fox wrote the original versions of bash and readline
and continued to improve the shell up until 1993. Early in 1989 he was joined by
Chet Ramey, who was responsible for numerous bug fixes and the inclusion of many
useful features. Chet Ramey is now the official maintainer of bash and continues to
make further enhancements.

In keeping with the GNU principles, all versions of bash since 0.99 have been freely
available from the FSF. bash has found its way onto every major version of UNIX and
is rapidly becoming the most popular Bourne shell derivative. It is the standard shell
included with Linux, a widely used free UNIX operating system, and Apple’s Mac
OSX.

In 1995 Chet Ramey began working on a major new release, 2.0, which was released
to the public for the first time on December 23, 1996. bash 2.0 added a range of new
features to the old release (the one before being 1.14.7) and brought the shell into
better compliance with various standards. bash 3.0 improves on the previous version
and rounds out the feature list and standards compliance.

This book describes bash 3.0. It is applicable to all previous releases of bash. Any fea-
tures of the current release that are different in, or missing from, previous releases
will be noted in the text.

Features of bash

Although the Bourne shell is still known as the “standard” shell, bash is becoming
increasingly popular. In addition to its Bourne shell compatibility, it includes the
best features of the C and Korn shells as well as several advantages of its own.

* GNU is a recursive acronym, standing for “GNU’s Not UNIX.”

4 | Chapter1: bashBasics

bash’s command-line editing modes are the features that tend to attract people to it
first. With command-line editing, it’s much easier to go back and fix mistakes or
modify previous commands than it is with the C shell’s history mechanism—and the
Bourne shell doesn’t let you do this at all.

The other major bash feature that is intended mostly for interactive users is job con-
trol. As Chapter 8 explains, job control gives you the ability to stop, start, and pause
any number of commands at the same time. This feature was borrowed almost ver-
batim from the C shell.

The rest of bash’s important advantages are meant mainly for shell customizers and
programmers. It has many new options and variables for customization, and its pro-
gramming features have been significantly expanded to include function definition,
more control structures, integer arithmetic, advanced I/O control, and more.

Getting bash

You may or may not be using bash right now. Your system administrator probably
set your account up with whatever shell he uses as the “standard” on the system.
You may not even have been aware that there is more than one shell available.

Yet it’s easy for you to determine which shell you are using. Log in to your system
and type echo $SHELL at the prompt. You will see a response containing sh, csh,
ksh, or bash; these denote the Bourne, C, Korn, and bash shells, respectively.
(There’s also a chance that you’re using another shell such as tcsh.)

If you aren’t using bash and you want to, then you first need to find out if it exists on
your system. Just type bash. If you get a new prompt consisting of some information
followed by a dollar sign (e.g., bash3 $), then all is well; type exit to go back to your
normal shell.

If you get a “not found” message, your system may not have it. Ask your system
administrator or another knowledgeable user; there’s a chance that you might have
some version of bash installed on the system in a place (directory) that is not nor-
mally accessible to you. If not, read Chapter 11 to find out how you can obtain a ver-
sion of bash.

Once you know you have bash on your system, you can invoke it from whatever
other shell you use by typing bash as above. However, it’s much better to install it as
your login shell, i.e., the shell that you get automatically whenever you log in. You
may be able to do the installation by yourself. Here are instructions that are designed
to work on the widest variety of UNIX systems. If something doesn’t work (e.g., you
type in a command and get a “not found” error message or a blank line as the
response), you’ll have to abort the process and see your system administrator. Alter-
natively, turn to Chapter 12 where we demonstrate a less straightforward way of
replacing your current shell.

Gettingbash | 5

You need to find out where bash is on your system, i.e., in which directory it’s
installed. You might be able to find the location by typing whereis bash (especially if
you are using the C shell); if that doesn’t work, try whence bash, which bash, or this
complex command:”

grep bash /etc/passwd | awk -F: '{print $7}' | sort -u
You should see a response that looks like /bin/bash or fusr/local/bin/bash.

To install bash as your login shell, type chsh bash-name, where bash-name is the
response you got to your whereis command (or whatever worked). For example:

% chsh /usr/local/bin/bash

You’ll either get an error message saying that the shell is invalid, or you’ll be
prompted for your password.T Type in your password, then log out and log back in
again to start using bash.

Interactive Shell Use

When you use the shell interactively, you engage in a login session that begins when
you log in and ends when you type exit or logout or press CTRL-D.¥ During a login
session, you type in command lines to the shell; these are lines of text ending in
RETURN that you type in to your terminal or workstation.

By default, the shell prompts you for each command with an information string fol-
lowed by a dollar sign, though as you will see in Chapter 3, the entire prompt can be
changed.

Commands, Arguments, and Options

Shell command lines consist of one or more words, which are separated on a com-
mand line by blanks or TABs. The first word on the line is the command. The rest (if
any) are arguments (also called parameters) to the command, which are names of
things on which the command will act.

For example, the command line lp myfile consists of the command Ip (print a file)
and the single argument myfile. Ip treats myfile as the name of a file to print. Argu-
ments are often names of files, but not necessarily: in the command line mail cam,
the mail program treats cam as the username to which a message will be sent.

* Make sure you use the correct quotation mark in this command: ' rather than *.
T For system security reasons, only certain programs are allowed to be installed as login shells.

1 The shell can be set up so that it ignores a single CTRL-D to end the session. We recommend doing this,
because CTRL-D is too easy to type by accident. See the section on options in Chapter 3 for further details.

6 | Chapter1: bashBasics

An option is a special type of argument that gives the command specific information
on what it is supposed to do. Options usually consist of a dash followed by a letter;
we say “usually” because this is a convention rather than a hard-and-fast rule. The
command lp -h myfile contains the option -h, which tells Ip not to print the “banner
page” before it prints the file.

Sometimes options take their own arguments. For example, lp -d Ip1 -h myfile has
two options and one argument. The first option is -d Ip1, which means “Send the
output to the printer (destination) called Ip1.” The second option and argument are
the same as in the previous example.

Files

Although arguments to commands aren’t always files, files are the most important
types of “things” on any UNIX system. A file can contain any kind of information,
and indeed there are different types of files. Three types are by far the most important:

Regular files
Also called text files; these contain readable characters. For example, this book
was created from several regular files that contain the text of the book plus
human-readable formatting instructions to the troff word processor.

Executable files
Also called programs; these are invoked as commands. Some can’t be read by
humans; others—the shell scripts that we’ll examine in this book—are just spe-
cial text files. The shell itself is a (non-human-readable) executable file called

bash.

Directories
These are like folders that contain other files—possibly other directories (called
subdirectories).

Directories

Let’s review the most important concepts about directories. The fact that directories
can contain other directories leads to a hierarchical structure, more popularly known
as a tree, for all files on a UNIX system.

Figure 1-2 shows part of a typical directory tree; rectangles are directories and ovals
are regular files.

The top of the tree is a directory called root that has no name on the system.” All files
can be named by expressing their location on the system relative to root; such names

* Most UNIX tutorials say that root has the name /. We stand by this alternative explanation because it is more
logically consistent with the rest of the UNIX filename conventions.

Filess | 7

|:| root directory

usr | home |

| 1 1 1
lib | cam | | alice | | hatter | | gryphon |

| book | | bin | [i readme] ' D mock |

| 1 1
[B aaiw] [B ttlg] [B wonderland] diectory
\ /home/cam/book/aaiw - file

Figure 1-2. A tree of directories and files

are built by listing all of the directory names (in order from root), separated by
slashes (/), followed by the file’s name. This way of naming files is called a full (or
absolute) pathname.

For example, say there is a file called aaiw that is in the directory book, which is in
the directory cam, which is in the directory home, which is in the root directory. This
file’s full pathname is /home/cam/book/aaiw.

The working directory

Of course, it’s annoying to have to use full pathnames whenever you need to specify
a file. So there is also the concept of the working directory (sometimes called the cur-
rent directory), which is the directory you are “in” at any given time. If you give a
pathname with no leading slash, then the location of the file is worked out relative to
the working directory. Such pathnames are called relative pathnames; you’ll use
them much more often than full pathnames.

When you log in to the system, your working directory is initially set to a special
directory called your home (or login) directory. System administrators often set up
the system so that everyone’s home directory name is the same as their login name,
and all home directories are contained in a common directory under root.

For example, /home/cam is a typical home directory. If this is your working directory
and you give the command lp memo, then the system looks for the file memo in
/home/cam. If you have a directory called hatter in your home directory, and it
contains the file teatime, then you can print it with the command lp hatter/teatime.

8 | Chapter1: bash Basics

Tilde notation

As you can well imagine, home directories occur often in pathnames. Although
many systems are organized so that all home directories have a common parent
(such as /home or /users), you should not rely on that being the case, nor should you
even have to know the absolute pathname of someone’s home directory.

Therefore, bash has a way of abbreviating home directories: just precede the name of
the user with a tilde (~). For example, you could refer to the file story in user alice’s
home directory as ~alice/story. This is an absolute pathname, so it doesn’t matter
what your working directory is when you use it. If alice’s home directory has a subdi-
rectory called adventure and the file is in there instead, you can use ~alice/adventure/
story as its name.

Even more convenient, a tilde by itself refers to your own home directory. You can
refer to a file called notes in your home directory as ~/notes (note the difference
between that and ~notes, which the shell would try to interpret as user notes’s home
directory). If notes is in your adventure subdirectory, then you can call it ~/adventure/
notes. This notation is handiest when your working directory is not in your home
directory tree, e.g., when it’s some system directory like /tmp.

Changing working directories

If you want to change your working directory, use the command cd. If you don’t
remember your working directory, the command pwd tells the shell to print it.

cd takes as an argument the name of the directory you want to become your work-
ing directory. It can be relative to your current directory, it can contain a tilde, or it
can be absolute (starting with a slash). If you omit the argument, cd changes to your
home directory (i.e., it’s the same as c¢d ~).

Table 1-1 gives some sample cd commands. Each command assumes that your work-
ing directory is /home/cam just before the command is executed, and that your direc-
tory structure looks like Figure 1-2.

Table 1-1. Sample cd commands

Command New working directory

cd book /home/cam/book

¢d book/wonderland /home/cam/book/wonderland
¢d ~/book/wonderland /home/cam/book/wonderland
«d /ust/lib Jusr/lib

.. /home

«d../gryphon /home/gryphon

¢d ~gryphon /home/gryphon

Files | 9

The first four are straightforward. The next two use a special directory called .. (two
dots), which means “parent of this directory.” Every directory has one of these; it’s a
universal way to get to the directory above the current one in the hierarchy—which
is called the parent directory.”

Another feature of bash’s ¢d command is the form cd -, which changes to whatever
directory you were in before the current one. For example, if you start out in /usr/lib,
type cd without an argument to go to your home directory, and then type cd -, you

will be back in /usr/lib.

Filenames, Wildcards, and Pathname Expansion

Sometimes you need to run a command on more than one file at a time. The most
common example of such a command is Is, which lists information about files. In its
simplest form, without options or arguments, it lists the names of all files in the
working directory except special hidden files, whose names begin with a dot (.).

If you give Is filename arguments, it will list those files—which is sort of silly: if your
current directory has the files duchess and queen in it and you type ls duchess queen,
the system will simply print those filenames.

Actually, Is is more often used with options that tell it to list information about the
files, like the -1 (long) option, which tells Is to list the file’s owner, size, time of last
modification, and other information, or -a (all), which also lists the hidden files
described above. But sometimes you want to verify the existence of a certain group of
files without having to know all of their names; for example, if you use a text editor,
you might want to see which files in your current directory have names that end in .txt.

Filenames are so important in UNIX that the shell provides a built-in way to specify
the pattern of a set of filenames without having to know all of the names themselves.
You can use special characters, called wildcards, in filenames to turn them into pat-
terns. Table 1-2 lists the basic wildcards.

Table 1-2. Basic wildcards

Wildcard Matches

? Any single character

* Any string of characters
[set] Any character in set
[Iset] Any character notin set

* Each directory also has the special directory . (single dot), which just means “this directory.” Thus, cd . effec-
tively does nothing. Both . and .. are actually special hidden files in each directory that point to the directory
itself and to its parent directory, respectively. root is its own parent.

10 | Chapter1: bash Basics

The ? wildcard matches any single character, so that if your directory contains the
files program.c, program.log, and program.o, then the expression program.? matches
program.c and program.o but not program.log.

The asterisk (*) is more powerful and far more widely used; it matches any string of
characters. The expression program.* will match all three files in the previous para-
graph; text editor users can use the expression *.txt to match their input files.”

Table 1-3 should help demonstrate how the asterisk works. Assume that you have
the files bob, darlene, dave, ed, frank, and fred in your working directory.

Table 1-3. Using the * wildcard

Expression Yields

fr* frank fred

*ed ed fred

b* bob

e darlene dave ed fred

** darlene frank fred

* bob darlene dave ed frank fred
d*e darlene dave

g g

Notice that * can stand for nothing: both *ed and *e* match ed. Also notice that the
last example shows what the shell does if it can’t match anything: it just leaves the
string with the wildcard untouched.

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an
inclusive range (e.g., a—z), or some combination of the two. If you want the dash
character to be part of a list, just list it first or last. Table 1-4 should explain things
more clearly.

Table 1-4. Using the set construct wildcards

Expression Matches

[abd] a,b,orc

[;] Period, comma, or semicolon
[-] Dash or underscore

[a- a,b,orc

* MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.) in UNIX filenames
(aside from the leading dot, which “hides” the file); it’s just another character. For example, 1s * lists all files
in the current directory; you don’t need *.” as you do on other systems. Indeed, Is *.* won’t list all the files—
only those that have at least one dot in the middle of the name.

Files | M

PMYLS
Pencil

Table 1-4. Using the set construct wildcards (continued)

Expression Matches

[a-7] Alllowercase letters

[10-9] All non-digits

[0-91] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters
[a-zA-20-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match pro-
gram.c and program.o, but not program.log.

An exclamation point after the left bracket lets you “negate” a set. For example, [!.;]
matches any character except period and semicolon; [!a-zA-Z] matches any charac-
ter that isn’t a letter. To match ! itself, place it after the first character in the set, or
precede it with a backslash, as in [\!].

The range notation is handy, but you shouldn’t make too many assumptions about
what characters are included in a range. It’s safe to use a range for uppercase letters,
lowercase letters, digits, or any subranges thereof (e.g., [f-q], [2-6]). Don’t use ranges
on punctuation characters or mixed-case letters: e.g., [a-Z] and [A-z] should not be
trusted to include all of the letters and nothing more. The problem is that such
ranges are not entirely portable between different types of computers.”

The process of matching expressions containing wildcards to filenames is called wild-
card expansion or globbing. This is just one of several steps the shell takes when read-
ing and processing a command line; another that we have already seen is tilde
expansion, where tildes are replaced with home directories where applicable. We’ll
see others in later chapters, and the full details of the process are enumerated in
Chapter 7.

However, it’s important to be aware that the commands that you run only see the
results of wildcard expansion. That is, they just see a list of arguments, and they have
no knowledge of how those arguments came into being. For example, if you type ls
fr* and your files are as on the previous page, then the shell expands the command
line to Is fred frank and invokes the command Is with arguments fred and frank. If
you type ls g*, then (because there is no match) Is will be given the literal string g*
and will complain with the error message, g*: No such file or directory.t

* Specifically, ranges depend on the character encoding scheme your computer uses (normally ASCII, but IBM
mainframes use EBCDIC) and the character set used by the current locale (ranges in languages other than
English may not give expected results).

T This is different from the C shell’s wildcard mechanism, which prints an error message and doesn’t execute
the command at all.

12 | Chapter1: bash Basics

Here is an example that should help make things clearer. Suppose you are a C pro-
grammer. This means that you deal with files whose names end in .c (programs, also
known as source files), .h (header files for programs), and .o (object code files that
aren’t human-readable), as well as other files. Let’s say you want to list all source,
object, and header files in your working directory. The command Is *.[cho] does the
trick. The shell expands *.[cho] to all files whose names end in a period followed by a
¢, h, or 0 and passes the resulting list to Is as arguments. In other words, Is will see
the filenames just as if they were all typed in individually—but notice that we
required no knowledge of the actual filenames whatsoever! We let the wildcards do
the work.

The wildcard examples that we have seen so far are actually part of a more general
concept called pathname expansion. Just as it is possible to use wildcards in the cur-
rent directory, they can also be used as part of a pathname. For example, if you
wanted to list all of the files in the directories /usr and /usr2, you could type Is /usr*.
If you were only interested in the files beginning with the letters b and e in these
directories, you could type Is fusr*/[be]* to list them.

Brace Expansion

A concept closely related to pathname expansion is brace expansion. Whereas path-
name expansion wildcards will expand to files and directories that exist, brace
expansion expands to an arbitrary string of a given form: an optional preamble, fol-
lowed by comma-separated strings between braces, and followed by an optional
postscript. If you type echo b{ed,olt,ar}s, you’ll see the words beds, bolts, and bars
printed. Each instance of a string inside the braces is combined with the preamble b
and the postscript s. Notice that these are not filenames—the strings produced are
independent of filenames. It is also possible to nest the braces, as in b{ar{d,n,k},ed}s.
This will result in the expansion bards, barns, barks, and beds.

You can also use a slightly different type of brace expansion for creating a sequence
of letters or numbers. If you type echo {2..5} you’ll see this expands to 2 3 4 5. Typ-
ing echo {d..h} results in the expansionde f g h.”

Brace expansion can also be used with wildcard expansions. In the example from the
previous section where we listed the source, object, and header files in the working
directory, we could have used Is *.{c,h,0}.t

* This form of brace expansion is not available in bash prior to Version 3.0.

T This differs slightly from C shell brace expansion. bash requires at least one unquoted comma to perform an
expansion; otherwise, the word is left unchanged, e.g., b{o}1lt remains as b{o}lt.

Files | 13

Input and Output

The software field—really, any scientific field—tends to advance most quickly and
impressively on those few occasions when someone (i.e., not a committee) comes up
with an idea that is small in concept yet enormous in its implications. The standard
input and output scheme of UNIX has to be on the short list of such ideas, along
with such classic innovations as the LISP language, the relational data model, and
object-oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple ideas. First, UNIX file I/O takes
the form of arbitrarily long sequences of characters (bytes). In contrast, file systems of
older vintage have more complicated I/0 schemes (e.g., “block,” “record,” “card image,”
etc.). Second, everything on the system that produces or accepts data is treated as a file;
this includes hardware devices like disk drives and terminals. Older systems treated every
device differently. Both of these ideas have made systems programmers’ lives much more
pleasant.

Standard 1/0

By convention, each UNIX program has a single way of accepting input called stan-
dard input, a single way of producing output called standard output, and a single way
of producing error messages called standard error output, usually shortened to stan-
dard error. Of course, a program can have other input and output sources as well, as
we will see in Chapter 7.

Standard 1I/O was the first scheme of its kind that was designed specifically for inter-
active users at terminals, rather than the older batch style of use that usually involved
decks of punch-cards. Since the UNIX shell provides the user interface, it should
come as no surprise that standard I/O was designed to fit in very neatly with the

shell.

All shells handle standard I/O in basically the same way. Each program that you
invoke has all three standard 1/O channels set to your terminal or workstation, so
that standard input is your keyboard, and standard output and error are your screen
or window. For example, the mail utility prints messages to you on the standard out-
put, and when you use it to send messages to other users, it accepts your input on
the standard input. This means that you view messages on your screen and type new
ones in on your keyboard.

When necessary, you can redirect input and output to come from or go to a file
instead. If you want to send the contents of a pre-existing file to someone as mail,

you redirect mail’s standard input so that it reads from that file instead of your
keyboard.

14 | Chapter1: bash Basics

You can also hook programs together in a pipeline, in which the standard output of
one program feeds directly into the standard input of another; for example, you
could feed mail output directly to the Ip program so that messages are printed
instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs.
Many UNIX utility programs are meant to be used in this way: they each perform a
specific type of filtering operation on input text. Although this isn’t a textbook on
UNIX utilities, they are essential to productive shell use. The more popular filtering
utilities are listed in Table 1-5.

Table 1-5. Popular UNIX data filtering utilities

Utility Purpose

cat Copy input to output

grep Search for strings in the input

sort Sort lines in the input

cut Extract columns from input

sed Perform editing operations on input

tr Translate characters in the input to other characters

You may have used some of these before and noticed that they take names of input
files as arguments and produce output on standard output. You may not know, how-
ever, that all of them (and most other UNIX utilities) accept input from standard
input if you omit the argument.”

For example, the most basic utility is cat, which simply copies its input to its output.
If you type cat with a filename argument, it will print out the contents of that file on
your screen. But if you invoke it with no arguments, it will expect standard input and
copy it to standard output. Try it: cat will wait for you to type a line of text; when
you type RETURN, cat will repeat the text back to you. To stop the process, hit
CTRL-D at the beginning of a line. You will see AD when you type CTRL-D. Here’s
what this should look like:

$ cat

Here is a line of text.

Here is a line of text.

This is another line of text.
This is another line of text.
D

$

* If a particular UNIX utility doesn’t accept standard input when you leave out the filename argument, try
using a dash (-) as the argument. Some UNIX systems provide standard input as a file, so you could try pro-
viding the file /dev/stdin as the input file argument.

Inputand Output | 15

1/0 Redirection

cat is short for “catenate,” i.e., link together. It accepts multiple filename arguments
and copies them to the standard output. But let’s pretend, for now, that cat and
other utilities don’t accept filename arguments and accept only standard input. As
we said above, the shell lets you redirect standard input so that it comes from a file.
The notation command < filename does this; it sets things up so that command takes
standard input from a file instead of from a terminal.

For example, if you have a file called cheshire that contains some text, then cat <
cheshire will print cheshire’s contents out onto your terminal. sort < cheshire will
sort the lines in the cheshire file and print the result on your terminal (remember:
we're pretending that these utilities don’t take filename arguments).

Similarly, command > filename causes the command’s standard output to be redi-
rected to the named file. The classic “canonical” example of this is date > now: the
date command prints the current date and time on the standard output; the previous
command saves it in a file called now.

Input and output redirectors can be combined. For example: the cp command is nor-
mally used to copy files; if for some reason it didn’t exist or was broken, you could
use cat in this way:

$ cat < file1 > file2

This would be similar to cp filel file2.

Pipelines

It is also possible to redirect the output of a command into the standard input of
another command instead of a file. The construct that does this is called the pipe,
notated as |. A command line that includes two or more commands connected with
pipes is called a pipeline.

Pipes are very often used with the more command, which works just like cat except
that it prints its output screen by screen, pausing for the user to type SPACE (next
screen), RETURN (next line), or other commands. If you’re in a directory with a
large number of files and you want to see details about them, Is -1 | more will give
you a detailed listing a screen at a time.

Pipelines can get very complex, and they can also be combined with other I/O direc-
tors. To see a sorted listing of the file cheshire a screen at a time, type sort < cheshire
| more. To print it instead of viewing it on your terminal, type sort < cheshire | Ip.

Here’s a more complicated example. The file /etc/passwd stores information about
users’ accounts on a UNIX system. Each line in the file contains a user’s login name,
user ID number, encrypted password, home directory, login shell, and other

16 | Chapter1: bash Basics

information. The first field of each line is the login name; fields are separated by colons
(:). A sample line might look like this:

cam: LM1c7GhNesD4GhF3iEHrH4FeCKB/:501:100: Cameron Newham:/home/cam:/bin/bash
To get a sorted listing of all users on the system, type:
$ cut -d: -f1 < /etc/passwd | sort

(Actually, you can omit the <, since cut accepts input filename arguments.) The cut
command extracts the first field (-f1), where fields are separated by colons (-d:), from
the input. The entire pipeline will print a list that looks like this:

adm

bin

cam

daemon

davidqc

ftp

games

gonzo

If you want to send the list directly to the printer (instead of your screen), you can
extend the pipeline like this:

$ cut -d: -f1 < /etc/passwd | sort | 1lp

Now you should see how I/O directors and pipelines support the UNIX building
block philosophy. The notation is extremely terse and powerful. Just as important,
the pipe concept eliminates the need for messy temporary files to store command
output before it is fed into other commands.

For example, to do the same sort of thing as the above command line on other oper-
ating systems (assuming that equivalent utilities are available...), you need three
commands. On DEC’s VAX/VMS system, they might look like this:

$ cut [etc]passwd /d=":" /f=1 /out=temp1

$ sort temp1 /out=temp2

$ print temp2

$ delete temp1 temp2
After sufficient practice, you will find yourself routinely typing in powerful com-
mand pipelines that do in one line what it would take several commands (and tem-
porary files) in other operating systems to accomplish.

Background Jobs

Pipes are actually a special case of a more general feature: doing more than one thing
at a time. This is a capability that many other commercial operating systems don’t
have, because of the rigid limits that they tend to impose upon users. UNIX, on the
other hand, was developed in a research lab and meant for internal use, so it does

Background Jobs | 17

relatively little to impose limits on the resources available to users on a computer—
as usual, leaning towards uncluttered simplicity rather than overcomplexity.

“Doing more than one thing at a time” means running more than one program at the
same time. You do this when you invoke a pipeline; you can also do it by logging on
to a UNIX system as many times simultaneously as you wish. (If you try that on an
IBM’s VM/CMS system, for example, you will get an obnoxious “already logged in”
message.)

The shell also lets you run more than one command at a time during a single login
session. Normally, when you type a command and hit RETURN, the shell will let the
command have control of your terminal until it is done; you can’t type in further
commands until the first one is done. But if you want to run a command that does
not require user input and you want to do other things while the command is run-
ning, put an ampersand (&) after the command.

This is called running the command in the background, and a command that runs in
this way is called a background job; by contrast, a job run the normal way is called a
foreground job. When you start a background job, you get your shell prompt back
immediately, enabling you to enter other commands.

The most obvious use for background jobs is programs that take a long time to run,
such as sort or uncompress on large files. For example, assume you just got an enor-
mous compressed file loaded into your directory from magnetic tape.” Let’s say the
file is gec.tar.Z, which is a compressed archive file that contains well over 10 MB of
source code files.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start a job in
the background that uncompresses the data “in place” and ends up with the file gcc.tar.
Right after you type the command, you will see a line like this:

[1] 275

followed by your shell prompt, meaning that you can enter other commands. Those
numbers give you ways of referring to your background job; Chapter 8 explains them
in detail.

You can check on background jobs with the command jobs. For each background
job, jobs prints a line similar to the above but with an indication of the job’s status:

[1]+ Running uncompress gcc.tar &

When the job finishes, you will see a message like this right before your shell
prompt:

[1]+ Done uncompress gcc.tar

* Compressed files are created by the compress utility, which packs files into smaller amounts of space; they
have names of the form filename.Z, where filename is the name of the original uncompressed file.

18 | Chapter1: bash Basics

The message changes if your background job terminated with an error; again, see
Chapter 8 for details.

Background 1/0

Jobs you put in the background should not do I/O to your terminal. Just think about
it for a moment and you’ll understand why.

By definition, a background job doesn’t have control over your terminal. Among
other things, this means that only the foreground process (or, if none, the shell itself)
is “listening” for input from your keyboard. If a background job needs keyboard
input, it will often just sit there doing nothing until you do something about it (as
described in Chapter 8).

If a background job produces screen output, the output will just appear on your
screen. If you are running a job in the foreground that produces output too, then the
output from the two jobs will be randomly (and often annoyingly) interspersed.

If you want to run a job in the background that expects standard input or produces
standard output, you usually want to redirect the I/O so that it comes from or goes
to a file. Programs that produce small, one-line messages (warnings, “done” mes-
sages, etc.) are an exception to this general rule; you may not mind if these are inter-
spersed with whatever other output you are seeing at a given time.

For example, the diff utility examines two files, whose names are given as argu-
ments, and prints a summary of their differences on the standard output. If the files
are exactly the same, diff is silent. Usually, you invoke diff expecting to see a few
lines that are different.

diff, like sort and compress, can take a long time to run if the input files are very large.
Suppose that you have two large files that are called warandpeace.txt and warand-
peace.txt.old. The command diff warandpeace.txt warandpeace.txt.old" reveals that
the author decided to change the name “Ivan” to “Aleksandr” throughout the entire
file—i.e., hundreds of differences, resulting in very large amounts of output.

If you type diff warandpeace.txt warandpeace.txt.old &, then the system will spew
lots and lots of output at you, which will be difficult to stop—even with the tech-
niques explained in Chapter 7. However, if you type:

$ diff warandpeace.txt warandpeace.txt.old > txtdiff &

then the differences will be saved in the file txtdiff for you to examine later.

* You could use diff warandpeace* as a shorthand to save typing—as long as there are no other files with
names of that form. Remember that diff doesn’t see the arguments until after the shell has expanded the wild-
cards. Many people overlook this use of wildcards.

BackgroundJobs | 19

Background Jobs and Priorities

Background jobs can save you a lot of thumb-twiddling time. Just remember that
such jobs eat up lots of system resources like memory and the processor (CPU). Just
because you’re running several jobs at once doesn’t mean that they will run faster
than they would if run sequentially—in fact, performance is usually slightly worse.

Every job on the system is assigned a priority, a number that tells the operating sys-
tem how much priority to give the job when it doles out resources (the higher the
number, the lower the priority). Commands that you enter from the shell, whether
foreground or background jobs, usually have the same priority. The system adminis-
trator is able to run commands at a higher priority than normal users.

Note that if you're on a multiuser system, running lots of background jobs may eat
up more than your fair share of resources, and you should consider whether having
your job run as fast as possible is really more important than being a good citizen.

Speaking of good citizenship, there is also a UNIX command that lets you lower the
priority of any job: the aptly named nice. If you type nice command, where command
can be a complex shell command line with pipes, redirectors, etc., then the com-
mand will run at a lower priority.” You can control just how much lower by giving
nice a numerical argument; consult the nice manpage for details.t

Special Characters and Quoting

The characters <, >, |, and & are four examples of special characters that have partic-
ular meanings to the shell. The wildcards we saw earlier in this chapter (*, ?, and [...])
are also special characters.

Table 1-6 gives the meanings of all special characters within shell command lines only.
Other characters have special meanings in specific situations, such as the regular
expressions and string-handling operators that we’ll see in Chapter 3 and Chapter 4.

Table 1-6. Special characters

Character Meaning See chapter
~ Home directory

Command substitution (archaic)

Variable expression

1
4
Comment 4
3
Background job 1

1

* Qo W I

String wildcard

* Complex commands following nice should be quoted.
T If you are a system administrator logged in as root, then you can also use nice to raise a job’s priority.

20 | Chapter1: bashBasics

Table 1-6. Special characters (continued)

Character Meaning See chapter
Start subshell
End subshell
Quote next character
Pipe

End character-set wildcard

(

)

\

I

[Start character-set wildcard
]

{ Start command block
}

Shell command separator

Strong quote
Weak quote
Input redirect
Output redirect

Pathname directory separator

NNV A

8

8

1

1

1

1

7

End command block 7
3

1

1

1

1

1

Single-character wildcard 1
5

! Pipeline logical NOT

Quoting

Sometimes you will want to use special characters literally, i.e., without their special
meanings. This is called quoting. If you surround a string of characters with single
quotation marks (or quotes), you strip all characters within the quotes of any special
meaning they might have.

The most obvious situation where you might need to quote a string is with the echo
command, which just takes its arguments and prints them to the standard output.
What is the point of this? As you will see in later chapters, the shell does quite a bit
of processing on command lines—most of which involves some of the special char-
acters listed in Table 1-6. echo is a way of making the result of that processing avail-
able on the standard output.

What if we want to print the string 2 * 3 > 5 is a valid inequality? Suppose you type this:
$ echo 2 * 3 > 5 is a valid inequality.

You would get your shell prompt back, as if nothing happened! But then there would
be a new file, with the name 5, containing “2”, the names of all files in your current
directory, and then the string 3 is a valid inequality. Make sure you understand why."

* This should also teach you something about the flexibility of placing I/O redirectors anywhere on the com-
mand line—even in places where they don’t seem to make sense.

Special Characters and Quoting | 21

However, if you type:
$ echo '2 * 3 > 5 is a valid inequality.'

the result is the string, taken literally. You needn’t quote the entire line, just the por-
tion containing special characters (or characters you think might be special, if you
just want to be sure):

$ echo '2 * 3 > 5' is a valid inequality.
This has exactly the same result.

Notice that Table 1-6 lists double quotes (”) as weak quotes. A string in double
quotes is subjected to some of the steps the shell takes to process command lines, but
not all. (In other words, it treats only some special characters as special.) You’ll see
in later chapters why double quotes are sometimes preferable; Chapter 7 contains
the most comprehensive explanation of the shell’s rules for quoting and other
aspects of command-line processing. For now, though, you should stick to single
quotes.

Backslash-Escaping

Another way to change the meaning of a character is to precede it with a backslash (\).
This is called backslash-escaping the character. In most cases, when you backslash-
escape a character, you quote it. For example:

$ echo 2 * 3 \> 5 is a valid inequality.

will produce the same results as if you surrounded the string with single quotes. To
use a literal backslash, just surround it with quotes (\') or, even better, backslash-
escape it (\\).

Here is a more practical example of quoting special characters. A few UNIX com-
mands take arguments that often include wildcard characters, which need to be
escaped so the shell doesn’t process them first. The most common such command is
find, which searches for files throughout entire directory trees.

To use find, you supply the root of the tree you want to search and arguments that
describe the characteristics of the file(s) you want to find. For example, the com-
mand find . -name string searches the directory tree whose root is your current direc-
tory for files whose names match the string. (Other arguments allow you to search by
the file’s size, owner, permissions, date of last access, etc.)

You can use wildcards in the string, but you must quote them, so that the find com-
mand itself can match them against names of files in each directory it searches. The
command find . -name “.c’ will match all files whose names end in .c anywhere in
your current directory, subdirectories, sub-subdirectories, etc.

22 | Chapter1: bash Basics

Quoting Quotation Marks

You can also use a backslash to include double quotes within a quoted string. For
example:

$ echo \"2 * 3 \> 5\" is a valid inequality.
produces the following output:
"2 * 3 > 5" is a valid inequality.
However, this won’t work with single quotes inside quoted expressions. For exam-

ple, echo ‘Hatter\’s tea party’ will not give you Hatter’s tea party. You can get
around this limitation in various ways. First, try eliminating the quotes:

$ echo Hatter\'s tea party

If no other characters are special (as is the case here), this works. Otherwise, you can
use the following command:

$ echo 'Hatter'\''s tea party'

That is, \” (i.e., single quote, backslash, single quote, single quote) acts like a single
quote within a quoted string. Why? The first * in “\” ends the quoted string we
started with (‘Hatter), the \’ inserts a literal single quote, and the next ’ starts
another quoted string that ends with the word “party”. If you understand this, then
you will have no trouble resolving the other bewildering issues that arise from the
shell’s often cryptic syntax.

Continuing Lines

A related issue is how to continue the text of a command beyond a single line on
your terminal or workstation window. The answer is conceptually simple: just quote
the RETURN key. After all, RETURN is really just another character.

You can do this in two ways: by ending a line with a backslash, or by not closing a
quote mark (i.e., by including RETURN in a quoted string). If you use the backslash,
there must be nothing between it and the end of the line—not even spaces or TABs.

Whether you use a backslash or a single quote, you are telling the shell to ignore the
special meaning of the RETURN character. After you press RETURN, the shell
understands that you haven’t finished your command line (i.e., since you haven’t
typed a “real” RETURN), so it responds with a secondary prompt, which is > by
default, and waits for you to finish the line. You can continue a line as many times as
you wish.

For example, if you want the shell to print the first sentence of of Lewis Carroll’s
Alice’s Adventures in Wonderland, you can type this:
$ echo The Caterpillar and Alice looked at each other for some \

> time in silence: at last Caterpillar took the hookah out of its \
> mouth, and addressed her in a languid, sleepy voice.

Special Characters and Quoting | 23

Or you can do it this way:

$ echo 'The Caterpillar and Alice looked at each other for some
> time in silence: at last Caterpillar took the hookah out of its
> mouth, and addressed her in a languid, sleepy voice.'

Control Keys

Control keys—those that you type by holding down the CONTROL (or CTRL) key
and hitting another key—are another type of special character. These normally don’t
print anything on your screen, but the operating system interprets a few of them as
special commands. You already know one of them: RETURN is actually the same as
CTRL-M (try it and see). You have probably also used the BACKSPACE or DEL key
to erase typos on your command line.

Actually, many control keys have functions that don’t really concern you—yet you
should know about them for future reference and in case you type them by accident.

Perhaps the most difficult thing about control keys is that they can differ from sys-
tem to system. The usual arrangement is shown in Table 1-7, which lists the control
keys that all major modern versions of UNIX support. Note that DEL and CTRL-?
are the same character.

You can use the stty command to find out what your settings are and change them if
you wish; see Chapter 8 for details. If the version of UNIX on your system is one of
those that derive from BSD (such as SunOS and OS X), type stty all to see your con-
trol-key settings; you will see something like this:

erase kill werase rprnt flush lnext susp intr quit stop eof
n? U W "R "0 "V /MY AC "\ ~S/"Q D

Table 1-7. Control keys

Control key stty name Function description

(TRL-C intr Stop current command

CTRL-D eof End of input

CTRL-\ quit Stop current command if CTRL-C doesn’t work
(TRL-S stop Halt output to screen

(TRL-Q Restart output to screen

DEL or CTRL-? erase Erase last character

CTRL-U kill Erase entire command line

(TRL-Z susp Suspend current command (see Chapter 8)

The "X notation stands for CTRL-X. If your UNIX version derives from System I1I or
System V (this includes AIX, HP/UX, SCO, Linux, and Xenix), type stty -a.

24 | Chapter1: bash Basics

The resulting output will include this information:

intr = ~c; quit = *|; erase = DEL; kill = *u; eof = ~d; eol = *7;

swtch = *7; susp = "z; dsusp <undef>;
The control key you will probably use most often is CTRL-C, sometimes called the
interrupt key. This stops—or tries to stop—the command that is currently running.
You will want to use this when you enter a command and find that it’s taking too
long, you gave it the wrong arguments, you change your mind about wanting to run
it, or whatever.

Sometimes CTRL-C doesn’t work; in that case, if you really want to stop a job, try
CTRL-\. But don’t just type CTRL-\; always try CTRL-C first! Chapter 8 explains
why in detail. For now, suffice it to say that CTRL-C gives the running job more of a
chance to clean up before exiting, so that files and other resources are not left in
funny states.

We’ve already seen an example of CTRL-D. When you are running a command that
accepts standard input from your keyboard, CTRL-D tells the process that your
input is finished—as if the process were reading a file and it reached the end of the
file. mail is a utility in which this happens often. When you are typing in a message,
you end by typing CTRL-D. This tells mail that your message is complete and ready
to be sent. Most utilities that accept standard input understand CTRL-D as the end-
of-input character, though many such programs accept commands like q, quit, exit,
etc.

CTRL-S and CTRL-Q are called flow-control characters. They represent an anti-
quated way of stopping and restarting the flow of output from one device to another
(e.g., from the computer to your terminal) that was useful when the speed of such
output was low. They are rather obsolete in these days of high-speed networks. In
fact, under the latter conditions, CTRL-S and CTRL-Q are basically a nuisance. The
only thing you really need to know about them is that if your screen output becomes
“stuck,” then you may have hit CTRL-S by accident. Type CTRL-Q to restart the
output; any keys you may have hit in between will then take effect.

The final group of control characters gives you rudimentary ways to edit your com-
mand line. DEL acts as a backspace key (in fact, some systems use the actual BACK-
SPACE or CTRL-H key as “erase” instead of DEL); CTRL-U erases the entire line
and lets you start over. Again, these have been superseded.” The next chapter will
look at bash’s editing modes, which are among its most useful features and far more
powerful than the limited editing capabilities described here.

* Why are so many outmoded control keys still in use? They have nothing to do with the shell per se; instead,
they are recognized by the tty driver, an old and hoary part of the operating system’s lower depths that con-
trols input and output to/from your terminal.

Special Characters and Quoting | 25

Help

A feature in bash that no other shell has is an online help system. The help com-
mand gives information on commands in bash. If you type help by itself, you’ll get a
list of the built-in shell commands along with their options.

If you provide help with a shell command name it will give you a detailed descrip-
tion of the command:

$ help cd
cd: cd [-L | -P] [dir]

Change the current directory to DIR. The variable $HOME is the
default DIR. The variable $CDPATH defines the search path for
the directory containing DIR. Alternative directory names in
CDPATH are separated by a colon (:). A null directory name is
the same as the current directory, i.e. ~.'. If DIR begins with
a slash (/), then $CDPATH is not used. If the directory is not
found, and the shell option “cdable vars' is set, then try the
word as a variable name. If that variable has a value, then cd
to the value of that variable. The -P option says to use the
physical directory structure instead of following symbolic links;
the -L option forces symbolic links to be followed.

You can also provide help with a partial name, in which case it will return details on
all commands matching the partial name. For example, help re will provide details
on read, readonly, and return. The partial name can also include wildcards. You'll
need to quote the name to ensure that the wildcard is not expanded to a filename. So
the last example is equivalent to help ‘re*”’, and help ‘re??” will only return details on
read.

Sometimes help will show more than a screenful of information and it will scroll the
screen. You can use the more command to show one screenful at a time by typing
help command | more.

26 | Chapter1: bash Basics

CHAPTER 2
Command-Line Editing

It’s always possible to make mistakes when you type at a computer keyboard, but
perhaps even more so when you are using a UNIX shell. UNIX shell syntax is power-
ful, yet terse, full of odd characters, and not particularly mnemonic, making it possi-
ble to construct command lines that are as cryptic as they are complex. The Bourne
and C shells exacerbate this situation by giving you extremely limited ways of edit-
ing your command lines.

In particular, there is no way to recall a previous command line so that you can fix a
mistake. If you are an experienced Bourne shell user, undoubtedly you know the
frustration of having to retype long command lines. You can use the BACKSPACE
key to edit, but once you hit RETURN, it’s gone forever!

The C shell provided a small improvement via its history mechanism, which pro-
vides a few very awkward ways of editing previous commands. But there are more
than a few people who have wondered, “Why can’t I edit my UNIX command lines
in the same way [can edit text with an editor?”

This is exactly what bash allows you to do. It has editing modes that allow you to
edit command lines with editing commands similar to those of the two most popu-
lar UNIX editors, vi and emacs. It also provides a much-extended analog to the C
shell history mechanism called fc (for fix command) that, among other things, allows
you to use your favorite editor directly for editing your command lines. To round
things out, bash also provides the original C shell history mechanism.

In this chapter, we will discuss the features that are common to all of bash’s com-
mand-history facilities; after that, we will deal with each facility in detail. If you use
either vi or emacs, you may wish to read the section on the emulation mode for only
the one you use.” If you use neither vi nor emacs, but are interested in learning one of

* You will get the most out of these sections if you are already familiar with the editor(s) in question. Good
sources for more complete information on the editors are the O’Reilly books Learning the vi Editor, by Linda
Lamb and Arnold Robbins, and Learning GNU Emacs, by Debra Cameron, James Elliott, and Marc Loy.

27

the editing modes anyway, we suggest emacs-mode, because it is more of a natural
extension of the minimal editing capability you get with the bare shell.

We should mention up front that both emacs- and vi-modes introduce the potential
for clashes with control keys set up by the UNIX terminal interface. Recall the con-
trol keys shown in Chapter 1 in Table 1-7, and the sample stty command output.
The control keys shown there override their functions in the editing modes.

During the rest of this chapter, we’ll warn you when an editing command clashes
with the default setting of a terminal-interface control key.

Enabling Command-Line Editing

bash initially starts interactively with emacs-mode as the default (unless you have
started bash with the -noediting option;” see Chapter 10). There are two ways to
enter either editing mode while in the shell. First, you can use the set command:

$ set -o emacs
or:
$ set -0 vi

The second way of selecting the editing mode is to set a readline variable in the file
.inputrc. We will look at this method later in this chapter.

You will find that the vi- and emacs-editing modes are good at emulating the basic
commands of these editors, but not their advanced features; their main purpose is to
let you transfer “keyboard habits” from your favorite editor to the shell. fc is quite a
powerful facility; it is mainly meant to supplant C shell history and as an “escape
hatch” for users of editors other than vi or emacs. Therefore the section on fc is
mainly recommended to C shell users and those who don’t use either standard editor.

The History List

All of bash’s command history facilities depend on a list that records commands as
you type them into the shell. Whenever you log in or start another interactive shell,
bash reads an initial history list from the file .bash_history in your home directory.
From that point on, every bash interactive session maintains its own list of com-
mands. When you exit from a shell, it saves the list in .bash_history. You can call this
file whatever you like by setting the environment variable HISTFILE. We'll look
more closely at HISTFILE and some other related command history variables in the
next chapter.

* -nolineediting in versions of bash prior to 2.0.

28 | Chapter2: Command-Line Editing

emacs Editing Mode

If you are an emacs user, you will find it most useful to think of emacs editing mode
as a simplified emacs with a single, one-line window. All of the basic commands are
available for cursor motion, cut-and-paste, and search.

Basic Commands

emacs-mode uses control keys for the most basic editing functions. If you aren’t
familiar with emacs, you can think of these as extensions of the rudimentary “erase”
character (usually BACKSPACE or DEL) that UNIX provides through its interface to
users’ terminals. For the sake of consistency, we’ll assume your erase character is
DEL from now on; if it is CTRL-H or something else, you will need to make a men-
tal substitution. The most basic control-key commands are shown in Table 2-1.
(Important: remember that typing CTRL-D when your command line is empty may
log you off!) The basic keyboard habits of emacs-mode are easy to learn, but they do
require that you assimilate a couple of concepts that are peculiar to the emacs editor.

Table 2-1. Basic emacs-mode commands

Command Description

(TRL-B Move backward one character (without deleting)
CTRL-F Move forward one character

DEL Delete one character backward

CTRL-D Delete one character forward

The first of these is the use of CTRL-B and CTRL-F for backward and forward cur-
sor motion. These keys have the advantage of being obvious mnemonics. You can
also use the left and right cursor motion keys (“arrow” keys), but for the rest of this
discussion we will use the control keys, as they work on all keyboards. In emacs-
mode, the point (sometimes also called dot) is an imaginary place just to the left of
the character the cursor is on. In the command descriptions in Table 2-1, some say
“forward” while others say “backward.” Think of forward as “to the right of point”
and backward as “to the left of point.”
For example, let’s say you type in a line and, instead of typing RETURN, you type
CTRL-B and hold it down so that it repeats. The cursor will move to the left until it
is over the first character on the line, like this:

$ grep -1 Duchess < ~cam/book/alice_in_wonderland
Now the cursor is on the f, and point is at the beginning of the line, just before the f.
If you type DEL, nothing will happen because there are no characters to the left of
point. However, if you press CTRL-D (the “delete character forward” command) you
will delete the first letter:

$ Erep -1 Duchess < ~cam/book/alice_in_wonderland

emacs EditingMode | 29

Point is still at the beginning of the line. If this were the desired command, you could
hit RETURN now and run it; you don’t need to move the cursor back to the end of
the line. However, you could type CTRL-F repeatedly to get there:

$ grep -1 Duchess < "cam/book/alice_in_wonderlandl

At this point, typing CTRL-D wouldn’t do anything, but hitting DEL would erase the
final d.

Word Commands

The basic commands are really all you need to get around a command line, but a set
of more advanced commands lets you do it with fewer keystrokes. These commands
operate on words rather than single characters; emacs-mode defines a word as a
sequence of one or more alphanumeric characters.

The word commands are shown in Table 2-2. The basic commands are all single
characters, whereas these consist of two keystrokes, ESC followed by a letter. You
will notice that the command ESC X, where X is any letter, often does for a word
what CTRL-X does for a single character. “Kill” is another word for “delete”; it is the
standard term used in the readline library documentation for an “undoable” deletion.

Table 2-2. emacs-mode word commands

Command Description

ESC-B Move one word backward

ESC-F Move one word forward
ESC-DEL Kill one word backward
ESC-CTRL-H Kill one word backward

ESC-D Kill one word forward

CTRL-Y Retrieve (“yank”) last item killed

To return to our example: if we type ESC-B, point will move back a word. Since the
underscore (_) is not an alphanumeric character, emacs-mode will stop there:

$ grep -1 Duchess < “'cam/book/alice_injonderland

The cursor is on the w in wonderland, and point is between the _ and the w. Now let’s
say we want to change the -1 option of this command from Duchess to Cheshire. We
need to move back on the command line, so we type ESC-B four more times. This
gets us here:

$ grep -1 Duchess < "'am/book/alice_in_wonderland
If we type ESC-B again, we end up at the beginning of Duchess:

$ grep -1 Euchess < ~cam/book/alice_in_wonderland

30 | Chapter2: Command-Line Editing

Why? Remember that a word is defined as a sequence of alphanumeric characters
only. Therefore < is not a word; the next word in the backward direction is Duchess.
We are now in position to delete Duchess, so we type ESC-D and get:

$ grep -1 I< ~cam/book/alice_in_wonderland
Now we can type in the desired argument:
$ grep -1 Cheshirel< ~cam/book/alice_in_wonderland

If you want Duchess back again you can use the CTRL-Y command. The CTRL-Y
“yank” command will undelete a word if the word was the last thing deleted. In this
case, CTRL-Y would insert Duchess at the point.

Line Commands

There are still more efficient ways of moving around a command line in emacs-mode.
A few commands deal with the entire line; they are shown in Table 2-3.

Table 2-3. emacs-mode line commands

Command Description

CTRL-A Move to beginning of line
CTRL-E Move to end of line
CTRL-K Kill forward to end of line

Using CTRL-A, CTRL-E, and CTRL-K should be straightforward. Remember that
CTRL-Y will always undelete the last thing deleted; if you use CTRL-K, that could be
quite a few characters.

Moving Around in the History List

Now we know how to get around the command line efficiently and make changes.
But that doesn’t address the original issue of recalling previous commands by access-
ing the history list. emacs-mode has several commands for doing this, summarized in
Table 2-4.

Table 2-4. emacs-mode commands for moving through the history list

Command Description

(TRL-P Move to previous line

CTRL-N Move to next line

CTRL-R Search backward

ESC-< Move to first line of history list
ESC-> Move to last line of history list

emacs EditingMode | 31

CTRL-P and CTRL-N move you through the command history. If you have cursor
motion keys (arrow keys) you can use them instead. The up-arrow is the same as
CTRL-P and the down-arrow is the same as CTRL-N. For the rest of this discussion,
we’ll stick to using the control keys because they can be used on all keyboards.

CTRL-P is by far the one you will use most often—it’s the “I made a mistake, let me
go back and fix it” key. You can use it as many times as you wish to scroll back
through the history list. If you want to get back to the last command you entered,
you can hold down CTRL-N until bash beeps at you, or just type ESC->. As an
example, you hit RETURN to run the command above, but you get an error mes-
sage telling you that your option letter was incorrect. You want to change it without
retyping the whole thing.

First, you would type CTRL-P to recall the bad command. You get it back with point
at the end:

$ grep -1 Duchess < ~cam/book/alice_in_wonderlandl
After CTRL-A, ESC-F, two CTRL-Fs, and CTRL-D, you have:
$ grep -IDuchess < ~cam/book/alice_in_wonderland

You decide to try -s instead of -1, so you type s and hit RETURN. You get the same
error message, so you give up and look it up in the manual. You find out that the
command you want is fgrep—not grep—after all.

You sigh heavily and go back and find the fgrep command you typed in an hour ago.
To do this, you type CTRL-R; whatever was on the line will disappear and be
replaced by (reverse-i-search)’:. Then type fgrep, and you will see this:
$ (reverse-i-search) fgrep': fgrep -1 Duchess <~cam/book/ \
alice in_wonderland

The shell dynamically searches back through the command history each time you
type a letter, looking for the current substring in the previous commands. In this
example, when you typed f the shell would have printed the most recent command
in the history with that letter in it. As you typed more letters, the shell narrowed the
search until you ended up with the line displayed above. Of course, this may not
have been the particular line you wanted. Typing CTRL-R again makes the shell
search further back in the history list for a line with “fgrep” in it. If the shell doesn’t
find the substring again, it will beep.

If you try the fgrep command by hitting RETURN, two things will happen. First, of
course, the command will run. Second, this line will be entered into the history list at
the end, and your “current line” will be at the end as well. You will no longer be
somewhere else in the command history.

32 | Chapter2: Command-Line Editing

Another handy trick to save typing if you have already done a search is to type
CTRL-R twice in a row. This recalls the previous search string you typed in."

CTRL-P, CTRL-N, and CTRL-R are clearly the most important emacs-mode com-
mands that deal with the command history. The others are less useful but are
included for compatibility with the full emacs editor.

Textual Completion

One of the most powerful (and typically underused) features of emacs-mode is its
textual completion facility, inspired by similar features in the full emacs editor, the C
shell, and (originally) the old DEC TOPS-20 operating system.

The premise behind textual completion is simple: you should have to type only as
much of a filename, user name, function, etc., to identify it unambiguously. This is
an excellent feature; there is an analogous one in vi-mode. We recommend that you
take the time to learn it, since it will save you quite a bit of typing.

There are three commands in emacs-mode that relate to textual completion. The
most important is TAB.T When you type in a word of text followed by TAB, bash
will attempt to complete the name. Then one of four things can happen:

1. If there is nothing whose name begins with the word, the shell will beep and
nothing further will happen.

2. If there is a command name in the search path, a function name, or a filename
that the string uniquely matches, the shell will type the rest of it, followed by a
space in case you want to type in more command arguments. Command name
completion is only attempted when the word is in a command position (e.g., at
the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete the
filename, followed by a slash.

4. If there is more than one way to complete the name, the shell will complete out
to the longest common prefix among the available choices. Commands in the
search path and functions take precedence over filenames.

For example, assume you have a directory with the files tweedledee.c and tweedle-
dum.c. You want to compile the first of these by typing cc tweedledee.c. You type cc
twee followed by TAB. This is not an unambiguous prefix, since the prefix “twee” is
common to both filenames, so the shell only completes out to cc tweedled. You need
to type more letters to distinguish between them, so you type e and hit TAB again.

* Not available in versions of bash prior to 2.05a.

t emacs users will recognize this as minibuffer completion.

emacs EditingMode | 33

Then the shell completes out to “cc tweedledee.c”, leaving the extra space for you to
type in other filenames or options.

If you didn’t know what options were available after trying to complete cc twee, you
could press TAB again. bash prints out the possible completions for you and pre-
sents your input line again:

$ cc tweedled

tweedledee.c tweedledum.c

$ cc tweedled
A related command is ESC-?, which expands the prefix to all possible choices, list-
ing them to standard output. Be aware that the completion mechanism doesn’t nec-
essarily expand to a filename. If there are functions and commands that satisfy the
string you provide, the shell expands those first and ignores any files in the current
directory. As we’ll see, you can force completion to a particular type.

It is also possible to complete other environment entities. If the text being completed
is preceded by a dollar sign ($), the shell attempts to expand the name to that of a
shell variable (see Chapter 3, for a discussion of shell variables). If the text is pre-
ceded by a tilde (~), completion to a username is attempted,; if preceded by an at sign
(@), a hostname is attempted.

For example, suppose there was a username cameron on the system. If you wanted
to change to this user’s home directory, you could just use tilde notation and type
the first few letters of the name, followed by a TAB:

$ cd ~ca
which would expand to:
$ cd ~cameron/

You can force the shell to complete to specific things. Table 2-5 lists the standard
keys for these.

Table 2-5. Completion command

Command Description

TAB Attempt to perform general completion of the text
ESC-? List the possible completions

ESC-/ Attempt filename completion

CTRL-X / List the possible filename completions
ESC-~ Attempt username completion

CTRL-X ~ List the possible username completions
ESC-$ Attempt variable completion

CTRL-X $ List the possible variable completions
ESC-@ Attempt hostname completion

(TRL-X @ List the possible hostname completions

34 | Chapter2: Command-Line Editing

Table 2-5. Completion command (continued)

Command Description

ESC-! Attempt command completion

(TRL-X! List the possible command completions

ESC-TAB Attempt completion from previous commands in the history list

If you find that you are interested only in completing long filenames, you are proba-
bly better off using ESC-/ rather than TAB. This ensures that the result will be a file-
name and not a function or command name.

Miscellaneous Commands

Several miscellaneous commands complete emacs editing mode; they are shown in
Table 2-6.

Table 2-6. emacs-mode miscellaneous commands

Command Description

(TRL-) Same as RETURN

(TRL-L Clears the screen, placing the current line at the top of the screen
CTRL-M Same as RETURN

(TRL-0 Same as RETURN, then display next line in command history
CTRL-T Transpose two characters on either side of point and move point forward by one
CTRL-U Kills the line from the beginning to point

CTRL-V Quoted insert

CTRL-[Same as ESC (most keyboards)

ESC-C (apitalize word after point

ESC-U Change word after point to all capital letters

ESC-L Change word after point to all lowercase letters

ESC-. Insert last word in previous command line after point

ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as default settings for the “quote
next character” and “word erase” terminal interface functions, respectively.

A few of these miscellaneous commands are worth discussing, even though they may
not be among the most useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands you have already entered.
Just go back to the first command in the sequence and press CTRL-O instead of
RETURN. This will execute the command and bring up the next command in the
history list. Press CTRL-O again to enter this command and bring up the next one.
Repeat this until you see the last command in the sequence; then just hit RETURN.

emacs EditingMode | 35

Of the case-changing commands, ESC-L is useful when you hit the CAPS LOCK key
by accident and don’t notice it immediately. Since all-caps words aren’t used too
often in the UNIX world, you probably won’t use ESC-U very often.

CTRL-V will cause the next character you type to appear in the command line as is;
i.e., if it is an editing command (or an otherwise special character like CTRL-D), it
will be stripped of its special meaning.

If it seems like there are too many synonyms for RETURN, bear in mind that CTRL-M
is actually the same (ASCII) character as RETURN, and that CTRL-]J is actually the
same as LINEFEED, which UNIX usually accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several commands on a given file. The
usual UNIX convention is that a filename is the last argument to a command. There-
fore you can save typing by just entering each command followed by SPACE and
then typing ESC-. or ESC-_. For example, say you want to examine a file using more,
$0 you type:

$ more myfilewithaverylongname

Then you decide you want to print it, so you type the print command Ip. You can
avoid typing the very long name by typing lp followed by a space and then ESC-. or
ESC-_; bash will insert myfilewithaverylongname for you.

vi Editing Mode

Like emacs-mode, vi-mode essentially creates a one-line editing window into the his-
tory list. vi-mode is popular because vi is the most standard UNIX editor. But the
function for which vi was designed, writing C programs, has different editing
requirements from those of command interpreters. As a result, although it is possi-
ble to do complex things in vi with relatively few keystrokes, the relatively simple
things you need to do in bash sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and control mode. The former is for
typing commands (as in normal bash use); the latter is for moving around the com-
mand line and the history list. When you are in input mode, you can type com-
mands in and hit RETURN to run them. In addition, you have minimal editing
capabilities via control characters, which are summarized in Table 2-7

Table 2-7. Editing commands in vi input mode

Command Description

DEL Delete previous character

CTRL-W Erase previous word (i.e., erase until a blank)
CTRL-V Quote the next character

ESC Enter control mode (see below)

36 | Chapter2: Command-Line Editing

Note that at least some of these—depending on which version of UNIX you have—
are the same as the editing commands provided by UNIX through its terminal inter-
face.” vi-mode will use your “erase” character as the “delete previous character” key;
usually it is set to DEL or CTRL-H (BACKSPACE). CTRL-V works the same way as
in emacs-mode; it causes the next character to appear in the command line as is and
lose its special meaning.

Under normal circumstances, you just stay in input mode. But if you want to go back
and make changes to your command line, or if you want to recall previous com-
mands, you need to go into control mode. To do this, hit ESC.

Simple Control Mode Commands

A full range of vi editing commands are available to you in control mode. The sim-
plest of these move you around the command line and are summarized in Table 2-8.
vi-mode contains two “word” concepts. The simplest is any sequence of non-blank
characters; we’ll call this a non-blank word. The other is any sequence of only alpha-
numeric characters (letters and digits) plus the underscore (), or any sequence of
only non-alphanumeric characters; we’ll just call this a word.t

Table 2-8. Basic vi control mode commands

Command Description

h Move left one character

Move right one character
Move right one word
Move left one word

Move to beginning of next non-blank word

® = o =

Move to beginning of preceding non-blank word
Move to end of current word

Move to end of current non-blank word

Move to beginning of line

Move to first non-blank character in line

“»rr>s ©o m ™

Move to end of line

All of these commands except the last three can be preceded by a number that acts as
a repeat count. Whenever you type a number for the repeat count, the number
replaces the command prompt for the duration of the repeat command. If your key-
board has cursor motion keys (“arrow” keys), you can use the left and right arrows

* In particular, versions of UNIX derived from 4.x BSD have all of these commands built in.

T Neither of these definitions is the same as the definition of a word in emacs-mode.

viEditingMode | 37

to move between characters instead of the h and I keys. Repeat counts will work with
the cursor keys as well.

The last two will be familiar to users of UNIX utilities (such as grep) that use regular
expressions, as well as to vi users.

Time for a few examples. Let’s say you type in this line and, before you hit
RETURN, decide you want to change it:

$ fgrep -1 Duchess < "cam/book/alice_in_wonderlandl

As shown, your cursor is beyond the last character of the line. First, type ESC to
enter control mode; your cursor will move back one space so that it is on the d. Then
if you type h, your cursor will move back to the n. If you type 3h from the n, you will
end up at the r.

Now we will see the difference between the two “word” concepts. Go back to the
end of the line by typing $. If you type b, the word in question is alice_in_wonder-
land, and the cursor will end up on the a:

$ fgrep -1 Duchess < "cam/book/Elice_in_wonderland

If you type b again, the next word is the slash (it’s a “sequence” of non-alphanu-
meric characters), so the cursor ends up over it:

$ fgrep -1 Duchess < "'cam/bookal:i.ce_:i.n_wonderland

However, if you typed B instead of b, the non-blank word would be the entire path-
name, and the cursor would end up at the beginning of it—over the tilde:

$ fgrep -1 Duchess < =cam/book/alice_in_wonderland

You would have had to type b four times—or just 4b—to get the same effect, since
there are four “words” in the part of the pathname to the left of /alice_in_wonder-
land: book, slash, cam, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the c, since the tilde
is a “word,” while typing W brings you to the end of the line. But whereas w and W
take you to the beginning of the next word, e and E take you to the end of the cur-
rent word. Thus, if you type w with the cursor on the tilde, you get to:

$ fgrep -1 Duchess < "'am/book/alice_in_wonderland
Then typing e gets you to:

$ fgrep -1 Duchess < "‘caﬁ/book/alice_in_wonderland
And typing an additional w gets you to:

$ fgrep -1 Duchess < "'cambook/alice_in_wonderland

On the other hand, E gets you to the end of the current non-blank word—in this
case, the end of the line. (If you find these commands non-mnemonic, you’re right.
The only way to assimilate them is through lots of practice.)

38 | Chapter2: Command-Line Editing

Entering and Changing Text

Now that you know how to enter control mode and move around on the command
line, you need to know how to get back into input mode so you can make changes
and type in additional commands. A number of commands take you from control
mode into input mode; they are listed in Table 2-9. All of them enter input mode a
bit differently.

Table 2-9. Commands for entering vi input mode

Command Description

i Text inserted before current character (insert)
a Text inserted after current character (append)
| Text inserted at beginning of line

A Text inserted at end of line

R Text overwrites existing text

Most likely, you will use either i or a consistently, and you may use R occasionally. 1
and A are abbreviations for 0i and $a respectively. To illustrate the difference
between i, a, and R, say we start out with our example line:

$ fgrep -1 Duchess < "‘cam/booknalice_in_wonderland
If you type i followed by end, you will get:
$ fgrep -1 Duchess < "cam/bookendalice_in_wonderland

That is, the cursor will always appear to be under the / before alice_in_wonderland.
But if you type a instead of i, you will notice the cursor move one space to the right.
Then if you type miss_, you will get:

$ fgrep -1 Duchess < "‘cam/book/missjlice_in_wonderland

That is, the cursor will always be just after the last character you typed, until you
type ESC to end your input. Finally, if you go back to the first a in alice_in_wonder-
land, type R instead, and then type through_the_looking_glass, you will see:

$ fgrep -1 Duchess < "'cam/book/through_the_looking_glasE
In other words, you will be replacing (hence R) instead of inserting text.

Why capital R instead of lowercase r? The latter is a slightly different command,
which replaces only one character and does not enter input mode. With r, the next
single character overwrites the character under the cursor. So if we start with the
original command line and type r followed by a semicolon, we get:

$ fgrep -1 Duchess < "'cam/bookaalice_in_wonderland

If you precede r with a number N, it will allow you to replace the next N existing
characters on the line—but still not enter input mode. Lowercase r is effective for fix-
ing erroneous option letters, I/O redirection characters, punctuation, and so on.

viEditingMode | 39

Deletion Commands

Now that you know how to enter commands and move around the line, you need to
know how to delete. The basic deletion command in vi-mode is d followed by one
other letter. This letter determines what the unit and direction of deletion is, and it
corresponds to a motion command, as listed previously in Table 2-8.

Table 2-10 shows some commonly used examples.

Table 2-10. Some vi-mode deletion commands

Command Description

dh Delete one character backwards

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards
dw Delete one non-blank word forwards
ds Delete to end of line

do Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d,
you will enter input mode after it does the deletion. You can supply a numeric repeat
count either before or after the d (or c). Table 2-11 lists the available abbreviations.

Table 2-11. Abbreviations for vi-mode delete commands

Command Description

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)
« Equivalent to Oc$ (delete entire line, enter input mode)
X Equivalent to dl (delete character backwards)

X Equivalent to dh (delete character forwards)

Most people tend to use D to delete to end of line, dd to delete an entire line, and x
(as “backspace”) to delete single characters. If you aren’t a hardcore vi user, you
may find it difficult to make sure the more esoteric deletion commands are at your
fingertips.

Every good editor provides “un-delete” commands as well as delete commands, and
vi-mode is no exception. vi-mode maintains a delete buffer that stores all of the modi-
fications to text on the current line only (note that this is different from the full vi
editor). The command u undoes previous text modifications. If you type u, it will

40 | Chapter2: Command-Line Editing

undo the last change. Typing it again will undo the change before that. When there
are no more undo’s, bash will beep. A related command is . (dot), which repeats the
last text modification command.

There is also a way to save text in the delete buffer without having to delete it in the
first place: just type in a delete command but use y (“yank”) instead of d. This does
not modify anything, but it allows you to retrieve the yanked text as many times as
you like later on. The commands to retrieve yanked text are p, which inserts the text
on the current line to the right of the cursor, and P, which inserts it to the left of the
cursor. The y, p, and P commands are powerful but far better suited to “real vi” tasks
like making global changes to documents or programs than to shell commands, so
we doubt you’ll use them very often.

Moving Around in the History List

The next group of vi control mode commands we cover allows you to move around
in and search your command history. This is the all-important functionality that lets
you go back and fix an erroneous command without retyping the entire line. These
commands are summarized in Table 2-12.

Table 2-12. vi control mode commands for searching the command history

Command Description

kor- Move backward one line

jor+ Move forward one line

G Move to line given by repeat count

/string Search backward for string

Istring Search forward for string

n Repeat search in same direction as previous

N Repeat search in opposite direction of previous

The first two can also be accomplished with the up and down cursor movement keys
if your keyboard has them. The first three can be preceded by repeat counts (e.g., 3k
or 3- moves back three lines in the command history).

If you aren’t familiar with vi and its cultural history, you may be wondering at the
wisdom of choosing such seemingly poor mnemonics as h, j, k, and 1 for backward
character, forward line, backward line, and forward character, respectively. Well,
there actually is a rationale for the choices—other than that they are all together on
the standard keyboard. Bill Joy originally developed vi to run on Lear-Siegler ADM-
3a terminals, which were the first popular models with addressable cursors (mean-
ing that a program could send an ADM-3a command to move the cursor to a speci-
fied location on the screen). The ADM-3a’s h, j, k, and 1 keys had little arrows on
them, so Joy decided to use those keys for appropriate commands in vi. Another

viEditingMode | 41

(partial) rationale for the command choices is that CTRL-H is the traditional back-
space key, and CTRL-J denotes linefeed.

Perhaps + and - are better mnemonics than j and k, but the latter have the advantage
of being more easily accessible to touch typists. In either case, these are the most
basic commands for moving around the history list. To see how they work, let’s use
the same examples from the emacs-mode section earlier.

You enter the example command (RETURN works in both input and control modes,
as does LINEFEED or CTRL-]):

$ fgrep -1 Duchess < ~cam/book/alice_in_wonderland

but you get an error message saying that your option letter was wrong. You want to
change it to -s without having to retype the entire command. Assuming you are in
control mode (you may have to type ESC to put yourself in control mode), you type
k or - to get the command back. Your cursor will be at the beginning of the line:

$ grep -1 Duchess < ~cam/book/alice_in_wonderland

Type w to get to the -, then 1 to get to the 1. Now you can replace it by typing rs;
press RETURN to run the command.

Now let’s say you get another error message, and you finally decide to look at the
manual page for the fgrep command. You remember having done this a while ago
today, so rather than typing in the entire man command, you search for the last one
you used. To do this, type ESC to enter control mode (if you are already in control
mode, this will have no effect), then type / followed by man or ma. To be on the safe
side, you can also type “ma; the » means match only lines that begin with ma.”

But typing /Ama doesn’t give you what you want: instead, the shell gives you:
$ make myprogram

To search for “man” again, you can type n, which does another backward search
using the last search string. Typing / again without an argument and hitting
RETURN will accomplish the same thing.

The G command retrieves the command whose number is the same as the numeric
prefix argument you supply. G depends on the command numbering scheme
described in Chapter 3 “Prompting variables.” Without a prefix argument, it goes to
command number 1. This may be useful to former C shell users who still want to use
command numbers.

* Fans of vi and search utilities like grep should note that caret (#) for beginning-of-line is the only context
operator vi-mode provides for search strings.

42 | Chapter2: Command-Line Editing

Character-Finding Commands

There are some additional motion commands in vi-mode, although they are less use-
ful than the ones we saw earlier in the chapter. These commands allow you to move
to the position of a particular character in the line. They are summarized in
Table 2-13, in which x denotes any character.

All of these commands can be preceded by a repeat count.

Table 2-13. vi-mode character-finding commands

Command Description

fx Move right to next occurrence of

Fx Move left to previous occurrence of x

tx Move right to next occurrence of x, then back one space

Tx Move left to previous occurrence of x, then forward one space

; Redo last character-finding command

, Redo last character-finding command in opposite direction

Starting with the previous example: let’s say you want to change Duchess to Duckess.
Make sure that you’re at the end of the line (or, in any case, to the left of the h in
Duchess); then, if you type Fh, your cursor will move to the h:

$ fgrep -1 Ducﬂess < ~cam/book/alice_in_wonderland

At this point, you could type r to replace the h with k. But let’s say you wanted to
change Duchess to Dutchess. You would need to move one space to the right of the u.
Of course, you could just type 1. But, given that you’re somewhere to the right of

Duchess, the fastest way to move to the ¢ would be to type Tu instead of Fu fol-
lowed by 1.

As an example of how the repeat count can be used with character-finding com-
mands, let’s say you want to change the filename from alice_in_wonderland to alice.
In this case, assuming your cursor is still on the D, you need to get to one character
beyond the second slash. To do this, you can type 2fa. Your cursor will then be on
the a in alice_in_wonderland.

The character-finding commands also have associated delete commands. Read the
command definitions in the previous table and mentally substitute “delete” for
move. You'll get what happens when you precede the given character-finding com-
mand with a d. The deletion includes the character given as argument. For example,
assume that your cursor is under the a in alice_in_wonderland:

$ fgrep -1 Duchess < "cam/book/Elice_in_wonderland

If you want to change alice_in_wonderland to natalie_in_wonderland, one possibility
is to type dfc. This means “delete right to next occurrence of ¢,” i.e., delete “alic”.
Then you can type i (to enter input mode) and then “natali” to complete the change.

viEditingMode | 43

One final command rounds out the vi control mode commands for getting around on
the current line: you can use the pipe character (]) to move to a specific column, whose
number is given by a numeric prefix argument. Column counts start at 1; count only
your input, not the space taken up by the prompt string. The default repeat count is 1,
of course, which means that typing | by itself is equivalent to 0 (see Table 2-8).

Textual Completion

Although the character-finding commands and | are not particularly useful, vi-mode
provides one additional feature that we think you will use quite often: textual com-
pletion. This feature is not part of the real vi editor, and it was undoubtedly inspired
by similar features in emacs and, originally, in the TOPS-20 operating system for
DEC mainframes.

The rationale behind textual completion is simple: you should have to type only as
much of a filename, user name, function, etc. as is necessary. Backslash (\) is the
command that tells bash to do completion in vi-mode. If you type in a word, hit ESC
to enter control mode, and then type \, one of four things will happen; they are the
same as for TAB in emacs-mode:

1. If there is nothing whose name begins with the word, the shell will beep and
nothing further will happen.

2. If there is a command name in the search path, a function name, or a filename
that the string uniquely matches, the shell will type the rest of it, followed by a
space in case you want to type in more command arguments. Command name
completion is only attempted when the word is in a command position (e.g., at
the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete the
filename, followed by a slash.

4. If there is more than one way to complete the name, the shell will complete out
to the longest common prefix among the available choices. Commands in the
search path and functions take precedence over filenames.

A related command is *. It behaves similarly to ESC-\, but if there is more than one
completion possibility (number four in the previous list), it lists all of them and
allows you to type further. Thus, it resembles the * shell wildcard character.

Less useful is the command =, which does the same kind of expansion as *, but in a
different way. Instead of expanding the names onto the command line, it prints
them, then gives you your shell prompt back and retypes whatever was on your com-
mand line before you typed =. For example, if the files in your directory include
tweedledee.c and tweedledum.c, and you type tweedl followed by ESC and then =,
you will see this:

$ cc tweedl
tweedledee.c tweedledum.c

44 | Chapter2: Command-Line Editing

It is also possible to expand other environment entities, as we saw in emacs-mode. If
the text being expanded is preceded by a dollar sign ($), the shell will attempt to
expand the name to that of a shell variable. If the text is preceded by a tilde (~),
expansion to a username is attempted; if preceded by an at sign (@), a hostname.

Miscellaneous Commands

Several miscellaneous commands round out vi-mode; some of them are quite eso-
teric. They are listed in Table 2-14.

Table 2-14. Miscellaneous vi-mode commands

Command Description

~ Invert (twiddle) case of current character(s)

- Append last word of previous command, enter input mode

(TRL-L Clear the screen and redraw the current line on it; good for when your screen becomes garbled

Prepend # (comment character) to the line and send it to the history list; useful for saving a command to
be executed later without having to retype it2

a The line is also “executed” by the shell. However, # is the shell’s comment character, so the shell ignores it.

The first of these can be preceded by a repeat count. A repeat count of n preceding
the ~ changes the case of the next n characters. The cursor will advance accordingly.

A repeat count preceding _ causes the nth word in the previous command to be
inserted in the current line; without the count, the last word is used. Omitting the
repeat count is useful because a filename is usually the last thing on a UNIX com-
mand line, and because users often run several commands in a row on the same file.
With this feature, you can type all of the commands (except the first) followed by
ESC-_, and the shell will insert the filename.

The fc Command

fc is a built-in shell command that provides a superset of the C shell history mecha-
nism. You can use it to examine the most recent commands you entered, to edit one
or more commands with your favorite “real” editor, and to run old commands with
changes without having to type the entire command in again. We’ll look at each of
these uses in turn.

The -1 option to fc lists previous commands. It takes arguments that refer to com-
mands in the history list. Arguments can be numbers or alphanumeric strings; num-
bers refer to the commands in the history list, while strings refer to the most recent
command beginning with the string. fc treats arguments in a rather complex way:

* If you give two arguments, they serve as the first and last commands to be shown.

* If you specify one number argument, only the command with that number is
shown.

ThefcCommand | 45

* With a single string argument, it searches for the most recent command starting
with that string and shows you everything from that command to the most
recent command.

* If you specify no arguments, you will see the last 16 commands you entered.
bash also has a built-in command for displaying the history: history.

A few examples should make these options clearer. Let’s say you logged in and
entered these commands:

1s -1

more myfile

vi myfile

wc -1 myfile

pr myfile | 1p -h
If you type fc -1 with no arguments, you will see the above list with command num-
bers, as in:

1 1s -1

2 more myfile

3 vi myfile

4 wc -1 myfile

5 pr myfile | 1p -h

Adding another option, -n, suppresses the line numbers. If you want to see only
commands 2 through 4, type fc -12 4. If you want to see only the vi command, type
fc-13. To see everything from the vi command up to the present, type fc -1 v. Finally,
if you want to see commands between more and wc, you can type fc-lm w, fc-1m 4,
fc-124, etc.

The other important option to fc is -e for “edit.” This is useful as an “escape hatch”
from vi- and emacs-modes if you aren’t used to either of those editors. You can spec-
ify the pathname of your favorite editor and edit commands from your history list;
then when you have made the changes, the shell will actually execute the new lines.

Let’s say your favorite editor is a little home-brew gem called zed. You could edit
your commands by typing:
$ fc -e /usr/local/bin/zed

This seems like a lot of work just to fix a typo in your previous command; fortu-
nately, there is a better way. You can set the environment variable FCEDIT to the
pathname of the editor you want fc to use. If you put a line in your .bash_profile or
environment file saying:”

FCEDIT=/usr/local/bin/zed

you will get zed when you invoke fc. If FCEDIT isn’t set, then bash uses whatever the
variable EDITOR is set to. If that’s also not set, then bash defaults to vi.

* See Chapter 3 for information on the bash startup file .bash_profile.

46 | Chapter2: Command-Line Editing

fc is usually used to fix a recent command. When used without options, it handles
arguments a bit differently than it does for the fc -1 variation discussed earlier:

* With no arguments, fc loads the editor with the most recent command.

* With a numeric argument, fc loads the editor with the command with that
number.

* With a string argument, fc loads the most recent command starting with that
string.

* With two arguments to fc, the arguments specify the beginning and end of a
range of commands, as above.

Remember that fc actually runs the command(s) after you edit them. Therefore, the
last-named choice can be dangerous. bash will attempt to execute all commands in
the range you specify when you exit your editor. If you have typed in any multi-line
constructs (like those we will cover in Chapter 5), the results could be even more
dangerous. Although these might seem like valid ways of generating “instant shell
programs,” a far better strategy would be to direct the output of fc -In with the same
arguments to a file; then edit that file and execute the commands when you’re satis-
fied with them:
$ fc -1 cp > lastcommands

$ vi lastcommands
$ source lastcommands

In this case, the shell will not try to execute the file when you leave the editor!
There is one final option with fc. fc -s allows you to rerun a command. With an argu-
ment, fc will rerun the last command starting with the given string. Without an argu-
ment, it will rerun the previous command. The -s option also allows you to provide a
pattern and replacement. For example, if you typed:

$ cs prog.c
You could correct it with fc -s cs=cc. This can be combined with the string search: fc
-s cs=cc cs. The last occurence of ¢s will be found and replaced with cc.

History Expansion

If you are a C shell user, you may be familiar with the history expansion mechanism
that it provides. bash provides a similar set of features. History expansion is a primi-
tive way to recall and edit commands in the history list. The way to recall com-
mands is by the use of event designators. Table 2-15 gives a complete list.

Table 2-15. Event designators

Command Description

! Start a history substitution
I Refers to the last command
In Refers to command line n

History Expansion | 47

Table 2-15. Event designators (continued)

Command Description

-n Refers to the current command line minus n

Istring Refers to the most recent command starting with string

string? Refers to the most recent command containing string; the ending ? is optional

Astring 1A\stri Repeat the last command, replacing string 1 with string2
ng2

By far the most useful command is !!. Typing !! on the command line re-executes the
last command. If you know the command number of a specific command, you can
use the !'n form, where n is the command number. Command numbers can be deter-
mined from the history command. Alternatively, you can re-execute the most recent
command beginning with the specified string by using !string.

You might also find the last expansion in the table to be of some use if you’ve made a
typing mistake. For example, you might have typed:

$ cat through_the_loking_glass | grep Tweedledee > dee.list

Instead of moving back to the line and changing loking to looking, you could just
type Mok™Mook. This will change the string lok to look and then execute the result-
ing command.

It’s also possible to refer to certain words in a previous command by the use of a
word designator. Table 2-16 lists available designators. Note that when counting
words, bash (like most UNIX programs) starts counting with zero, not with one.

Table 2-16. Word designators

Designator Description

0 The zeroth (first) word in a line

n The nth word in a line

A The first argument (the second word)

$ The last argument in a line

% The word matched by the most recent ?string search
X-y Arange of words from x to . -y is synonymous with 0-y

All words but the zeroth (first); synonymous with 1-$., if there is only one word on the line, an empty
string is returned

x* Synonymous with x-$

X- The words from x to the second to last word

The word designator follows the event designator, separated by a colon. You could,
for example, repeat the previous command with different arguments by typing !!:0
followed by the new arguments.

48 | Chapter2: Command-Line Editing

Event designators may also be followed by modifiers. The modifiers follow the word
designator, if there is one. Table 2-17 lists the available modifiers.

Table 2-17. Modifiers

Modifier Description

h Removes a trailing pathname component, leaving the head
r Removes a trailing suffix of the form .xxx

e Removes all but the trailing suffix

—

Removes all leading pathname components, leaving the tail

p Prints the resulting command but doesn’t execute it

q Quotes the substituted words, escaping further substitutions

X Quotes the substituted words, breaking them into words at blanks and newlines
s/old/new/ Substitutes new for old

More than one modifier may be used with an event designator; each one is separated
by a colon.

History expansion is fine for re-executing a command quickly, but it has been super-
seded by the command-line editing facilities that we looked at earlier in this chapter.
Its inclusion is really only for completeness, and we feel you are better off mastering
the techniques offered in the vi or emacs editing modes.

readline

bash’s command-line editing interface is readline. It is actually a library of software
developed for the GNU project that can be used by applications requiring a text-
based interface. It provides editing and text-manipulation features to make it easier
for the user to enter and edit text. Just as importantly, it allows standardization, in
terms of both key strokes and customization methods, across all applications that
use it.

readline provides default editing in either of two modes: vi or emacs. Both modes
provide a subset of the editing commands found in the full editors. We’ve already
looked at the command sets of these modes in the previous sections of this chapter.
We'll now look at how you can make your own command sets.

readline gives bash added flexibility compared to other shells because it can be cus-
tomized through the use of key bindings, either from the command line or in a spe-
cial startup file. You can also set readline variables. We’ll see how you can set up
readline using your own startup file now, and then go on to examine how the bind-
ing capability can be used from the command line.

readline | 49

The readline Startup File

The default startup file is called .inputrc and must exist in your home directory if you
wish to customize readline. You can change the default filename by setting the envi-
ronment variable INPUTRC (see Chapter 3 for further information on environment
variables).

When bash starts up, it reads the startup file (if there is one) and any settings there
come into effect. The startup file is just a sequence of lines that bind a keyname to a
macro or readline function name. You can also place comments in the file by preced-
ing any line with a #.

You can use either an English name or a key escape sequence for the keyname. For
example, to bind CTRL-T to the movement command for moving to the end of the
current line, you could place Control-t: end-of-line in your .inputrc. If you wanted to
use a key escape sequence you could have put “\C-t<”>: end-of-line. The \C- is the
escape sequence prefix for Control. The advantage of the key sequence is that you
can specify a sequence of keys for an action. In our example, once readline has read
this line, typing a CTRL-T will cause the cursor to move to the end of the line.

The end-of-line in the previous example is a readline function. There are over 60
functions that allow you to control everything from cursor motions to changing text
and command completion (for a complete list, see the bash manual page). All of the
emacs and vi editing mode commands that we looked at in this chapter have associ-
ated functions. This allows you to customize the default modes or make up com-
pletely new ones using your own key sequences.

Besides the readline functions, you can also bind a macro to a key sequence. A macro
is simply a sequence of keystrokes inside single or double quotes. Typing the key
sequence causes the keys in the macro to be entered as though you had typed them.
For example, we could bind some text to CTRL-T; “\C-t<”>: <“>Curiouser and
curiouser!<”>. Hitting CTRL-T would cause the phrase Curiouser and curiouser! to
appear on the command line.

If you want to use single or double quotes in your macros or key sequence, you can
escape them by using a backslash (\). Table 2-18 lists the common escape sequences.

Table 2-18. Escape sequences

Sequence Description

\C- Control key prefix

\M- Meta (Escape) key prefix

\e The escape character

\\ The backslash character (\)

\<"> The double quote character (<">)
V The single quote character (')

50 | Chapter2: Command-Line Editing

readline also allows simple conditionals in the .inputrc. There are three directives:
$if, $Selse, and $endif. The conditional of the $if can be an editing mode, a terminal
type, or an application-specific condition.

To test for an editing mode, you can use the form mode= and test for either vi or
emacs. For instance, to set up readline so that setting CTRL-T will take place only in
emacs mode, you could put the following in your .inputrc:

$if mode=emacs

"\C-t": "Curiouser and curiouser!"

$endif
Likewise, to test for a terminal type, you can use the form term=. You must provide
the full terminal name on the right-hand side of the test. This is useful when you
need a terminal-specific key binding. You may, for instance, want to bind the func-
tion keys of a particular terminal type to key sequences.

If you have other applications that use readline, you might like to keep your bash-
specific bindings separate. You can do this with the last of the conditionals. Each
application that uses readline sets its own variable, which you can test for. To test for
bash specifics, you could put $if bash into your .inputrc.

readline variables

readline has its own set of variables that you can set from within your .inputre.
Table 2-19 lists them.”

Table 2-19. readline variables

Variable Description

bell-style If set to none, readline never rings the bell (beeps). If set to visible, readline will
attempt to use a visible bell. If set to audible, it will attempt to ring the bell. The default is
audible.

comment-begin The string to insert when the readline insert-comment command is executed. The
defaultis a #.

completion-query-items Determines when the user is asked to see further completions if the number of completions is
greater than that given. The default is 100.

convert-meta If set to On, converts characters with the eighth bit set to an ASCIl key sequence by stripping
the eighth bit and prepending an escape character. The default is On.

disable-completion If set to On, inhibits word completion. Completion characters will be inserted into the line as
if they had been mapped to self-insert. The default is Off.

editing-mode Sets the editing mode to vi or emacs.

enable-keypad If set to On, readline tries to enable the keyboard's application keypad when it is called.

Some systems need this to enable the arrow keys. The default is Off.

*

The variables disable-completion, enable-keypad, input-meta, mark-directories, and visible-stats are not
available in versions of bash prior to 2.0.

readline | 51

Table 2-19. readline variables (continued)

Variable Description

expand-tilde If set to On, tilde expansion is attempted when readline attempts word completion. The
default is Off.

horizontal-scroll-mode Set to On means that lines will scroll horizontally if you type beyond the right-hand side of
the screen. The default is Off, which wraps the line onto a new screen line.

input-meta If set to On, eight-bit input will be accepted. The default is Off. This is synonymous with
meta-flag.

keymap Sets readline’s current keymap for bindings. Acceptable names are emacs, emacs-

standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command and vi-
insert. The defaultis emacs. Note that the value of editing-mode also affects the key-

map.

mark-directories If set to On, completed directory names have a slash appended.

mark-modified-lines If set to On, displays an asterisk at the start of history lines that have been modified. The
defaultis Off.

meta-flag If set to On, eight-bit input will be accepted. The default is Off.

output-meta If set to On, displays characters with the eighth bit set directly. The defaultis Off.

show-all-if-ambiguous If set to On, words with more than one possible completion are listed instead of ringing the
bell. The default is Off.

visible-stats If set to On, a character denoting a file's type as reported by the stat system call is

appended to the filename when listing possible completions. The default is Off.

To set any of the variables, you can use the set command in your .inputrc. For exam-
ple, to set vi-mode when you start up, you could place the line set editing-mode vi in
your .inputrc. Every time bash starts it would change to vi-mode.

Key Bindings Using bind

If you want to try out key bindings or you want to see what the current settings are,
you can do it from the bash command line by using the bind command. The binding
syntax is the same as that of the .inputrc file, but you have to surround each binding
in quotes so that it is taken as one argument.

To bind a string to CTRL-T, we could type bind ““\C-t<">: <">Curiouser and curi-
ouser!”’. This would bind the given string to CTRL-T just as in the .inputrc, except
that the binding will apply only to the current shell and will cease once you log out.

bind also allows you to print out the bindings currently in effect by typing bind -P." If
you do so, you’ll see things like:

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".
accept-line can be found on "\C-j", "\C-m".

* Versions of bash prior to 2.0 use -d instead of -p, and -v instead of -P. Also, the -r, -V, -S, -s, -u, and the new
-v and —x options are not available in these older versions.

52 | Chapter2: Command-Line Editing

alias-expand-line is not bound to any keys
arrow-key-prefix is not bound to any keys
backward-char can be found on "\C-b", "\eOD", "\e[D".

If you just want to see the names of the readline functions, you can use bind -1.

You can also unbind a function by using bind -u along with the name of the func-
tion; all keys for that function will then be unbound. Unbinding a key sequence can
be done with bind -r followed by the sequence.

bind -x is useful if you want to bind a shell command to a key sequence. For exam-
ple, bind -x “\C-1”:ls’ binds CTRL-L to the Is command. Hitting CTRL-L would
then give a directory listing.

Another option you might find useful is -p. This prints out the bindings to standard
output in a format that can be re-read by bind, or used as a .inputrc file. So, to create
a complete .inputrc file that you can then edit, you could type bind -p > .inputrc.

To read the file back in again you can use another option, -f. This option takes a file-
name as its argument and reads the key bindings from that file. You can also use it to
update the key bindings if you’ve just modified your .inputrc.

Keyboard Habits

In this chapter we have seen that bash provides command-line editing with two
modes: vi and emacs. You may be wondering why these two editors were chosen.
The primary reason is because vi and emacs are the most widely used editors for
UNIX. People who have used either editor will find familiar editing facilities.

If you are not familiar with either of these editors, you should seriously consider
adopting emacs-mode keyboard habits. Because it is based on control keys and
doesn’t require you to think in terms of a “command mode” and “insert mode,” you
will find emacs-mode easier to assimilate. Although the full emacs is an extremely
powerful editor, its command structure lends itself very well to small subsetting:
there are several “mini-emacs” editors floating around for UNIX, MS-DOS, and
other systems.

The same cannot be said for vi, because its command structure is really meant for use
in a full-screen editor. vi is quite powerful too, in its way, but its power becomes evi-
dent only when it is used for purposes similar to that for which it was designed: edit-
ing source code in C and LISP. As mentioned earlier, a vi user has the power to move
mountains in few keystrokes—but at the cost of being unable to do anything mean-
ingful in very few keystrokes. Unfortunately, the latter is most desired in a command
interpreter, especially nowadays when users are spending more time within applica-
tions and less time working with the shell. In short, if you don’t already know vi, you
will probably find its commands obscure and confusing.

Keyboard Habits | 53

Both bash editing modes have quite a few commands; you will undoubtedly develop
keyboard habits that include just a few of them. If you use emacs-mode and you
aren’t familiar with the full emacs, here is a subset that is easy to learn yet enables
you to do just about anything:

For cursor motion around a command line, stick to CTRL-A and CTRL-E for
beginning and end of line, and CTRL-F and CTRL-B for moving around.

Delete using DEL (or whatever your “erase” key is) and CTRL-D; as with CTRL-F
and CTRL-B, hold down to repeat if necessary. Use CTRL-K to erase the entire line.

Use CTRL-P and CTRL-N (or the up and down arrow keys) to move through the
command history.

Use CTRL-R to search for a command you need to run again.

Use TAB for filename completion.

After a few hours spent learning these keystrokes, you will wonder how you ever got
along without command-line editing.

54

Chapter 2: Command-Line Editing

CHAPTER 3
Customizing Your Environment

An environment is a collection of concepts that express the things a computer system
or other set of tools does in terms designed to be understandable and coherent, and a
look and feel that is comfortable. For example, your desk at work is an environment.
Concepts involved in desk work usually include memos, phone calls, letters, forms,
etc. The tools on or in your desk that you use to deal with these things include paper,
staples, envelopes, pens, a telephone, a calculator, etc. Every one of these has a set of
characteristics that express how you use it; such characteristics range from location
on your desk or in a drawer (for simple tools) to more sophisticated things like which
numbers the memory buttons on your phone are set to. Taken together, these char-
acteristics make up your desk’s look and feel.

You customize the look and feel of your desk environment by putting pens where
you can most easily reach them, programming your phone buttons, etc. In general,
the more customization you have done, the more tailored to your personal needs—
and therefore the more productive—your environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and stan-
dard input and output, while UNIX itself gives you tools to work with these, such as
file manipulation commands, text editors, and print queues. Your UNIX environ-
ment’s look and feel is determined by your keyboard and display, of course, but also
by how you set up your directories, where you put each kind of file, and what names
you give to files, directories, and commands. There are also more sophisticated ways
of customizing your shell environment.

This chapter will look at the four most important features that bash provides for cus-
tomizing your environment.

Special files
The files .bash_profile, .bash_logout, and .bashrc that are read by bash when you
log in and out or start a new shell.

Aliases
Synonyms for commands or command strings that you can define for convenience.

55

Options
Controls for various aspects of your environment that you can turn on and off.
Variables
Changeable values that are referred to by a name. The shell and other programs
can modify their behavior according to the values stored in the variables.

Although these features are not the only ones available, they form the basis for doing
more advanced customization. They are also the features that are common to the
various shells available on UNIX. Later chapters will cover more advanced shell fea-
tures, such as the ability to program the shell.

The .bash_profile, .bash_logout,
and .bashrcFiles

Three files in your home directory have a special meaning to bash, providing a way for
you to set up your account environment automatically when you log in and when you
invoke another bash shell, and allowing you to perform commands when you log out.
These files may already exist in your home directory, depending on how your system
administrator has set up your account. If they don’t exist, your account is using only
the default system file /etc/profile. You can easily create your own bash files using your
favorite text editor. If you are unfamiliar with text editors available under UNIX, we
suggest that you familiarize yourself with one of the better-known ones such as vi or
emacs before proceeding further with the techniques described in this chapter.

The most important bash file, .bash_profile, is read and the commands in it executed
by bash every time you log in to the system. If you examine your .bash_profile you
will probably see lines similar to:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin

SHELL=/bin/bash

MANPATH=/usx/man:/usr/X11/man
EDITOR=/usr/bin/vi

PS1="\h:\w\$ '

ps2="> '

export EDITOR
These lines define the basic environment for your login account. For the moment, it
is probably best to leave these lines alone until you understand what they do. When
editing your .bash_profile, just add your new lines after the existing ones.

Note that whatever you add to your .bash_profile won’t take effect until the file is re-
read by logging out and then logging in again. Alternatively, you can also use the
source command.” For example:

source .bash profile

* You can also use the synonymous command dot (.)

56 | Chapter3: Customizing Your Environment

source executes the commands in the specified file, in this case .bash_profile, includ-
ing any commands that you have added.

bash allows two synonyms for .bash_profile: .bash_login, derived from the C shell’s
file named .login, and .profile, derived from the Bourne shell and Korn shell files
named .profile. Only one of these three is read when you log in. If .bash_profile
doesn’t exist in your home directory, then bash will look for .bash_login. 1f that
doesn’t exist it will look for .profile.

One advantage of bash’s ability to look for either synonym is that you can retain your
.profile if you have been using the Bourne shell. If you need to add bash-specific com-
mands, you can put them in .bash_profile followed by the command source .profile.
When you log in, all the bash-specific commands will be executed, and bash will
source .profile, executing the remaining commands. If you decide to switch to using
the Bourne shell you don’t have to modify your existing files. A similar approach was
intended for .bash_login and the C shell .login, but due to differences in the basic
syntax of the shells, this is not a good idea.

.bash_profile is read and executed only by the login shell. If you start up a new shell
(a subshell) by typing bash on the command line, it will attempt to read commands
from the file .bashrc. This scheme allows you the flexibility to separate startup com-
mands needed at login time from those you might need when you run a subshell. If
you need to have the same commands run regardless of whether it is a login shell or a
subshell, you can just use the source command from within .bash_profile to execute

.bashrc. 1f .bashrc doesn’t exist then no commands are executed when you start up a
subshell.

The file .bash_logout is read and executed every time a login shell exits. It is pro-
vided to round out the capabilities for customizing your environment. If you wanted
to execute some commands that remove temporary files from your account or record
how much time you have spent logged in to the system then you would place the
commands in .bash_logout. This file doesn’t have to exist in your account—if it isn’t
there when you log out, then no extra commands are executed.

Aliases

If you have used UNIX for any length of time you will have noticed that there are
many commands available and that some of them have cryptic names. Sometimes
the commands you use the most have a string of options and arguments that need to
be specified. Wouldn’t it be nice if there was a feature that let you rename the com-
mands or allowed you to type in something simple instead of half a dozen options?
Fortunately, bash provides such a feature: the alias.”

* C shell users should note that the bash alias feature does not support arguments in alias expansions, as C
shell aliases do. This functionality is provided by functions, which we’ll look at in Chapter 4.

Aliases | 57

Aliases can be defined on the command line, in your .bash_profile, or in your .bashrc,
using this form:

alias name=command

This syntax specifies that name is an alias for command. Whenever you type name as
a command, bash will substitute command in its place when it executes the line.
Notice that there are no spaces on either side of the equal sign (=); this is the
required syntax.

There are a few basic ways to use an alias. The first, and simplest, is as a more mne-
monic name for an existing command. Many commonly used UNIX commands have
names that are poor mnemonics and are therefore excellent candidates for aliasing,
the classic example being:

alias search=grep

grep, the UNIX file-searching utility, was named as an acronym for something like
“Generalized Regular Expression Parser.”” This acronym may mean something to a
computer scientist, but not to the office administrator who has to find Fred in a list
of phone numbers. If you have to find Fred and you have the word search defined as
an alias for grep, you can type:

$ search Fred phonelist

Some people who aren’t particularly good typists like to use aliases for typographical
errors they make often. For example:

alias emcas=emacs

alias mali=mail

alias gerp=grep
This can be handy, but we feel you're probably better off suffering with the error
message and getting the correct spelling under your fingers. Another common way to
use an alias is as a shorthand for a longer command string. For example, you may
have a directory to which you need to go often. It’s buried deep in your directory
hierarchy, so you want to set up an alias that will allow you to cd there without typ-
ing (or even remembering) the entire pathname:

alias cdvoy="'cd sipp/demo/animation/voyager'

Notice the quotes around the full cd command; these are necessary if the string being
aliased consists of more than one word.*

As another example, a useful option to the Is command is -F: it puts a slash (/) after
directory files and an asterisk (*) after executable files. Since typing a dash followed
by a capital letter is inconvenient, many people define an alias like this:

alias 1f="1ls -F'

* Another theory has it that grep stands for the command “g/re/p”, in the old ed text editor, which does essen-
tially the same thing as grep.

T This contrasts with C shell aliases, in which the quotes aren’t required.

58 | Chapter3: Customizing Your Environment

A few things about aliases are important to remember. First, bash makes a textual
substitution of the alias for that which it is aliasing; it may help to imagine bash pass-
ing your command through a text editor or word processor and issuing a “change”
or “substitute” command before interpreting and executing it. Any special charac-
ters (such as wildcards like * and ?) that result when the alias is expanded are inter-
preted properly by the shell.” For example, to make it easier to print all of the files in
your directory, you could define the alias:

alias printall='pr * | lpr'
Second, keep in mind that aliases are recursive, which means that it is possible to
alias an alias. A legitimate objection to the previous example is that the alias, while

mnemonic, is too long and doesn’t save enough typing. If we want to keep this alias
but add a shorter abbreviation, we could define:

alias pa=printall
With recursive aliasing available it would seem possible to create an infinite loop:
alias 1s='ls -1’

bash ensures that this loop cannot happen, because only the first word of the replace-
ment text is checked for further aliasing; if that word is identical to the alias being
expanded, it is not expanded a second time. The above command will work as
expected (typing Is produces a long list with permissions, sizes, owners, etc.), while
in more meaningless situations such as:

alias listfile=1s
alias ls=listfile

the alias listfile is ignored.

Aliases can be used only for the beginning of a command string—albeit with certain
exceptions. In the cd example above, you might want to define an alias for the direc-
tory name alone, not for the entire command. But if you define:

alias anim=sipp/demo/animation/voyager

and then type cd anim, bash will probably print a message like anim: No such file or
directory.

An obscure feature of bash’s alias facility—one not present in the analogous C shell
feature—provides a way around this problem. If the value of an alias (the right side
of the equal sign) ends in a blank, then bash tries to do alias substitution on the next
word on the command line. To make the value of an alias end in a blank, you need
to surround it with quotes.

* An important corollary: wildcards and other special characters cannot be used in the names of aliases, i.e.,
on the left side of the equal sign.

Aliases | 59

Here is how you would use this capability to allow aliases for directory names, at
least for use with the cd command. Just define:

alias cd="cd '

This causes bash to search for an alias for the directory name argument to cd, which
in the previous example would enable it to expand the alias anim correctly.

Another way to define a directory variable for use with the cd command is to use the
environment variable cdable_vars, discussed later in this chapter.

Finally, there are a few useful adjuncts to the basic alias command. If you type alias
name without an equal sign (=) and value, the shell will print the alias’s value or alias
name not found if it is undefined. If you type alias without any arguments, you get a
list of all the aliases you have defined. The command unalias name removes any
alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they have essen-
tially been superseded by shell scripts and functions, which we will look at in the
next chapter. These give you everything aliases do plus much more, so if you become
proficient at them, you may find that you don’t need aliases anymore. However,
aliases are ideal for novices who find UNIX to be a rather forbidding place, full of
terseness and devoid of good mnemonics. Chapter 4 shows the order of precedence
when, for example, an alias and a function have the same name.

Options

While aliases let you create convenient names for commands, they don’t really let
you change the shell’s behavior. Options are one way of doing this. A shell option is a
setting that is either “on” or “off.” While several options relate to arcane shell fea-
tures that are of interest only to programmers, those that we will cover here are of
interest to all users.

The basic commands that relate to options are set -0 optionname and set +o option-
name. You can change more than one option with the one set command by preced-
ing each optionname with a -0 or +o. The use of plus (+) and minus (-) signs is
counterintuitive: the - turns the named option on, while the + turns it off. The rea-
son for this incongruity is that the dash (-) is the conventional UNIX way of specify-
ing options to a command, while the use of + is an afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set -o
command; for example, set -0 noglob can be abbreviated set -f. These abbreviations
are carryovers from the Bourne shell. Like several other “extra” bash features, they
exist to ensure upward compatibility; otherwise, their use is not encouraged.

60 | Chapter3: Customizing Your Environment

Table 3-1 lists the options that are useful to general UNIX users. All of them are off
by default except as noted.

Table 3-1. Basic shell options

Option Description

emacs Enters emacs editing mode (on by default)

ignoreeof Doesn't allow use of a single CTRL-D to log off; use the exit command to log off immediately (this has
the same effect as setting the shell variable IGNOREEOF=10)

noclobber Doesn't allow output redirection (>) to overwrite an existing file

noglob Doesn't expand filename wildcards like * and ? (wildcard expansion is sometimes called globbing)

nounset Indicates an error when trying to use a variable that is undefined

vi Enters vi editing mode

There are several other options (21 in all; Appendix B lists them). To check the sta-
tus of an option, just type set -0. bash will print a list of all options along with their
settings.

shopt

bash 2.0 introduced a new built-in for configuring shell behaviour, shopt. This built-
in is meant as a replacement for option configuration originally done through envi-
ronment variables and the set command. *

The shopt -o functionality is a duplication of parts of the set command and is pro-
vided for completeness on the part of shopt, while retaining backward compatibility
by its continued inclusion in set.

The format for this command is shopt options option-names. Table 3-2 lists shopt’s
options.

Table 3-2. Options to shopt

Option Meaning

-p Displays a list of the settable options and their current values

-S Sets each option name

-u Unsets each option name

-q Suppresses normal output; the return status indicates if a variable is set or unset

-0 Allows the values of the option names to be those defined for the -0 option of the set command

*

Appendix B provides a complete list of shopt shell options and the corresponding environment variables in
earlier versions of the shell.

Options | 61

The default action is to unset (turn off) the named options. If no options and argu-
ments are given, or the -p option is used, shopt displays a list of the settable options
and the values that they currently have. If -s or -u is also given, the list is confined to
only those options that are set or unset, respectively.

A list of the most useful option names is given in Table 3-3. A complete list is given
in Appendix B.

Table 3-3. shopt option names

Option Meaning

cdable_vars If set, an argument to the cd built-in command that is not a directory is assumed to be the name of a
variable whose value is the directory to change to.

checkhash If set, bash checks that a command found in the hash table exists before trying to execute it. If a hashed
command no longer exists, a normal path search is performed.

cmdhist If set, bash attempts to save all lines of a multiple-line command in the same history entry.

dotglob If set, bash includes filenames beginning with a . (dot) in the results of pathname expansion.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as an argument to the

exec command. An interactive shell does not exit if exec fails.

histappend If set, the history list is appended to the file named by the value of the HISTFILE variable when the
shell exits, rather than overwriting the file.

lithist If set, and the cndhist option is enabled, multiline commands are saved to the history with embedded
newlines, rather than using semicolon separators where possible.

mailwarn If set, and a file that bash is checking for mail has been accessed since the last time it was checked, the
message “The mail in mailfile has been read” is displayed.

We’ll look at the use of the various options later in this chapter.

Shell Variables

There are several characteristics of your environment that you may want to custom-
ize but that cannot be expressed as an on/off choice. Characteristics of this type are
specified in shell variables. Shell variables can specify everything from your prompt
string to how often the shell checks for new mail.

Like an alias, a shell variable is a name that has a value associated with it. bash keeps
track of several built-in shell variables; shell programmers can add their own. By con-
vention, built-in variables should have names in all capital letters. bash does, how-
ever, have two exceptions.” The syntax for defining variables is somewhat similar to
the syntax for aliases:

varname=value

* Versions prior to 2.0 have many more lowercase built-in variables. Most of these are now obsolete, the func-
tionality having been moved to the shopt command.

62 | Chapter3: Customizing Your Environment

There must be no space on either side of the equal sign, and if the value is more than
one word, it must be surrounded by quotes. To use the value of a variable in a com-
mand, precede its name by a dollar sign ($).

You can delete a variable with the command unset varname. Normally this isn’t use-
ful, since all variables that don’t exist are assumed to be null, i.e., equal to the empty
string “”. But if you use the set option nounset, which causes the shell to indicate an
error when it encounters an undefined variable, then you may be interested in unset.

The easiest way to check a variable’s value is to use the echo built-in command. All
echo does is print its arguments, but not until the shell has evaluated them. This
includes—among other things that will be discussed later—taking the values of vari-
ables and expanding filename wildcards. So, if the variable wonderland has the value
alice, typing:

$ echo "$wonderland"

will cause the shell to simply print alice. If the variable is undefined, the shell will
print a blank line. A more verbose way to do this is:

$ echo "The value of \$varname is \"$varname\".

The first dollar sign and the inner double quotes are backslash-escaped (i.e., pre-
ceded with \ so the shell doesn’t try to interpret them—see Chapter 1) so they appear
literally in the output, which for the above example would be:

The value of $wonderland is "alice".

Variables and Quoting

Notice that we used double quotes around variables (and strings containing them) in
these echo examples. In Chapter 1, we said that some special characters inside dou-
ble quotes are still interpreted, while none are interpreted inside single quotes.

A special character that “survives” double quotes is the dollar sign—meaning that
variables are evaluated. It’s possible to do without the double quotes in some cases;
for example, we could have written the above echo command this way:

$ echo The value of \$varname is \"$varname\".

But double quotes are more generally correct. Here’s why. Suppose we did this:
$ fred='Four spaces between these words."'

Then if we entered the command echo $fred, the result would be:
Four spaces between these words.

What happened to the extra spaces? Without the double quotes, the shell splits the
string into words after substituting the variable’s value, as it normally does when it

Shell Variables | 63

processes command lines. The double quotes circumvent this part of the process (by
making the shell think that the whole quoted string is a single word).

Therefore the command echo “$fred” prints this:
Four spaces between these words.

The distinction between single and double quotes becomes particularly important
when we start dealing with variables that contain user or file input later on.

Double quotes also allow other special characters to work, as we’ll see in Chapter 4,
Chapter 6, and Chapter 7. But for now, we’ll revise the “When in doubt, use single
quotes” rule in Chapter 1 by adding, “...unless a string contains a variable, in which
case you should use double quotes.”

Built-In Variables

As with options, some built-in shell variables are meaningful to general UNIX users,
while others are arcana for hackers. We'll look at the more generally useful ones
here, and we’ll save some of the more obscure ones for later chapters. Again,
Appendix B contains a complete list.

Editing mode variables

Several shell variables relate to the command-line editing modes that we saw in the
previous chapter. These are listed in Table 3-4.

Table 3-4. Editing mode variables

Variable Meaning
HISTCMD The history number of the current command.
HISTCONTROL Alist of patterns, separated by colons (:), which can have the following values. ignorespace: lines begin-

ning with a space are not entered into the history list. ignoredups: lines matching the last history line
are not entered. erasedups: all previous lines matching the current line are removed from the history list
before the line is saved. ignoreboth: enables both ignorespace and ignoredups.

HISTIGNORE Alist of patterns, separated by colons (:), used to decide which command lines to save in the history list.
Patterns are considered to start at the beginning of the command line and must fully specify the line, i.e.,
no wildcard (*) is implicitly appended. The patterns are checked against the line after HISTCONTROL is
applied. An ampersand (&) matches the previous line. An explicit & may be generated by escaping it with a

backslash.b
HISTFILE Name of history file in which the command history is saved. The default is ~/.bash_history.
HISTFILESIZE The maximum number of lines to store in the history file. The default is 500. When this variable is assigned

a value, the history file is truncated, if necessary, to the given number of lines.
HISTSIZE The maximum number of commands to remember in the command history. The default is 500.

64 | Chapter3: Customizing Your Environment

Table 3-4. Editing mode variables (continued)

Variable Meaning

HISTTIMEFORMAT Ifitis set and not null, its value is used as a format string for strftime(3) to print the time stamp associ-
ated with each history entry displayed by the history command. Time stamps are written to the history
file so they may be preserved across shell sessions.

FCEDIT Pathname of the editor to use with the fc command.

a history_control is synonymous with HISTCONTROL in versions of bash prior to 2.0. Versions prior to 1.14
only define history_control. ignoreboth is not available in bash versions prior to 1.14. HISTCONTROL is a
colon-separated list, and erasedups has been added in bash 3.0 and later.

b This variable is not available in versions of bash prior to 2.0.
¢ This variable is not available in versions of bash prior to 3.0.

In the previous chapter, we saw how bash numbers commands. To find out the cur-
rent command number in an interactive shell, you can use the HISTCMD. Note that
if you unset HISTCMD, it will lose its special meaning, even if you subsequently set
it again.

We also saw in the last chapter how bash keeps the history list in memory and saves
it to a file when you exit a shell session. The variables HISTFILESIZE and HIST-
SIZE allow you to set the maximum number of lines that the shell saves in the his-
tory file, and the maximum number of lines to “remember” in the history list, i.e.,
the lines that it displays with the history command.

Suppose you wanted to maintain a small history file in your home directory. By set-
ting HISTFILESIZE to 100, you immediately cause the history file to allow a maxi-
mum of 100 lines. If it is already larger than the size you specify, it will be truncated.

HISTSIZE works in the same way, but only on the history that the current shell has
in memory. When you exit an interactive shell, HISTSIZE will be the maximum
number of lines saved in your history file. If you have already set HISTFILESIZE to
be less than HISTSIZE, the saved list will be truncated.

You can also cut down on the size of your history file and history list by use of the
HISTCONTROL variable. This is a colon-separated list of values. If it includes igno-
respace, any commands that you type that start with a space won’t appear in the his-
tory. Even more useful is the ignoredups option. This discards consecutive entries
from the history list that are duplicated. Suppose you want to monitor the size of a
file with s as it is being created. Normally, every time you type Is it will appear in
your history. By setting HISTCONTROL to ignoredups, only the first Is will appear
in the history.

The variable HISTIGNORE allows you to specify a list of patterns which the com-
mand line is checked against. If the command line matches one of the patterns, it is
not entered into the history list. You can also request that it ignore duplicates by
using the pattern &.

Shell Variables | 65

For example, suppose you didn’t want any command starting with [, nor any dupli-
cates, to appear in the history. Setting HISTIGNORE to I*:& will do just that. Just as
with other pattern matching we have seen, the wildcard after the [will match any
command line starting with that letter.

Another useful variable is HISTTIMEFORMAT, which prepends a time stamp to
each history entry showing when the command was executed. If it is unset or the
value is null then no time stamp is written. If a format is given then time stamps are
inserted using the specified format as part of the history and are shown with the
history command.

The time stamp formats are shown in Table 3-5. Some of the results will be dis-
played using the particular format for the underlying locale, e.g., weekday names will
be translated into the language being used on the system.

Table 3-5. Time stamp formats

Format Replaced by

%a The locale’s abbreviated weekday name

%A The locale’s full weekday name

%b The locale’s abbreviated month name

%B The locale’s full month name

%c The locale’s appropriate date and time representation

%C The century number (the year divided by 100 and truncated to an integer) as a decimal number [00-99]
%d The day of the month as a decimal number [01-31]

%D The date in American format; the same value as %m/%d/%y.

%e The day of the month as a decimal number [1-31]; a single digit is preceded by a space
%h The same as %b

%H The hour (24-hour clock) as a decimal number [00-23]

%I The hour (12-hour clock) as a decimal number [01-12]

%j The day of the year as a decimal number [001-366]

%m The month as a decimal number [01-12]

%M The minute as a decimal number [00—59]

%n A newline character

%p The locale’s equivalent of either a.m. or p.m

Yor The time in a.m. and p.m. notation; in the POSIX locale this is equivalent to %I:%M:%S %p
%R The time in 24-hour notation (%H:%M)

%S The second as a decimal number [00-61]

%t A tab character

%T The time (%H:%M:%S)

66 | Chapter3: Customizing Your Environment

Table 3-5. Time stamp formats (continued)

Format Replaced by

%u The weekday as a decimal number [1-7], with 1 representing Monday

%U The week number of the year (Sunday as the first day of the week) as a decimal number [00-53]

%V The week number of the year (Monday as the first day of the week) as a decimal number [01-53]; if the week

containing 1January has four or more days in the new year, then it is considered week 1—otherwise, it is the
last week of the previous year, and the next week is week 1

%w The weekday as a decimal number [0—6], with O representing Sunday

%W The week number of the year (Monday as the first day of the week) as a decimal number [00-53]; all days in a
new year preceding the first Monday are considered to be in week 0

%X The locale’s appropriate date representation

%X The locale’s appropriate time representation

%y The year without century as a decimal number [00-99]

%Y The year with century as a decimal number

%L The timezone name or abbreviation, or by nothing if no timezone information exists

%% %

If you wanted to have the date and time with each history entry, you could put:
HISTTIMEFORMAT="%y/%m/%d %T "

then the output of the history command would look something like:

78 04/11/26 17:14:05 HISTTIMEFORMAT="%y/%m/%d %T "

79 04/11/26 17:14:08 1s -1

80 04/11/26 17:14:09 history
If the history has never had a date format set before then all of the entries prior to
setting the variable will get the time stamp of the time the variable was set. If you set
HISTTIMEFORMAT to null and then set it to a format, the previous time stamps
are retained and displayed in the new format.

Mail variables

Since the mail program is not running all the time, there is no way for it to inform
you when you get new mail; therefore the shell does this instead.” The shell can’t
actually check for incoming mail, but it can look at your mail file periodically and
determine whether the file has been modified since the last check. The variables
listed in Table 3-6 let you control how this works.

* BSD UNIX users should note that the biff command on those systems does a better job of informing you
about new mail; while bash only prints “you have new mail” messages right before it prints command
prompts, biff can do so at any time.

Shell Variables | 67

Table 3-6. Mail variables

Variable Meaning

MAIL Name of file to check for incoming mail

MAILCHECK How often, in seconds, to check for new mail (default 60 seconds)
MAILPATH List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your
mail file is /usr/mail/yourname or something similar. In this case, you would just set
the variable MAIL to this filename if you want your mail checked:

MAIL=/usr/mail/yourname

If your system administrator hasn’t already done it for you, put a line like this in your
.bash_profile.

However, some people use nonstandard mailers that use multiple mail files;
MAILPATH was designed to accommodate this. bash will use the value of MAIL as
the name of the file to check, unless MAILPATH is set; in which case, the shell will
check each file in the MAILPATH list for new mail. You can use this mechanism to
have the shell print a different message for each mail file: for each mail filename in
MAILPATH, append a question mark followed by the message you want printed.

For example, let’s say you have a mail system that automatically sorts your mail into
files according to the username of the sender. You have mail files called /usr/mail/you/
martin, /usr/maillyoul/geoffm, lusr/mail/you/paulr, etc. You define your MAILPATH as
follows:

MAILPATH=/usr/mail/you/martin:/usr/mail/you/geoffm:\

/usr/mail/you/paulr
If you get mail from Martin Lee, the file /usr/mail/you/martin will change. bash will
notice the change within one minute and print the message:

You have new mail in /usr/mail/you/martin

If you are in the middle of running a command, the shell will wait until the com-
mand finishes (or is suspended) to print the message. To customize this further, you
could define MAILPATH to be:

MAILPATH="\

/usr/mail/you/martin?You have mail from Martin.:\

/usr/mail/you/geoffm?Mail from Geoff has arrived.:\

/usr/mail/you/paulr?There is new mail from Paul."
The backslashes at the end of each line allow you to continue your command on the
next line. But be careful: you can’t indent subsequent lines. Now, if you get mail
from Martin, the shell will print:

You have mail from Martin.

68 | Chapter3: Customizing Your Environment

You can also use the variable $_ in the message to print the name of the current mail
file. For example:

MAILPATH='/usr/mail/you?You have some new mail in $_'
When new mail arrives, this will print the line:
You have some new mail in /usr/mail/you

The ability to receive notification of mail can be switched on and off by using the
mailwarn option to the shopt command.

Prompting variables

If you have seen enough experienced UNIX users at work, you may already have real-
ized that the shell’s prompt is not engraved in stone. Many of these users have all
kinds of things encoded in their prompts. It is possible to put useful information into
the prompt, including the date and the current directory. We’ll give you some of the
information you need to modify your own here; the rest will come in the next chapter.

Actually, bash uses four prompt strings. They are stored in the variables PS1, PS2,
PS3, and PS4. The first of these is called the primary prompt string; it is your usual
shell prompt, and its default value is “\s-\WW\$ ”.” Many people like to set their pri-
mary prompt string to something containing their login name. Here is one way to do
this:

PS1="\u—> "

The \u tells bash to insert the name of the current user into the prompt string. If your
user name is alice, your prompt string will be “alice-->”. If you are a C shell user
and, like many such people, are used to having a history number in your prompt
string, bash can do this similarly to the C shell: if the sequence \! is used in the
prompt string, it will substitute the history number. Thus, if you define your prompt
string to be:

PS1="\u \l-—> "
then your prompts will be like alice 1-->, alice 2-->, and so on.

But perhaps the most useful way to set up your prompt string is so that it always
contains your current directory. This way, you needn’t type pwd to remember where
you are. Here’s how:

PS1="\w—> "

Table 3-7 lists the prompt customizations that are available.t

* In versions of bash prior to 2.0, the default is “bash\$ ”.
1\a, \e, \H, \T, \@, \v, and \V are not available in versions prior to 2.0. \D was introduced in bash 2.05b.

Shell Variables | 69

Table 3-7. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM format

\d The date in “Weekday Month Day” format

\D {format} The format is passed to strftime(3) and the result is inserted into the prompt string; an empty format
results in a locale-specific time representation; the braces are required

\e The ASCll escape character (033)

\H The hostname

\h The hostname up to the first “.”

\j The number of jobs currently managed by the shell

\l The basename of the shell’s terminal device name

\n A carriage return and line feed

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m. format

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash; the version and patchlevel (e.g., 2.00.0)

\w The current working directory

\W The basename of the current working directory

\# The command number of the current command

\! The history number of the current command

\S If the effective UID is 0, print a #, otherwise printa $

\nnn Character code in octal

\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences

\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default value is >. It is used when you type
an incomplete line and hit RETURN, as an indication that you must finish your com-
mand. For example, assume that you start a quoted string but don’t close the quote.
Then if you hit RETURN, the shell will print > and wait for you to finish the string:

$ echo "This is a long line, # PS1 for the command

> which is terminated down here" # PS2 for the continuation
$ # PS1 for the next command

70 | Chapter3: Customizing Your Environment

PS3 and PS4 relate to shell programming and debugging. They will be explained in
Chapter 5, and Chapter 9.

Command search path

Another important variable is PATH, which helps the shell find the commands you
enter.

As you probably know, every command you use is actually a file that contains code
for your machine to run.” These files are called executable files or just executables for
short. They are stored in various directories. Some directories, like /bin or /usr/bin,
are standard on all UNIX systems; some depend on the particular version of UNIX
you are using; some are unique to your machine; if you are a programmer, some may
even be your own. In any case, there is no reason why you should have to know
where a command’s executable file is in order to run it.

That is where PATH comes in. Its value is a list of directories that the shell searches
every time you enter a command;T the directory names are separated by colons (:),
just like the files in MATLPATH.

For example, if you type echo $PATH, you will see something like this:
/bin:/usr/bin:/usr/local/bin:/usr/X386/bin

Why should you care about your path? There are two main reasons. First, once you
have read the later chapters of this book and you try writing your own shell pro-
grams, you will want to test them and eventually set aside a directory for them. Sec-
ond, your system may be set up so that certain restricted commands’ executable files
are kept in directories that are not listed in PATH. For example, there may be a
directory /usr/games in which there are executables that are verboten during regular
working hours.

Therefore you may want to add directories to your PATH. Let’s say you have cre-
ated a bin directory under your login directory, which is /home/you, for your own
shell scripts and programs. To add this directory to your PATH so that it is there
every time you log in, put this line in your .bash_profile:

PATH=$PATH" : /home/you/bin"

This line sets PATH to whatever it was before, followed immediately by a colon and
/homelyou/bin.

This is the safe way of doing it. When you enter a command, the shell searches direc-
tories in the order they appear in PATH until it finds an executable file. Therefore, if
you have a shell script or program whose name is the same as an existing command,

* Unless it’s a built-in command (one of those shown in boldface, like c¢d and echo), in which case the code is
simply part of the executable file for the entire shell.

T Unless the command name contains a slash (/), in which case the search does not take place.

Shell Variables | 71

the shell will use the existing command—unless you type in the command’s full path-
name to make it clear. For example, if you have created your own version of the more
command in the above directory and your PATH is set up as in the last example, you
will need to type /home/you/bin/more (or just ~/bin/more) to get your version.

The more reckless way of resetting your path is to put your own directory before the
other directories:

PATH="/home/you/bin:"$PATH

This is unsafe because you are trusting that your own version of the more command
works properly. But it is also risky for a more important reason: system security. If
your PATH is set up in this way, you leave open a “hole” that is well known to com-
puter crackers and mischief makers: they can install “Trojan horses” and do other
things to steal files or do damage. (See Chapter 10 for more details.) Therefore,
unless you have complete control of (and confidence in) everyone who uses your sys-
tem, use the first of the two methods of adding your own command directory.

If you need to know which directory a command comes from, you need not look at
directories in your PATH until you find it. The shell built-in command type prints
the full pathname of the command you give it as argument, or just the command’s
name and its type if it’s a built-in command itself (like cd), an alias, or a function (as
we’ll see in Chapter 4).

Command hashing

You may be thinking that having to go and find a command in a large list of possible
places would take a long time, and you’d be right. To speed things up, bash uses
what is known as a hash table.

Every time the shell goes and finds a command in the search path, it enters it in the
hash table. If you then use the command again, bash first checks the hash table to see
if the command is listed. If it is, it uses the path given in the table and executes the
command; otherwise, it just has to go and look for the command in the search path.

You can see what is currently in the hash table with the command hash:

$ hash

hits command
2 /bin/cat
1 /usr/bin/stat
2 /usr/bin/less
1 /usr/bin/man
2 /usr/bin/apropos
2 /bin/more
1 /bin/1n
3 /bin/1s
1 /bin/ps
2 /bin/vi

72 | Chapter3: Customizing Your Environment

This not only shows the hashed commands, but how many times they have been exe-
cuted (the hits) during the current login session.

Supplying a command name to hash forces the shell to look up the command in the
search path and enter it in the hash table. You can also make bash “forget” what is in
the hash table by using hash -r to remove everything in the table or hash -d name to
remove the specified name.” Another option, -p, allows you to enter a command into
the hash table, even if the command doesn’t exist.t

Command hashing can be turned on and off with the hashall option to set. In gen-
eral use, there shouldn’t be any need to turn it off.

Don’t be too concerned about the details of hashing. The command hashing and
lookup is all done by bash without you knowing it’s taking place.

Directory search path and variables

CDPATH is a variable whose value, like that of PATH, is a list of directories
separated by colons. Its purpose is to augment the functionality of the cd built-in
command.

By default, CDPATH isn’t set (meaning that it is null), and when you type cd
dirname, the shell will look in the current directory for a subdirectory that is called
dirname.} If you set CDPATH, you give the shell a list of places to look for dirname;
the list may or may not include the current directory.

Here is an example. Consider the alias for the long cd command from earlier in this
chapter:

alias cdvoy="cd sipp/demo/animation/voyager’

Now suppose there were a few directories under this directory to which you need to
go often; they are called src, bin, and doc. You define your CDPATH like this:

CDPATH=:~/sipp/demo/animation/voyager

In other words, you define your CDPATH to be the empty string (meaning the cur-
rent directory) followed by ~/sipp/demo/animation/voyager.

With this setup, if you type cd doc, then the shell will look in the current directory
for a (sub)directory called doc. Assuming that it doesn’t find one, it looks in the
directory ~/sipp/demo/animation/voyager. The shell finds the doc directory there, so
you go directly there.

* The -d option is not available in versions of bash prior to 2.05b.
t The -p option is not available in versions of bash prior to 2.0.
1 This search is disabled when dirname starts with a slash. It is also disabled when dirname starts with ./ or ../.

Shell Variables | 73

If you often find yourself going to a specific group of directories as you work on a
particular project, you can use CDPATH to get there quickly. Note that this feature
will only be useful if you update it whenever your work habits change.

bash provides another shorthand mechanism for referring to directories; if you set
the shell option cdable_vars using shopt,” any argument supplied to the ¢d com-
mand that is not a directory is assumed to be a variable.

We might define the variable anim to be ~/sipp/demo/animation/voyager. If we set
cdable_vars and then type:

cd anim

the current directory will become ~/sipp/demo/animation/voyager.

Miscellaneous variables

We have covered the shell variables that are important from the standpoint of cus-
tomization. There are also several that serve as status indicators and for various other
miscellaneous purposes. Their meanings are relatively straightforward; the more
basic ones are summarized in Table 3-8.

Table 3-8. Status variables

Variable Meaning

HOME Name of your home (login) directory

SECONDS Number of seconds since the shell was invoked

BASH Pathname of this instance of the shell you are running

BASH_VERSION The version number of the shell you are running
BASH_VERSINFO An array of version information for the shell you are running
PWD Current directory

OLDPWD Previous directory before the last cd command

The shell sets the values of these variables, except HOME (which is set by the login
process: login, rshd, etc.). The first five are set at login time, the last two whenever
you change directories. Although you can also set their values, just like any other
variables, it is difficult to imagine any situation where you would want to. In the case
of SECONDS, if you set it to a new value it will start counting from the value you
give it, but if you unset SECONDS it will lose its special meaning, even if you subse-
quently set it again.

* In versions of bash prior to 2.0, cdable_vars is a shell variable that you can set and unset.

74 | Chapter3: Customizing Your Environment

Customization and Subprocesses

Some of the variables discussed above are used by commands you may run—as
opposed to the shell itself—so that they can determine certain aspects of your envi-
ronment. The majority, however, are not even known outside the shell.

This dichotomy begs an important question: which shell “things” are known outside
the shell, and which are only internal? This question is at the heart of many misun-
derstandings about the shell and shell programming. Before we answer, we’ll ask it
again in a more precise way: which shell “things” are known to subprocesses?
Remember that whenever you enter a command, you are telling the shell to run that
command in a subprocess; furthermore, some complex programs may start their
own subprocesses.

Now for the answer, which (like many UNIX concepts) is unfortunately not as simple
as you might like. A few things are known to subprocesses, but the reverse is not true:
subprocesses can never make these things known to the processes that created them.

Which things are known depends on whether the subprocess in question is a bash
program (see Chapter 4) or an interactive shell. If the subprocess is a bash program,
then it’s possible to propagate nearly every type of thing we’ve seen in this chapter—
options and variables—plus a few we’ll see later.

Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses: a special
class of shell variables called environment variables. Some of the built-in variables we
have seen are actually environment variables: HOME, MAIL, PATH, and PWD.

It should be clear why these and other variables need to be known by subprocesses.
For example, text editors like vi and emacs need to know what kind of terminal you
are using; the environment variable TERM is their way of determining this. As
another example, most UNIX mail programs allow you to edit a message with your
favorite text editor. How does mail know which editor to use? The value of EDITOR
(or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as usual;
then it must be exported with the command:”

export varnames

(varnames can be a list of variable names separated by blanks). You can combine
variable assignment and the export into one statement:

export wonderland=alice

* Unless automatic exporting has been turned on by set -a or set -o allexport, in which case all variables that
are assigned to will be exported.

Customization and Subprocesses | 75

It is also possible to define variables to be in the environment of a particular subprocess
(command) only, by preceding the command with the variable assignment, like this:

varname=value command

You can put as many assignments before the command as you want.” For example,
assume that you’re using the emacs editor. You are having problems getting it to
work with your terminal, so you’re experimenting with different values of TERM.
You can do this most easily by entering commands that look like:

TERM=trythisone emacs filename

emacs will have trythisone defined as its value of TERM, yet the environment vari-
able in your shell will keep whatever value (if any) it had before. This syntax is sur-
prisingly useful, but not very widely used; we won’t see it much throughout the
remainder of this book.

Nevertheless, environment variables are important. Most .bash_profile files include
definitions of environment variables; the sample built-in .bash_profile earlier in this
chapter contained six such definitions:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin

SHELL=/bin/bash

MANPATH=/usx/man:/usr/X11/man

EDITOR=/usr/bin/vi

PS1="\h:\w\$ '

PS2="> '

export EDITOR
You can find out which variables are environment variables and what their values are

by typing export without arguments or by using the -p option to the command.
Some environment variable names have been used by so many applications that they
have become standard across many shell environments. These variables are not built
into bash, although some shells, such as the Korn shell, have them as built-ins.
Table 3-9 lists the ones you are most likely to come across.

Table 3-9. Standard variables

Variable Meaning

COLUMNS The number of columns your display has?
EDITOR Pathname of your text editor

LINES The number of lines your display has
SHELL Pathname of the shell you are running
TERM The type of terminal that you are using

a Note that bash will set COLUMNS and LINES during certain situations, such as when the window the shell
is in changes in size.

* There is an obscure option, set -k, that lets you put this type of environment variable definition anywhere on
the command line, not just at the beginning.

76 | Chapter3: Customizing Your Environment

You may well find that some of these already exist in your own environment, most
likely set from the system /etc/profile file (see Chapter 10). You can define them your-
self in your .bash_profile and export them, as we did earlier.

Terminal types

The variable TERM is vitally important for any program that uses your entire screen
or window, like a text editor. Such programs include all screen editors (such as vi
and emacs), more, and countless third-party applications.

Because users are spending more and more time within programs, and less and less
using the shell itself, it is extremely important that your TERM is set correctly. It’s
really your system administrator’s job to help you do this (or to do it for you), but in
case you need to do it yourself, here are a few guidelines.

The value of TERM must be a short character string with lowercase letters that
appears as a filename in the terminfo database.” This database is a two-tiered direc-
tory of files under the root directory /usr/lib/terminfo. This directory contains subdi-
rectories with single-character names; these in turn contain files of terminal
information for all terminals whose names begin with that character. Each file
describes how to tell the terminal in question to do certain common things like posi-
tion the cursor on the screen, go into reverse video, scroll, insert text, and so on. The
descriptions are in binary form (i.e., not readable by humans).

Names of terminal description files are the same as that of the terminal being
described; sometimes an abbreviation is used. For example, the DEC VT100 has a
description in the file /usr/lib/terminfo/v/vi100. An xterm terminal window under the
X Window System has a description in /usr/lib/terminfo/x/xterm.

Sometimes your UNIX software will set up TERM incorrectly; this usually happens
for X terminals and PC-based UNIX systems. Therefore, you should check the value
of TERM by typing echo STERM before going any further. If you find that your
UNIX system isn’t setting the right value for you (especially likely if your terminal is
of a different make from that of your computer), you need to find the appropriate
value of TERM yourself.

The best way to find the TERM value—if you can’t find a local guru to do it for
you—is to guess the terminfo name and search for a file of that name under /usr/lib/
terminfo by using Is. For example, if your terminal is a Hewlett-Packard 70092, you
could try:

$ cd /usr/lib/terminfo
$ 1s 7/7%

* Note that most modern UNIX systems now use a database rather than a flat file for the terminal descriptions.

Customization and Subprocesses | 77

If you are successful, you will see something like this:
70092 70092A 70092a

In this case, the three names are likely to be synonyms for (links to) the same termi-
nal description, so you could use any one as a value of TERM. In other words, you
could put any of these three lines in your .bash_profile:

TERM=70092

TERM=70092A

TERM=70092a
If you aren’t successful, Is will print an error message, and you will have to make
another guess and try again. If you find that terminfo contains nothing that resem-
bles your terminal, all is not lost. Consult your terminal’s manual to see if the termi-
nal can emulate a more popular model; nowadays the odds for this are excellent.

Conversely, terminfo may have several entries that relate to your terminal, for sub-
models, special modes, etc. If you have a choice of which entry to use as your value
of TERM, we suggest you test each one out with your text editor or any other screen-
oriented programs you use and see which one works best.

The process is much simpler if you are using a windowing system, in which your
“terminals” are logical portions of the screen rather than physical devices. In this
case, operating system-dependent software was written to control your terminal win-
dow(s), so the odds are very good that if it knows how to handle window resizing
and complex cursor motion, then it is capable of dealing with simple things like
TERM. The X Window System, for example, automatically sets xterm as its value
for TERM in an xterm terminal window.

Other common variables

Some programs, such as mail, need to know what type of editor you would like to use.
In most cases they will default to a common editor like ed unless you set the EDITOR
variable to the path of your favorite editor and export it in your .bash_profile.

Some programs run shells as subprocesses within themselves (e.g., many mail pro-
grams and the emacs editor’s shell mode); by convention they use the SHELL vari-
able to determine which shell to use. SHELL is usually set by the process that
invokes the login shell; usually login or something like rshd if you are logged in
remotely. bash sets it only if it hasn’t already been set.

You may have noticed that the value of SHELL looks the same as BASH. These two
variables serve slightly different purposes. BASH is set to the pathname of the cur-
rent shell, whether it is an interactive shell or not. SHELL, on the other hand, is set
to the name of your login shell, which may be a completely different shell.

78 | Chapter3: Customizing Your Environment

COLUMNS and LINES are used by screen-oriented editors like vi. In most cases a
default is used if they are undefined, but if you are having display problems with
screen-oriented applications then you should check these variables to see if they are
correct.

The Environment File

Although environment variables will always be known to subprocesses, the shell
must be explicitly told which other variables, options, aliases, and so on, are to be
communicated to subprocesses. The way to do this is to put all such definitions into
the environment file. bash’s default environment file is the .bashrc file that we
touched on briefly at the beginning of this chapter.

Remember, if you take your definitions out of .bash_profile and put them in .bashrc,
you will have to have the line source .bashrc at the end of your .bash_profile so that
the definitions become available to the login shell.

The idea of the environment file comes from the C shell’s .cshrc file. This is reflected
in the choice of the name .bashrc. The rc suffix for initialization files is practically
universal throughout the UNIX world.

As a general rule, you should put as few definitions as possible in .bash_profile and as
many as possible in your environment file. Because definitions add to rather than
take away from an environment, there is little chance that they will cause something
in a subprocess not to work properly. (An exception might be name clashes if you go
overboard with aliases.)

The only things that really need to be in .bash_profile are environment variables and
their exports and commands that aren’t definitions but actually run or produce out-
put when you log in. Option and alias definitions should go into the environment
file. In fact, there are many bash users who have tiny .bash_profile files, e.g.:

stty stop "S intr ~C erase "?

date
source .bashrc

Although this is a small .bash_profile, this user’s environment file could be huge.

Customization Hints

You should feel free to try any of the techniques presented in this chapter. The best
strategy is to test something out by typing it into the shell during your login session;
then if you decide you want to make it a permanent part of your environment, add it
to your .bash_profile.

* According to the folklore, it stands for “run commands” and has its origins in old DEC operating systems.

Customization Hints | 79

A nice, painless way to add to your .bash_profile without going into a text editor makes
use of the echo command and one of bash’s editing modes. If you type a customiza-
tion command in and later decide to add it to your .bash_profile, you can recall it via
CTRL-P or CTRL-R (in emacs-mode) or j, -, or ? (vi-mode). Let’s say the line is:

PS1="\u \l-—> "
After you recall it, edit the line so that it is preceded by an echo command, sur-

rounded by single quotes, and followed by an 1/O redirector that (as you will see in
Chapter 7) appends the output to ~/.bash_profile:

$ echo 'PS1="\u \!-> " ' >> ~/.bash_profile

Remember that the single quotes are important because they prevent the shell from
trying to interpret things like dollar signs, double quotes, and exclamation points.
Also make sure that you use a double right-caret (>>). A single one will overwrite the
file rather than appending to it.

80 | Chapter3: Customizing Your Environment

CHAPTER 4
Basic Shell Programming

If you have become familiar with the customization techniques we presented in the
previous chapter, you have probably run into various modifications to your environ-
ment that you want to make but can’t—yet. Shell programming makes these possible.

bash has some of the most advanced programming capabilities of any command
interpreter of its type. Although its syntax is nowhere near as elegant or consistent as
that of most conventional programming languages, its power and flexibility are com-
parable. In fact, bash can be used as a complete environment for writing software
prototypes.

Some aspects of bash programming are really extensions of the customization tech-
niques we have already seen, while others resemble traditional programming lan-
guage features. We have structured this chapter so that if you aren’t a programmer,
you can read this chapter and do quite a bit more than you could with the informa-
tion in the previous chapter. Experience with a conventional programming language
like Pascal or C is helpful (though not strictly necessary) for subsequent chapters.
Throughout the rest of the book, we will encounter occasional programming prob-
lems, called tasks, whose solutions make use of the concepts we cover.

Shell Scripts and Functions

A script (a file that contains shell commands) is a shell program. Your .bash_profile
and environment files, discussed in the previous chapter, are shell scripts.

You can create a script using the text editor of your choice. Once you have created
one, there are two ways to run it. One, which we have already covered, is to type
source scriptname. This causes the commands in the script to be read and run as if
you typed them in.

The second way to run a script is simply to type its name and hit RETURN, just as if
you were invoking a built-in command. This, of course, is the more convenient way.
This method makes the script look just like any other UNIX command, and in fact

81

several “regular” commands are implemented as shell scripts (i.e., not as programs
originally written in C or some other language), including spell, man on some sys-
tems, and various commands for system administrators. The resulting lack of distinc-
tion between “user command files” and “built-in commands” is one factor in UNIX’s
extensibility and, hence, its favored status among programmers.

You can run a script by typing its name only if the directory where the script is
located is in your command search path, or . (the current directory) is part of your
command search path, i.e., the script’s directory path (as discussed in Chapter 3). If
these aren’t in your path, you must type ./scriptname, which is really the same thing
as typing the script’s absolute pathname (see Chapter 1).

Before you can invoke the shell script by name, you must also give it “execute” per-
mission. If you are familiar with the UNIX filesystem, you know that files have three
types of permissions (read, write, and execute) and that those permissions apply to
three categories of user (the file’s owner, a group of users, and everyone else). Nor-
mally, when you create a file with a text editor, the file is set up with read and write
permission for you and read-only permission for everyone else.

Therefore you must give your script execute permission explicitly, by using the
chmod command. The simplest way to do this is to type:

$ chmod +x scriptname

Your text editor will preserve this permission if you make subsequent changes to
your script. If you don’t add execute permission to the script and you try to invoke it,
the shell will print the message:

scriptname: Permission denied

But there is a more important difference between the two ways of running shell
scripts. While using source causes the commands in the script to be run as if they
were part of your login session, the “just the name” method causes the shell to do a
series of things. First, it runs another copy of the shell as a subprocess; this is called a
subshell. The subshell then takes commands from the script, runs them, and termi-
nates, handing control back to the parent shell.

Figure 4-1 shows how the shell executes scripts. Assume you have a simple shell
script called alice that contains the commands hatter and gryphon. In .a, typing
source alice causes the two commands to run in the same shell, just as if you had
typed them in by hand. .b shows what happens when you type just alice: the com-
mands run in the subshell while the parent shell waits for the subshell to finish.

You may find it interesting to compare this with the situation in .c, which shows
what happens when you type alice &. As you will recall from Chapter 1, the &
makes the command run in the background, which is really just another term for
“subprocess.” It turns out that the only significant difference between .c and .b is
that you have control of your terminal or workstation while the command runs—
you need not wait until it finishes before you can enter further commands.

82 | Chapter4: BasicShell Programming

Shell: source alice gryphon

o

Shell:

Subshell: gryphon

Shell: e S T
Subshell: gryphon

Figure 4-1. Ways to run a shell script

There are many ramifications to using subshells. An important one is that the exported
environment variables that we saw in the last chapter (e.g., TERM, EDITOR, PWD)
are known in subshells, whereas other shell variables (such as any that you define in
your .bash_profile without an export statement) are not.

Other issues involving subshells are too complex to go into now; see Chapter 7 and
Chapter 8 for more details about subshell I/O and process characteristics, respec-
tively. For now, just bear in mind that a script normally runs in a subshell.

Functions

bash’s function feature is an expanded version of a similar facility in the System V
Bourne shell and a few other shells. A function is sort of a script-within-a-script; you
use it to define some shell code by name and store it in the shell’s memory, to be
invoked and run later.

Functions improve the shell’s programmability significantly, for two main reasons.
First, when you invoke a function, it is already in the shell’s memory; therefore a
function runs faster. Modern computers have plenty of memory, so there is no need
to worry about the amount of space a typical function takes up. For this reason, most
people define as many commonly used functions as possible rather than keep lots of
scripts around.

The other advantage of functions is that they are ideal for organizing long shell
scripts into modular “chunks” of code that are easier to develop and maintain. If you
aren’t a programmer, ask one what life would be like without functions (also called
procedures or subroutines in other languages) and you’ll probably get an earful.

Shell Scripts and Functions | 83

To define a function, you can use either one of two forms:

function functname{
shell commands }

or:

functname ()

{
shell commands}
There is no functional difference between the two. We will use both forms in this
book. You can also delete a function definition with the command unset -f functname.

When you define a function, you tell the shell to store its name and definition (i.e.,
the shell commands it contains) in memory. If you want to run the function later,
just type in its name followed by any arguments, as if it were a shell script.

You can find out what functions are defined in your login session by typing declare -f.
The shell will print not just the names but the definitions of all functions, in alpha-
betical order by function name. Since this may result in long output, you might want
to pipe the output through more or redirect it to a file for examination with a text
editor. If you just want to see the names of the functions, you can use declare -F.” We
will look at declare in more detail in Chapter 6.

Apart from the advantages, there are two important differences between functions
and scripts. First, functions do not run in separate processes, as scripts do when you
invoke them by name; the “semantics” of running a function are more like those of
your .bash_profile when you log in or any script when invoked with the source com-
mand. Second, if a function has the same name as a script or executable program, the
function takes precedence.

This is a good time to show the order of precedence for the various sources of com-
mands when you type a command to the shell:

1. Aliases

2. Keywords such as function and several others, like if and for, which we will see
in Chapter 5

3. Functions
4. Built-ins like cd and type

5. Scripts and executable programs, for which the shell searches in the directories
listed in the PATH environment variable

Thus, an alias takes precedence over a function or a script with the same name. You
can, however, change the order of precedence by using the built-ins command,
builtin, and enable. This allows you to define functions, aliases, and script files with

* The -F option is not available in versions of bash prior to 2.0.

84 | Chapter4: BasicShell Programming

the same names, and select which one you want to execute. We’ll examine this pro-
cess in more detail in the section on command-line processing in Chapter 7.

If you need to know the exact source of a command, there are options to the type
built-in command that we saw in Chapter 3. type by itself will print how bash would
interpret the command, based on the search locations listed above. If you supply
more than one argument to type, it will print the information for each command in
turn. If you had a shell script, a function, and an alias all called dodo, type would tell
you that dodo, as an alias, would be used if you typed dodo.

type has several options that allow you to find specific details of a command. If you
want to find out all of the definitions for dodo you can use type -a. This will produce
output similar to the following:

$ type -all dodo

dodo is aliased to “echo "Everybody has won, and all must have prizes"'
dodo is a function

dodo ()

{

}
dodo is ./dodo

echo "Everybody has won, and all must have prizes"

It is also possible to restrict the search to commands that are executable files or shell
scripts by using the -p option. If the command as typed to bash executes a file or
shell script, the path name of the file is returned; otherwise, nothing is printed.

The -P option forces type to look for executable files or shell scripts even if the result
of -t would not return file.

A further option, -f, suppresses shell function lookup, i.e., only keywords, files and
aliases will be returned.”

The default output from type is verbose; it will give you the full definition for an alias
or function. By using the -t option, you can restrict this to a single word descriptor:
alias, keyword, function, builtin, or file. For example:

$ type -t bash

file

$ type -t if

keyword
The -t option can also be used with all other options.

We will refer mainly to scripts throughout the remainder of this book, but unless we
note otherwise, you should assume that whatever we say applies equally to functions.

* The options -f and -P are not available in versions of bash prior to 2.05b.

Shell Scripts and Functions | 85

Shell Variables

bash derives much of its programming functionality from shell variables. We've
already seen the basics of variables. To recap briefly: they are named places to store
data, usually in the form of character strings, and their values can be obtained by
preceding their names with dollar signs ($). Certain variables, called environment
variables, are conventionally named in all capital letters, and their values are made
known (with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major program-
ming language uses variables in some way; in fact, an important way of characteriz-
ing differences between languages is comparing their facilities for variables.

The chief difference between bash’s variable schema and those of conventional lan-
guages is that bash’s places heavy emphasis on character strings. (Thus it has more in
common with a special-purpose language like SNOBOL than a general-purpose one
like Pascal.) This is also true of the Bourne shell and the C shell, but bash goes
beyond them by having additional mechanisms for handling integers explicitly.

Positional Parameters

As we have already seen, you can define values for variables with statements of the
form varname=value, e.g.:

$ hatter=mad

$ echo "$hatter"

mad
The shell predefines some environment variables when you log in. There are other
built-in variables that are vital to shell programming. We will look at a few of them
now and save the others for later.

The most important special, built-in variables are called positional parameters. These
hold the command-line arguments to scripts when they are invoked. Positional
parameters have the names 1, 2, 3, etc., meaning that their values are denoted by $1,
$2, $3, etc. There is also a positional parameter 0, whose value is the name of the
script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional parameters (except positional
parameter 0): * and @. The difference between them is subtle but important, and it’s
apparent only when they are within double quotes.

“$*” is a single string that consists of all of the positional parameters, separated by
the first character in the value of the environment variable IFS (internal field separa-
tor), which is a space, TAB, and NEWLINE by default. On the other hand, “$@” is
equal to “$1” “$2”... “$N”, where N is the number of positional parameters. That is,
it’s equal to N separate double-quoted strings, which are separated by spaces. If
there are no positional parameters, “$@” expands to nothing. We’ll explore the ram-
ifications of this difference in a little while.

86 | Chapter4: BasicShell Programming

The variable # holds the number of positional parameters (as a character string). All
of these variables are “read-only,” meaning that you can’t assign new values to them
within scripts.

For example, assume that you have the following simple shell script:

echo "alice: $@"

echo "$0: $1 $2 $3 $4"

echo "$# arguments”
Assume further that the script is called alice. Then if you type alice in wonderland,
you will see the following output:

alice: in wonderland
alice: in wonderland
2 arguments

In this case, $3 and $4 are unset, which means that the shell will substitute the
empty (or null) string for them.”

Positional parameters in functions

Shell functions use positional parameters and special variables like * and # in exactly
the same way as shell scripts do. If you wanted to define alice as a function, you
could put the following in your .bash_profile or environment file:

function alice

{
echo "alice: $@"
echo "$0: $1 $2 $3 $4"
echo "$# arguments”

}

You will get the same result if you type alice in wonderland.

Typically, several shell functions are defined within a single shell script. Therefore
each function will need to handle its own arguments, which in turn means that each
function needs to keep track of positional parameters separately. Sure enough, each
function has its own copies of these variables (even though functions don’t run in
their own subshells, as scripts do); we say that such variables are local to the function.

However, other variables defined within functions are not local (they are global),
meaning that their values are known throughout the entire shell script. For example,
assume that you have a shell script called ascript that contains this:

function afunc

{
echo in function: $0 $1 $2
varl="in function"
echo vari: $vari

}

* Unless the option nounset is turned on, in which case the shell will return an error message.

Shell Variables | 87

varl="outside function"
echo vari: $vari

echo $0: $1 $2

afunc funcargil funcarg2
echo vari: $vari

echo $0: $1 $2

If you invoke this script by typing ascript argl arg2, you will see this output:

varl: outside function

ascript: argl arg2

in function: ascript funcargl funcarg2

varl: in function

varl: in function

ascript: argl arg2
In other words, the function afunc changes the value of the variable varl from “out-
side function” to “in function,” and that change is known outside the function, while
$1 and $2 have different values in the function and the main script. Notice that $0
doesn’t change because the function executes in the environment of the shell script
and $0 takes the name of the script. Figure 4-2 shows the scope of each variable
graphically.

script ascript

varname - known in script only
varname - known in function only
varname - known in script and function

Svarl

$

o o

function afunc

Il
~ =

Figure 4-2. Functions have their own positional parameters

Local Variables in Functions

A local statement inside a function definition makes the variables involved all
become local to that function. The ability to define variables that are local to “sub-
program” units (procedures, functions, subroutines, etc.) is necessary for writing

88 | Chapter4: BasicShell Programming

large programs, because it helps keep subprograms independent of the main pro-
gram and of each other.

Here is the function from our last example with the variable varl made local:

function afunc

{

local var1
echo in function: $0 $1 $2

varl="in function"
echo vari: $vari

}
Now the result of running ascript argl arg2 is:

vari: outside function

ascript: argl arg2

in function: ascript funcargl funcarg2

varl: in function

varl: outside function

ascript: argl arg2
Figure 4-3 shows the scope of each variable in our new script. Note that afunc now
has its own, local copy of var1, although the original varl would still be used by any
other functions that ascript invokes.

script ascript

- known in script only
varname - known in function only
- known in script and function

Svar

0

$1

$2

function afunc

$varl

$1

$2

Figure 4-3. Functions can have local variables

Shell Variables | 89

Quoting with $@ and $*

Now that we have this background, let’s take a closer look at “$@” and “$*”. These
variables are two of the shell’s greatest idiosyncracies, so we’ll discuss some of the
most common sources of confusion.

*9

* Why are the elements of “$*” separated by the first character of IFS instead of
just spaces? To give you output flexibility. As a simple example, let’s say you
want to print a list of positional parameters separated by commas. This script
would do it:

IFS=,

echo "$*"
Changing IFS in a script is risky, but it’s probably OK as long as nothing else in
the script depends on it. If this script were called arglist, then the command
arglist alice dormouse hatter would produce the output alice,dormouse,hatter.
Chapter 5 and Chapter 10 contain other examples of changing IFS.

* Why does “$@” act like N separate double-quoted strings? To allow you to use
them again as separate values. For example, say you want to call a function
within your script with the same list of positional parameters, like this:

function countargs

{
}

Assume your script is called with the same arguments as arglist above. Then if it
contains the command countargs “$*”, the function will print 1 args. But if the
command is countargs “$@”, the function will print 3 args.

echo "$# args."

More on Variable Syntax

Before we show the many things you can do with shell variables, we have to point out a
simplification we have been making: the syntax of $varname for taking the value of a
variable is actually the simple form of the more general syntax, ${varname].

Why two syntaxes? For one thing, the more general syntax is necessary if your code
refers to more than nine positional parameters: you must use ${10} for the tenth
instead of $10. Aside from that, consider the following case where you would like to
place an underscore after your user ID:

echo $UID_

The shell will try to use UID_ as the name of the variable. Unless, by chance, $UID_
already exists, this won’t print anything (the value being null or the empty string, “”).
To obtain the desired result, you need to enclose the shell variable in curly brackets:

echo ${UID}

It is safe to omit the curly brackets ({}) if the variable name is followed by a character
that isn’t a letter, digit, or underscore.

90 | Chapter4: BasicShell Programming

String Operators

The curly-bracket syntax allows for the shell’s string operators. String operators allow
you to manipulate values of variables in various useful ways without having to write
full-blown programs or resort to external UNIX utilities. You can do a lot with
string-handling operators even if you haven’t yet mastered the programming features
we’ll see in later chapters.

In particular, string operators let you do the following:

¢ Ensure that variables exist (i.e., are defined and have non-null values)
* Set default values for variables
* Catch errors that result from variables not being set

* Remove portions of variables’ values that match patterns

Syntax of String Operators

The basic idea behind the syntax of string operators is that special characters that
denote operations are inserted between the variable’s name and the right curly
bracket. Any argument that the operator may need is inserted to the operator’s right.

The first group of string-handling operators tests for the existence of variables and
allows substitutions of default values under certain conditions. These are listed in
Table 4-1.°

Table 4-1. Substitution operators

Operator Substitution

${varname:-word} If varname exists and isn't null, return its value; otherwise return word.
Purpose: Returning a default value if the variable is undefined.
Example: ${count:-0} evaluates to 0 if count is undefined.
S{varname:=word} If varname exists and isn't null, return its value; otherwise set it to word and then return its
value. Positional and special parameters cannot be assigned this way.
Purpose: Setting a variable to a default value if it is undefined.
Example: ${count:=0} sets count to 0 if it is undefined.
S${varname:?mes- If varname exists and isn't null, return its value; otherwise print varname: followed by mes-

sage} sage, and abort the current command or script (non-interactive shells only). Omitting message
produces the default message parameter null or not set.

Purpose: (atching errors that result from variables being undefined.

Example: {count:?“undefined!"} prints “count: undefined!” and exits if count is unde-
fined.

* The colon (:) in all but the last of these operators is actually optional. If the colon is omitted, then change
“exists and isn’t null” to “exists” in each definition, i.e., the operator tests for existence only.

String Operators | 91

Table 4-1. Substitution operators (continued)

Operator Substitution

${varname:+word} If varname exists and isn't null, return word; otherwise return null.
Purpose: Testing for the existence of a variable.
Example: ${count:+1} returns 1 (which could mean “true”) if count is defined.
S{varname:offset. Performs substring expansion.a It returns the substring of Svarname starting at offset and up to
length} length characters. The first character in Svarname is position 0. If length is omitted, the sub-
string starts at offset and continues to the end of Svarname. If offset is less than 0 then the
position is taken from the end of Svarname. If varnameis @, the length is the number of
positional parameters starting at parameter offset.

Purpose: Returning parts of a string (substrings or slices).

Example: If count s set to frogfootman, ${count:4} returns footman. ${count:
4:4} returns foot.

a The substring expansion operator is not available in versions of bash prior to 2.0.

The first of these operators is ideal for setting defaults for command-line arguments
in case the user omits them. We’ll use this technique in our first programming task.

Task 4-1

You have a large album collection, and you want to write some software to keep track
of it. Assume that you have a file of data on how many albums you have by each artist.
Lines in the file look like this:

5 Depeche Mode

2 Split Enz

3 Simple Minds

1 Vivaldi, Antonio

Write a program that prints the N highest lines, i.e., the N artists by whom you have
the most albums. The default for N should be 10. The program should take one argu-
ment for the name of the input file and an optional second argument for how many
lines to print.

By far the best approach to this type of script is to use built-in UNIX utilities, com-
bining them with I/O redirectors and pipes. This is the classic “building-block” phi-
losophy of UNIX that is another reason for its great popularity with programmers.
The building-block technique lets us write a first version of the script that is only one
line long:
sort -nr $1 | head -${2:-10}

Here is how this works: the sort program sorts the data in the file whose name is
given as the first argument ($1). The -n option tells sort to interpret the first word on

each line as a number (instead of as a character string); the -r tells it to reverse the
comparisons, so as to sort in descending order.

92 | Chapter4: BasicShell Programming

The output of sort is piped into the head utility, which, when given the argument -N,
prints the first N lines of its input on the standard output. The expression -${2:-10}
evaluates to a dash (-) followed by the second argument if it is given, or to -10 if it’s
not; notice that the variable in this expression is 2, which is the second positional
parameter.

Assume the script we want to write is called highest. Then if the user types highest
myfile, the line that actually runs is:

sort -nr myfile | head -10
Or if the user types highest myfile 22, the line that runs is:
sort -nr myfile | head -22
Make sure you understand how the :- string operator provides a default value.

This is a perfectly good, runnable script—but it has a few problems. First, its one
line is a bit cryptic. While this isn’t much of a problem for such a tiny script, it’s not
wise to write long, elaborate scripts in this manner. A few minor changes will make
the code more readable.

First, we can add comments to the code; anything between # and the end of a line is
a comment. At a minimum, the script should start with a few comment lines that
indicate what the script does and what arguments it accepts. Second, we can improve
the variable names by assigning the values of the positional parameters to regular
variables with mnemonic names. Finally, we can add blank lines to space things out;
blank lines, like comments, are ignored. Here is a more readable version:

#

highest filename [howmany]

#

Print howmany highest-numbered lines in file filename.
The input file is assumed to have lines that start with
numbers. Default for howmany is 10.

#

filename=$1
howmany=${2:-10}

sort -nr $filename | head -$howmany

The square brackets around howmany in the comments adhere to the convention in
UNIX documentation that square brackets denote optional arguments.

The changes we just made improve the code’s readability but not how it runs. What if
the user were to invoke the script without any arguments? Remember that positional
parameters default to null if they aren’t defined. If there are no arguments, then $1 and
$2 are both null. The variable howmany ($2) is set up to default to 10, but there is no
default for filename ($1). The result would be that this command runs:

sort -nr | head -10

String Operators | 93

As it happens, if sort is called without a filename argument, it expects input to come
from standard input, e.g., a pipe (|) or a user’s terminal. Since it doesn’t have the
pipe, it will expect the terminal. This means that the script will appear to hang!
Although you could always hit CTRL-D or CTRL-C to get out of the script, a naive
user might not know this.

Therefore we need to make sure that the user supplies at least one argument. There
are a few ways of doing this; one of them involves another string operator. We’ll
replace the line:

filename=$1
with:
filename=${1:?"filename missing."}

This will cause two things to happen if a user invokes the script without any argu-
ments: first the shell will print the somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit without running the remain-
ing code. With a somewhat “kludgy” modification, we can get a slightly better error
message.

Consider this code:

filename=$1
filename=${filename:?"missing."}

This results in the message:
highest: filename: missing.

(Make sure you understand why.) Of course, there are ways of printing whatever
message is desired; we’ll find out how in Chapter 5.

Before we move on, we’ll look more closely at the three remaining operators in
Table 4-1 and see how we can incorporate them into our task solution. The := opera-
tor does roughly the same thing as :-, except that it has the “side effect” of setting the
value of the variable to the given word if the variable doesn’t exist.

Therefore we would like to use := in our script in place of :-, but we can’t; we’d be
trying to set the value of a positional parameter, which is not allowed. But if we
replaced:

howmany=${2:-10}
with just:
howmany=$2

and moved the substitution down to the actual command line (as we did at the
start), then we could use the := operator:

sort -nr $filename | head -${howmany:=10}

94 | Chapter4: BasicShell Programming

The operator :+ substitutes a value if the given variable exists and isn’t null. Here is
how we can use it in our example: let’s say we want to give the user the option of
adding a header line to the script’s output. If she types the option -h, then the out-
put will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable header, i.e., $header is -h if
the option is set or null if not. (Later we will see how to do this without disturbing
the other positional parameters.)

The following expression yields null if the variable header is null, or ALBUMSAR-
TIST\n if it is non-null:

${header:+"ALBUMSARTIST\n"}
This means that we can put the line:

echo -e -n ${header:+"ALBUMSARTIST\n"}
right before the command line that does the actual work. The -n option to echo
causes it not to print a LINEFEED after printing its arguments. Therefore this echo
statement will print nothing—not even a blank line—if header is null; otherwise it

will print the header line and a LINEFEED (\n). The -e option makes echo interpret
the \n as a LINEFEED rather than literally.

The final operator, substring expansion, returns sections of a string. We can use it to
“pick out” parts of a string that are of interest. Assume that our script is able to
assign lines of the sorted list, one at a time, to the variable album_line. If we want to
print out just the album name and ignore the number of albums, we can use sub-
string expansion:
echo ${album line:8}

This prints everything from character position 8, which is the start of each album
name, onwards.

If we just want to print the numbers and not the album names, we can do so by sup-
plying the length of the substring:

echo ${album line:0:7}
Although this example may seem rather useless, it should give you a feel for how to

use substrings. When combined with some of the programming features discussed
later in the book, substrings can be extremely useful.

Patterns and Pattern Matching

We'll continue refining our solution to Task 4-1 later in this chapter. The next type
of string operator is used to match portions of a variable’s string value against pat-
terns. Patterns, as we saw in Chapter 1, are strings that can contain wildcard charac-
ters (%, ?, and [] for character sets and ranges).

Table 4-2 lists bash’s pattern-matching operators.

String Operators | 95

Table 4-2. Pattern-matching operators

Operator Meaning

${variable#pattern} If the pattern matches the beginning of the variable’s value, delete the shortest part that
matches and return the rest.

${variable##pattern} If the pattern matches the beginning of the variable’s value, delete the longest part that
matches and return the rest.

${variable%pattern} If the pattern matches the end of the variable’s value, delete the shortest part that matches
and return the rest.

${variable%%pat- If the pattern matches the end of the variable’s value, delete the longest part that matches
tern} and return the rest.

${variable/pattern/ The longest match to pattern in variable is replaced by string. In the first form, only the
string} first match is replaced. In the second form, all matches are replaced. If the pattern begins with
${variable//pattern/ a #, it must match at the start of the variable. If it begins with a %, it must match with the end
string} of the variable. If string is null, the matches are deleted. If variable is @ or *, the operation

is applied to each positional parameter in turn and the expansion is the resultant list.2

a The pattern-matching and replacement operator is not available in versions of bash prior to 2.0.

These can be hard to remember; here’s a handy mnemonic device: # matches the
front because number signs precede numbers; % matches the rear because percent
signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of
pathnames, such as directory prefixes and filename suffixes. With that in mind, here
is an example that shows how all of the operators work. Assume that the variable
path has the value /home/cam/book/long.file.name; then:

Expression Result

${pathit/*/} long.file.name
${path#t/*/} cam/book/long.file.name
$path /home/cam/book/long.file.name
${path%.*} /home/cam/book/long.file
${path%%.*} /home/cam/book/long

The two patterns used here are /*/, which matches anything between two slashes,
and .*, which matches a dot followed by anything.

The longest and shortest pattern-matching operators produce the same output unless
they are used with the * wildcard operator. As an example, if filename had the value
alicece, then both ${filename%ce} and ${filename%%ce} would produce the result
alice. This is because ce is an exact match; for a match to occur, the string ce must
appear on the end $filename. Both the short and long matches will then match the
last grouping of ce and delete it. If, however, we had used the * wildcard, then ${file-
name%ce*} would produce alice because it matches the shortest occurrence of ce fol-
lowed by anything else. ${filename%%ce*} would return ali because it matches the
longest occurrence of ce followed by anything else; in this case the first and second ce.

The next task will incorporate one of these pattern-matching operators.

96 | Chapter4: BasicShell Programming

Task 4-2

You are writing a graphics file conversion utility for use in creating a web page. You
want to be able to take a PCX file and convert it to a JPEG file for use on the web page.2

a PCX is a popular graphics file format under Microsoft Windows. JPEG (Joint Photographic Expert Group)
is a common graphics format on the Internet and is used to a great extent on web pages.

Graphics file conversion utilities are quite common because of the plethora of different
graphics formats and file types. They allow you to specify an input file, usually from a
range of different formats, and convert it to an output file of a different format. In this
case, we want to take a PCX file, which can’t be displayed with a web browser, and
convert it to a JPEG which can be displayed by nearly all browsers. Part of this process
is taking the filename of the PCX file, which ends in .pcx, and changing it to one end-
ing in .jpg for the output file. In essence, you want to take the original filename and
strip off the .pcx, then append .jpg. A single shell statement will do this:

outfile=${filename%.pcx}.Jjpg

The shell takes the filename and looks for .pcx on the end of the string. If it is found,
.pex is stripped off and the rest of the string is returned. For example, if filename had
the value alice.pcx, the expression ${filename%.pcx} would return alice. The .jpg is
appended to form the desired alice.jpg, which is then stored in the variable outfile.

If filename had an inappropriate value (without the .pcx) such as alice.xpm, the
above expression would evaluate to alice.xpm.jpg: since there was no match, noth-
ing is deleted from the value of filename, and .jpg is appended anyway. Note, how-
ever, that if filename contained more than one dot (e.g., if it were alice.1.pcx—the
expression would still produce the desired value alice.1.jpg).

The next task uses the longest pattern-matching operator.

Task 4-3

You are implementing a filter that prepares a text file for printer output. You want to
put the file’s name—without any directory prefix—on the “banner” page. Assume
that, in your script, you have the pathname of the file to be printed stored in the vari-
able pathname.

Clearly, the objective is to remove the directory prefix from the pathname. The fol-
lowing line will do it:

bannername=${pathnamet*/}

String Operators | 97

This solution is similar to the first line in the examples shown before. If pathname
were just a filename, the pattern */ (anything followed by a slash) would not match
and the value of the expression would be pathname untouched. If pathname were
something like book/wonderland, the prefix book/ would match the pattern and be
deleted, leaving just wonderland as the expression’s value. The same thing would
happen if pathname were something like /home/cam/ book/wonderland: since the ##
deletes the longest match, it deletes the entire /home/cam/book/.

If we used #*/ instead of ##*/, the expression would have the incorrect value home/
cam/book/wonderland, because the shortest instance of “anything followed by a
slash” at the beginning of the string is just a slash (/).

The construct ${variable##*/} is actually equivalent to the UNIX utility basename.
basename takes a pathname as argument and returns the filename only; it is meant to
be used with the shell’s command substitution mechanism (see the following expla-
nation). basename is less efficient than ${variable##*/} because it runs in its own
separate process rather than within the shell. Another utility, dirname, does essen-
tially the opposite of basename: it returns the directory prefix only. It is equivalent to
the bash expression ${variable%/*} and is less efficient for the same reason.

The last operator in the table matches patterns and performs substitutions. Task 4-4
is a simple task where it comes in useful.

Task 4-4

The directories in PATH can be hard to distinguish when printed out as one line with
colon delimiters. You want a simple way to display them, one to a line.

As directory names are separated by colons, the easiest way would be to replace each
colon with a LINEFEED:

$ echo -e ${PATH//:/'\n'}
/home/cam/bin
/usr/local/bin

/bin

/usr/bin

/usr/X11R6/bin

Each occurrence of the colon is replaced by \n. As we saw earlier, the -e option
allows echo to interpret \n as a LINEFEED. In this case we used the second of the

two substitution forms. If we’d used the first form, only the first colon would have
been replaced with a \n.

98 | Chapter4: BasicShell Programming

Length Operator

There is one remaining operator on variables. It is ${#varname}, which returns the
length of the value of the variable as a character string. (In Chapter 6, we will see
how to treat this and similar values as actual numbers so they can be used in arith-
metic expressions.) For example, if filename has the value alice.c, then ${#file-
name} would have the value 7.

Extended Pattern Matching

Bash provides a further set of pattern matching operators if the shopt option extglob is
switched on. Each operator takes one or more patterns, normally strings, separated by
the vertical bar (|). The extended pattern matching operators are given in Table 4-3."

Table 4-3. Pattern-matching operators

Operator Meaning

*¥(patternlist) Matches zero or more occurrences of the given patterns.
+(patternlist) Matches one or more occurrences of the given patterns.
Y(patternlist) Matches zero or one occurrences of the given patterns.
@(patternlist) Matches exactly one of the given patterns.
l(patternlist) Matches anything except one of the given patterns.

Some examples of these include:

 *(alice|hatter|/hare) would match zero or more occurrences of alice, hatter, and

hare. So it would match the null string, alice, alicehatter, etc.

* +(alice|hatter|hare) would do the same except not match the null string.

* ?(alice|hatter|hare) would only match the null string, alice, hatter, or hare.

* @(alice|hatter|hare) would only match alice, hatter, or hare.

* I(alice|hatter|hare) matches everything except alice, hatter, and hare.
The values provided can contain shell wildcards too. So, for example, +([0-9])
matches a number of one or more digits. The patterns can also be nested, so you

could remove all files except those beginning with vt followed by a number by doing
rm !(vt+([0-9])).

Command Substitution

From the discussion so far, we’ve seen two ways of getting values into variables: by
assignment statements and by the user supplying them as command-line arguments

* Be aware that these are not available in early releases of bash 2.0.

Command Substitution | 99

(positional parameters). There is another way: command substitution, which allows
you to use the standard output of a command as if it were the value of a variable.
You will soon see how powerful this feature is.

The syntax of command substitution is:"
$(UNIX command)

The command inside the parentheses is run, and anything the command writes to
standard output is returned as the value of the expression. These constructs can be
nested, i.e., the UNIX command can contain command substitutions.

Here are some simple examples:

* The value of $(pwd) is the current directory (same as the environment variable
$SPWD).

* The value of $(Is SHOME) is the names of all files in your home directory.
* The value of $(Is $(pwd)) is the names of all files in the current directory.

* The value of $(< alice) is the contents of the file alice with any trailing newlines
removed.t

* To find out detailed information about a command if you don’t know where its
file resides, type Is -1 $(type -path -all command-name). The -all option forces type
to do a pathname look-up and -path causes it to ignore keywords, built-ins, etc.

* If you want to edit (with vi) every chapter of your book on bash that has the
phrase “command substitution,” assuming that your chapter files all begin with
ch, you could type:

vi $(grep -1 'command substitution' ch*)

The -1 option to grep prints only the names of files that contain matches.

Command substitution, like variable and tilde expansion, is done within double
quotes. Therefore, our rule in Chapter 1 and Chapter 3 about using single quotes for
strings unless they contain variables will now be extended: “When in doubt, use sin-
gle quotes, unless the string contains variables or command substitutions, in which
case use double quotes.”

Command substitution helps us with the solution to the next programming task,
which relates to the album database in Task 4-1.

The cut utility is a natural for this task. cut is a data filter: it extracts columns from
tabular data. If you supply the numbers of columns you want to extract from the
input, cut will print only those columns on the standard output. Columns can be

* Bourne and C shell users should note that the command substitution syntax of those shells, "UNIX com-
mand’ (with backward quotes, or grave accents), is also supported by bash for backward compatibility rea-
sons. However, it is harder to read and less conducive to nesting.

T Not available in versions of bash prior to 2.02.

100 | Chapter4: BasicShell Programming

Task 4-5

The file used in Task 4-1 is actually a report derived from a bigger table of data about
albums. This table consists of several columns, or fields, to which a user refers by
names like “artist,” “title,” “year,” etc. The columns are separated by vertical bars (|,
the same as the UNIX pipe character). To deal with individual columns in the table,
field names need to be converted to field numbers.

» o«

Suppose there is a shell function called getfield that takes the field name as argument
and writes the corresponding field (or column) number on the standard output. Use
this routine to help extract a column from the data table.

character positions or—relevant in this example—fields that are separated by TAB
characters or other delimiters.” Assume that the data table in our task is a file called
albums and that it looks like this:

Depeche Mode|Speak and Spell|Mute Records|1981

Depeche Mode|Some Great Reward|Mute Records|1984

Depeche Mode|101|Mute Records|1989

Depeche Mode|Violator|Mute Records|1990
Depeche Mode|Songs of Faith and Devotion|Mute Records|1993

Here is how we would use cut to extract the fourth (year) column:
cut -f4 -d\| albums

The -d argument is used to specify the character used as field delimiter (TAB is the
default). The vertical bar must be backslash-escaped so that the shell doesn’t try to
Interpret it as a pipe.

From this line of code and the getfield routine, we can easily derive the solution to
the task. Assume that the first argument to getfield is the name of the field the user
wants to extract. Then the solution is:

fieldname=$1
cut -f$(getfield $fieldname) -d\| albums

If we called this script with the argument year, the output would be:

1981
1984
1989
1990
1993

* Some older BSD-derived systems don’t have cut, but you can use awk instead. Whenever you see a command
of the form: cut -fN -dC filename, use this instead: awk -FC '{print $N}' filename.

Command Substitution | 101

Task 4-6 shows another small task that makes use of cut.

Task 4-6

Send a mail message to everyone who is currently logged in.

The command who tells you who is logged in (as well as which terminal they’re on
and when they logged in). Its output looks like this:

root tty1 Oct 13 12:05
michael tty5 Oct 13 12:58
cam tty23 Oct 13 11:51
kilrath tty25 Oct 13 11:58

The fields are separated by spaces, not TABs. Since we need the first field, we can get
away with using a space as the field separator in the cut command. (Otherwise we’d
have to use the option to cut that uses character columns instead of fields.) To pro-
vide a space character as an argument on a command line, you can surround it by
quotes:

$ who | cut -d' ' -f1
With the above who output, this command’s output would look like this:

root
michael
cam
kilrath

This leads directly to a solution to the task. Just type:
$ mail $(who | cut -d' ' -f1)

The command mail root michael cam kilrath will run and then you can type your
message.

Task 4-7 is another task that shows how useful command pipelines can be in com-
mand substitution.

Task 4-7

The Is command gives you pattern-matching capability with wildcards, but it doesn’t
allow you to select files by modification date. Devise a mechanism that lets you do this.

102 | Chapter4: BasicShell Programming

Here is a function that allows you to list all files that were last modified on the date
you give as argument. Once again, we choose a function for speed reasons. No pun is
intended by the function’s name:

function 1sd

{
date=$1
1s -1 | grep -i "~.\{42\}¢date" | cut -c55-
}
This function depends on the column layout of the Is -1 command. In particular, it
depends on dates starting in column 42 and filenames starting in column 55. If this
isn’t the case in your version of UNIX, you will need to adjust the column numbers.

We use the grep search utility to match the date given as argument (in the form Mon
DD, e.g., Jan 15 or Oct 6, the latter having two spaces) to the output of Is -1. This
gives us a long listing of only those files whose dates match the argument. The -i
option to grep allows you to use all lowercase letters in the month name, while the
rather fancy argument means, “Match any line that contains 41 characters followed
by the function argument.” For example, typing Isd jan 15 causes grep to search for
lines that match any 41 characters followed by jan 15 (or Jan 15).1

The output of grep is piped through our ubiquitous friend cut to retrieve the filena-
mes only. The argument to cut tells it to extract characters in column 55 through the
end of the line.

With command substitution, you can use this function with any command that
accepts filename arguments. For example, if you want to print all files in your cur-
rent directory that were last modified today, and today is January 15th, you could

type:
$ 1p $(1sd 'jan 15")

The output of Isd is on multiple lines (one for each filename), but LINEFEEDs are
legal field separators for the [p command, because the environment variable IFS (see
earlier in this chapter) contains LINEFEED by default.

Advanced Examples: pushd and popd

We will conclude this chapter with a couple of functions that are already built into
bash but are useful in demonstrating some of the concepts we have covered in this
chapter.*

* For example, Is -1 on SunOS 4.1.x has dates starting in column 33 and filenames starting in column 46.

T Some older BSD-derived versions of UNIX (without System V extensions) do not support the \{N\} option.
For this example, use 42 periods in a row instead of .\{42\}.

1 Your copy of bash may not have pushd and popd, since it can be configured without these built-ins.

Advanced Examples: pushd and popd | 103

Task 4-8

The functions pushd and popd implement a stack of directories that enable you to move
to another directory temporarily and have the shell remember where you were. Imple-
ment them as shell functions.

We will start by implementing a significant subset of their capabilities and finish the
implementation in Chapter 6.

Think of a stack as a spring-loaded dish receptacle in a cafeteria. When you place
dishes on the receptacle, the spring compresses so that the top stays at roughly the
same level. The dish most recently placed on the stack is the first to be taken when
someone wants food; thus, the stack is known as a “last-in, first-out” or LIFO struc-
ture. Putting something onto a stack is known in computer science parlance as push-
ing, and taking something off the top is called popping.

A stack is very handy for remembering directories, as we will see; it can “hold your
place” up to an arbitrary number of times. The cd - form of the ¢d command does
this, but only to one level. For example: if you are in firstdir and then you change to
seconddir, you can type cd - to go back. But if you start out in firstdir, then change to
seconddir, and then go to thirddir, you can use cd - only to go back to seconddir. 1f
you type cd - again, you will be back in thirddir, because it is the previous directory.”

If you want the “nested” remember-and-change functionality that will take you back
to firstdir, you need a stack of directories along with the pushd and popd commands.
Here is how these work:

* The first time pushd dir is called, pushd pushes the current directory onto the
stack, then cds to dir and pushes it onto the stack.

* Subsequent calls to pushd dir cd to dir and push dir only onto the stack.

* popd removes the top directory off the stack, revealing a new top. Then it cds to
the new top directory.

For example, consider the series of events in Table 4-4. Assume that you have just
logged in, and that you are in your home directory (/home/you).

Table 4-4. pushd/popd example

Command Stack contents Result directory
pushd lizard /home/you/lizard /home/you /home/you/lizard
pushd /etc /etc /home/you/lizard /home/you /etc

popd /home/you/lizard /home/you /home/you/lizard

*

Think of cd - as a synonym for cd SOLDPWD; see the previous chapter.

104 | Chapter4: BasicShell Programming

Table 4-4. pushd/popd example (continued)

Command Stack contents Result directory
popd /home/you /home/you
popd <empty> (error)

We will implement a stack as an environment variable containing a list of directories
separated by spaces.”

Your directory stack should be initialized to the null string when you log in. To do
this, put this in your .bash_profile:

DIR_STACK=""

export DIR_STACK
Do not put this in your environment file if you have one. The export statement guar-
antees that DIR_STACK is known to all subprocesses; you want to initialize it only
once. If you put this code in an environment file, it will get reinitialized in every sub-
shell, which you probably don’t want.

Next, we need to implement pushd and popd as functions. Here are our initial versions:

pushd ()

{
dirname=$1
DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd ${dirname:?"missing directory name."}
echo "$DIR_STACK"

}

popd ()

{
DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"

}

Notice that there isn’t much code! Let’s go through the two functions and see how
they work, starting with pushd. The first line merely saves the first argument in the
variable dirname for readability reasons.

The second line of the function pushes the new directory onto the stack. The expres-
sion ${DIR_STACK:-$PWD* ’} evaluates to $DIR_STACK if it is non-null or
$PWD” (the current directory and a space) if it is null. The expression within dou-
ble quotes, then, consists of the argument given, followed by a single space, fol-
lowed by DIR_STACK or the current directory and a space. The trailing space on the

* bash also maintains a directory stack for the pushd and popd built-ins, accessible through the environment
variable DIRSTACK. Unlike our version, however, it is implemented as an array (see Chapter 6 for details
on arrays).

Advanced Examples: pushd and popd | 105

current directory is required for pattern matching in the popd function; each direc-
tory in the stack is considered to be of the form “dirname”.

The double quotes in the assignment ensure that all of this is packaged into a single
string for assignment back to DIR_STACK. Thus, this line of code handles the spe-
cial initial case (when the stack is empty) as well as the more usual case (when it’s
not empty).

The third line’s main purpose is to change to the new directory. We use the :? opera-
tor to handle the error when the argument is missing: if the argument is given, then
the expression ${dirname:?“missing directory name.”} evaluates to $dirname, but if
it is not given, the shell will print the message pushd: dirname: missing directory
name and exit from the function.

The last line merely prints the contents of the stack, with the implication that the
leftmost directory is both the current directory and at the top of the stack. (This is
why we chose spaces to separate directories, rather than the more customary colons
as in PATH and MAILPATH.)

The popd function makes yet another use of the shell’s pattern-matching operators.
Its first line uses the # operator, which tries to delete the shortest match of the pat-
tern “* ” (anything followed by a space) from the value of DIR_STACK. The result is
that the top directory and the space following it are deleted from the stack. This is
why we need the space on the end of the first directory pushed onto the stack.

The second line of popd uses the pattern-matching operator %% to delete the long-
est match to the pattern “*” (a space followed by anything) from DIR_STACK. This
extracts the top directory as an argument to cd, but it doesn’t affect the value of
DIR_STACK because there is no assignment. The final line just prints a confirma-
tion message.

This code is deficient in four ways. First, it has no provision for errors. For example:

* What if the user tries to push a directory that doesn’t exist or is invalid?

* What if the user tries popd and the stack is empty?

Test your understanding of the code by figuring out how it would respond to these
error conditions. The second problem is that if you use pushd in a shell script, it will
exit everything if no argument is given; ${varname:?message} always exits from non-
interactive shells. It won’t, however, exit an interactive shell from which the func-
tion is called. The third deficiency is that it implements only some of the functional-
ity of bash’s pushd and popd commands—albeit the most useful parts. In the next
chapter, we will see how to overcome all of these deficiencies.

The fourth problem with the code is that it will not work if, for some reason, a direc-
tory name contains a space. The code will treat the space as a separator character.
We'll accept this deficiency for now, but you might like to think about how to over-
come it in the next few chapters.

106 | Chapter4: BasicShell Programming

CHAPTER 5
Flow Control

If you are a programmer, you may have read the last chapter—with its claim at the
outset that bash has an advanced set of programming capabilities—and wondered
where many of the features from conventional languages were. Perhaps the most
glaringly obvious “hole” in our coverage thus far concerns flow control constructs
like if, for, while, and so on.

Flow control gives a programmer the power to specify that only certain portions of a
program run, or that certain portions run repeatedly, according to conditions such as
the values of variables, whether or not commands execute properly, and others. We
call this the ability to control the flow of a program’s execution.

Almost every shell script or function that’s been shown thus far has had no flow con-
trol—they have just been lists of commands to be run! Yet bash, like the C and
Bourne shells, has all of the flow control abilities you would expect and more; we
will examine them in this chapter. We’ll use them to enhance the solutions to some
of the programming tasks we saw in the last chapter and to solve tasks that we will
introduce here.

Although we have attempted to explain flow control so that nonprogrammers can
understand it, we also sympathize with programmers who dread having to slog
through yet another tabula rasa explanation. For this reason, some of our discus-
sions relate bash’s flow-control mechanisms to those that programmers should know
already. Therefore you will be in a better position to understand this chapter if you
already have a basic knowledge of flow control concepts.

bash supports the following flow control constructs:

iffelse
Execute a list of statements if a certain condition is/is not true

for

Execute a list of statements a fixed number of times

107

while
Execute a list of statements repeatedly while a certain condition holds true

until
Execute a list of statements repeatedly until a certain condition holds true

case
Execute one of several lists of statements depending on the value of a variable

In addition, bash provides a new type of flow-control construct:

select
Allow the user to select one of a list of possibilities from a menu

We will now cover each of these in detail.

if/else

The simplest type of flow control construct is the conditional, embodied in bash’s if
statement. You use a conditional when you want to choose whether or not to do
something, or to choose among a small number of things to do, according to the
truth or falsehood of conditions. Conditions test values of shell variables, characteris-
tics of files, whether or not commands run successfully, and other factors. The shell
has a large set of built-in tests that are relevant to the task of shell programming.

The if construct has the following syntax:

if condition
then
statements
[elif condition
then statements...]
[else
statements]
fi
The simplest form (without the elif and else parts, or clauses) executes the state-
ments only if the condition is true. If you add an else clause, you get the ability to exe-
cute one set of statements if a condition is true or another set of statements if the
condition is false. You can use as many elif (a contraction of “else if”) clauses as you
wish; they introduce more conditions, and thus more choices for which set of state-
ments to execute. If you use one or more elifs, you can think of the else clause as the
“if all else fails” part.

Exit Status

Perhaps the only aspect of this syntax that differs from that of conventional lan-
guages like C and Pascal is that the “condition” is really a list of statements rather

108 | Chapter5: Flow Control

than the more usual Boolean (true or false) expression. How is the truth or false-
hood of the condition determined? It has to do with a general UNIX concept that we
haven’t covered yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other lan-
guage, or a shell script/function, returns an integer code to its calling process—the
shell in this case—when it finishes. This is called the exit status. 0 is usually the OK
exit status, while anything else (1 to 255) usually denotes an error.”

if checks the exit status of the last statement in the list following the if keyword. The
list is usually just a single statement. If the status is 0, the condition evaluates to true;
if it is anything else, the condition is considered false. The same is true for each con-
dition attached to an elif statement (if any).

This enables us to write code of the form:

if command ran successfully
then
normal processing
else
error processing
fi
More specifically, we can now improve on the pushd function that we saw in the last
chapter:

pushd ()
{

dirname=$1
DIR _STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd ${dirname:?"missing directory name."}
echo $DIR_STACK

}

This function requires a valid directory as its argument. Let’s look at how it handles

error conditions: if no argument is given, the third line of code prints an error mes-
sage and exits. This is fine.

However, the function reacts deceptively when an argument is given that isn’t a valid
directory. In case you didn’t figure it out when reading the last chapter, here is what
happens: the cd fails, leaving you in the same directory you were in. This is also
appropriate. But the second line of code has pushed the bad directory onto the stack
anyway, and the last line prints a message that leads you to believe that the push was
successful. Even placing the cd before the stack assignment won’t help because it
doesn’t exit the function if there is an error.

* Because this is a convention and not a “law,” there are exceptions. For example, diff (find differences
between two files) returns O for “no differences,” 1 for “differences found,” or 2 for an error such as an invalid
filename argument.

iffelse | 109

We need to prevent the bad directory from being pushed and to print an error mes-
sage. Here is how we can do this:

pushd ()
{
dirname=$1
if cd ${dirname:?"missing directory name."} # if cd was successful
then
DIR_STACK="$dirname ${DIR STACK:-$PWD' '}" # push the directory
echo $DIR_STACK
else
echo still in $PWD. # else do nothing
fi
}
The call to cd is now inside an if construct. If cd is successful, it will return 0; the
next two lines of code are run, finishing the pushd operation. But if the cd fails, it
returns with exit status 1, and pushd will print a message saying that you haven’t

gone anywhere.

Notice that in providing the check for a bad directory, we have slightly altered the
way pushd functions. The stack will now always start out with two copies of the first
directory pushed onto it. That is because $PWD is expanded after the new directory
has been changed to. We’'ll fix this in the next section.

You can usually rely on built-in commands and standard UNIX utilities to return
appropriate exit statuses, but what about your own shell scripts and functions? For
example, what if you wrote a cd function that overrides the built-in command?

Let’s say you have the following code in your .bash_profile.

cd ()
{
builtin cd "$@"

echo "$OLDPWD —> $PWD"
}
The function cd simply changes directories and prints a message saying where you
were and where you are now. Because functions have higher priority than most built-
in commands in the shell’s order of command look-up, we need to make sure that
the built-in cd is called, otherwise the shell will enter an endless loop of calling the
function, known as infinite recursion.

The builtin command allows us to do this. builtin tells the shell to use the built-in
command and ignore any function of that name. Using builtin is easy; you just give
it the name of the built-in you want to execute and any parameters you want to pass.
If you pass in the name of something which isn’t a built-in command, builtin will
display an appropriate message. For example: builtin: alice: not a shell builtin.

We want this function to return the same exit status that the built-in cd returns. The
problem is that the exit status is reset by every command, so it “disappears” if you

110 | Chapter5: Flow Control

don’t save it immediately. In this function, the built-in cd’s exit status disappears
when the echo statement runs (and sets its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire function’s
exit status. Two shell features we haven’t seen yet provide the way. First is the spe-
cial shell variable ?, whose value ($?) is the exit status of the last command that ran.
For example:

cd baddir
echo $?

causes the shell to print 1, while the following command causes it to print 0:

cd gooddir

echo $?
So, to save the exit status we need to assign the value of ? to a variable with the line
es=$? right after the cd is done.

Return

The second feature we need is the statement return N, which causes the surround-
ing function to exit with exit status N. N is actually optional; it defaults to the exit
status of the last command. Functions that finish without a return statement (i.e.,
every one we have seen so far) return whatever the last statement returns. return can
only be used inside functions, and shell scripts that have been executed with source.
In contrast, the statement exit N exits the entire script, no matter how deeply you are
nested in functions.

Getting back to our example: if the call to the built-in cd were last in our ¢d func-
tion, it would behave properly. Unfortunately, we really need the assignment state-
ment where it is. Therefore we need to save cd’s exit status and return it as the
function’s exit status. Here is how to do it:

cd ()
{
builtin cd "$@"
es=$?
echo "$0LDPWD —> $PWD"
return $es

}

The second line saves the exit status of cd in the variable es; the fourth returns it as
the function’s exit status. We’'ll see a substantial c¢d “wrapper” in Chapter 7.

Exit statuses aren’t very useful for anything other than their intended purpose. In
particular, you may be tempted to use them as “return values” of functions, as you
would with functions in C or Pascal. That won’t work; you should use variables or
command substitution instead to simulate this effect.

iffelse | 111

Combinations of Exit Statuses

One of the more obscure parts of bash syntax allows you to combine exit statuses
logically, so that you can test more than one thing at a time.

The syntax statement1 && statement2 means, “execute statementl, and if its exit sta-
tus is 0, execute statement2.” The syntax statement1 || statement2 is the converse: it
means, “execute statementl, and if its exit status is not 0, execute statement2.” At
first, these look like “if/then” and “if not/then” constructs, respectively. But they are
really intended for use within conditions of if constructs—as C programmers will
readily understand.

It’s much more useful to think of these constructs as “and” and “or,” respectively.
Consider this:

if statement1 &8 statement2
then

fi

In this case, statementl is executed. If it returns a O status, then presumably it ran
without error. Then statement2 runs. The then clause is executed if statement2
returns a 0 status. Conversely, if statement] fails (returns a non-zero exit status), then
statement2 doesn’t even run; the last statement that actually ran was statementl,
which failed—so the then clause doesn’t run, either. Taken all together, it’s fair to
conclude that the then clause runs if statement1 and statement2 both succeeded.

Similarly, consider this:

if statement1 || statement2
then

fi

If statement1 succeeds, then statement2 does not run. This makes statement1 the last
statement, which means that the then clause runs. On the other hand, if statementl
fails, then statement2 runs, and whether the then clause runs or not depends on the
success of statement2. The upshot is that the then clause runs if statementl or
statement2 succeeds.

bash also allows you to reverse the return status of a statement with the use of !, the
logical “not”. Preceding a statement with ! will cause it to return 0 if it fails and 1 if it
succeeds. We'll see an example of this at the end of this chapter.

As a simple example of testing exit statuses, assume that we need to write a script
that checks a file for the presence of two words and just prints a message saying
whether either word is in the file or not. We can use grep for this: it returns exit sta-
tus 0 if it found the given string in its input, non-zero if not:

filename=$1

word1=$2
word2=$3

112 | Chapter5: Flow Control

if grep $word1 $filename || grep $word2 $filename
then
echo "$wordl or $word2 is in $filename.”

fi
The then clause of this code runs if either grep statement succeeds. Now assume that
we want the script to say whether the input file contains both words. Here’s how to
do it:

filename=$1

word1=$2
word2=$3

if grep $word1 $filename && grep $word2 $filename
then

echo "$wordl and $word2 are both in $filename."
fi

We'll see more examples of these logical operators later in this chapter.

Condition Tests

Exit statuses are the only things an if construct can test. But that doesn’t mean you
can check only whether commands ran properly. The shell provides two ways of test-
ing a variety of conditions. The first is with the [...] construct, which is available in
many different versions of the Bourne shell.” The second is by using the newer [[...]]
construct.t The second version is identical to the first except that word splitting and
pathname expansion are not performed on the words within the brackets. For the
examples in this chapter we will use the first form of the construct.

You can use the construct to check many different attributes of a file (whether it
exists, what type of file it is, what its permissions and ownership are, etc.), compare
two files to see which is newer, and do comparisons on strings.

[condition] is actually a statement just like any other, except that the only thing it
does is return an exit status that tells whether condition is true. (The spaces after the
opening bracket “[” and before the closing bracket “]” are required.) Thus it fits
within the if construct’s syntax.

String comparisons

The square brackets ([]) surround expressions that include various types of opera-
tors. We will start with the string comparison operators, listed in Table 5-1. (Notice

* The built-in command test is synonymous with [...]. For example, to test the equivalence of two strings you
can either put [stringl = string2 | or test stringl = string2.

1 [[...]] is not available in versions of bash prior to 2.05.

iffelse | 113

that there are no operators for “greater than or equal” or “less than or equal” com-
parisons.) In the table, str1 and str2 refer to expressions with a string value.

Table 5-1. String comparison operators

Operator True if...

str1=str2a str1 matches str2

strll=str2 str1 does not match str2

str1 <str2 str1is less than str2

str1 > str2 str1is greater than str2

-nstrl str1is not null (has length greater than 0)
-z str1 str1isnull (has length 0)

a Note that there is only one equal sign (=). This is a common source of error.

We can use one of these operators to improve our popd function, which reacts badly
if you try to pop and the stack is empty. Recall that the code for popd is:

popd ()
{

DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"
}
If the stack is empty, then $DIR_STACK is the null string, as is the expression
${DIR_STACK%% }. This means that you will change to your home directory;
instead, we want popd to print an error message and do nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIR_STACK
is null or not. Here is one way to do it:

popd ()
{

if [-n "$DIR_STACK"]; then
DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"
else
echo "stack empty, still in $PWD."
fi
}

In the condition, we have placed the $DIR_STACK in double quotes, so that when it
is expanded it is treated as a single word. If you don’t do this, the shell will expand
$DIR_STACK to individual words and the test will complain that it was given too
many arguments.

114 | Chapter5: Flow Control

There is another reason for placing $DIR_STACK in double quotes, which will
become important later on: sometimes the variable being tested will expand to noth-
ing, and in this example the test will become [-n], which returns true. Surrounding
the variable in double quotes ensures that even if it expands to nothing, there will be
an empty string as an argument (i.e., [-n “”]).

Also notice that instead of putting then on a separate line, we put it on the same line as
the if after a semicolon, which is the shell’s standard statement separator character.

We could have used operators other than -n. For example, we could have used -z
and switched the code in the then and else clauses.

While we’re cleaning up code we wrote in the last chapter, let’s fix up the error han-
dling in the highest script (Task 4-1). The code for that script was:
filename=${1:?"filename missing."}
howmany=${2:-10}
sort -nr $filename | head -$howmany
Recall that if you omit the first argument (the filename), the shell prints the message
highest: 1: filename missing. We can make this better by substituting a more stan-
dard “usage” message. While we are at it, we can also make the command more in
line with conventional UNIX commands by requiring a dash before the optional
argument.
if [-z "$1"]; then
echo 'usage: highest filename [-N]
else
filename=$1
howmany=${2:-10}
sort -nr $filename | head $howmany
fi

Notice that we have moved the dash in front of $howmany inside the parameter
expansion ${2:--10}.

It is considered better programming style to enclose all of the code in the if-then-
else, but such code can get confusing if you are writing a long script in which you
need to check for errors and bail out at several points along the way. Therefore, a
more usual style for shell programming follows.
if [-z "$1"]; then
echo 'usage: highest filename [-N]
exit 1

fi
filename=$1

howmany=${2:-10}
sort -nr $filename | head $howmany

The exit statement informs any calling program whether it ran successfully or not.

iffelse | 115

As an example of the = operator, we can add to the graphics utility that we touched
on in Task 4-2. Recall that we were given a filename ending in .pcx (the original
graphics file), and we needed to construct a filename that was the same but ended in
.jpg (the output file). It would be nice to be able to convert several other types of for-
mats to JPEG files so that we could use them on a web page. Some common types we
might want to convert besides PCX include XPM (X PixMap), TGA (Targa), TIFF
(Tagged Image File Format), and GIF.

We won’t attempt to perform the actual manipulations needed to convert one graph-
ics format to another ourselves. Instead we’ll use some tools that are freely available
on the Internet, graphics conversion utilities from the NetPBM archive.”

Don’t worry about the details of how these utilities work; all we want to do is create a
shell frontend that processes the filenames and calls the correct conversion utilities. At
this point it is sufficient to know that each conversion utility takes a filename as an
argument and sends the results of the conversion to standard output. To reduce the
number of conversion programs necessary to convert between the 30 or so different
graphics formats it supports, NetPBM has its own set of internal formats. These are
called Portable Anymap files (also called PNMs) with extensions .ppm (Portable Pix
Map) for color images, .pgm (Portable Gray Map) for grayscale images, and .pbm
(Portable Bit Map) for black and white images. Each graphics format has a utility to
convert to and from this “central” PNM format.

The frontend script we are developing should first choose the correct conversion utility
based on the filename extension, and then convert the resulting PNM file into a JPEG:

filename=%$1
extension=${filename#tt*.}
pnmfile=${filename%.*}.pnm
outfile=${filename%.*}.jpg

if [-z $filename]; then
echo "procfile: No file specified"
exit 1

fi

if [$extension = jpg]; then
exit 0

elif [$extension = tga]; then
tgatoppm $filename > $pnmfile

elif [$extension = xpm]; then
xpmtoppm $filename > $pnmfile

elif [$extension = pcx]; then
pcxtoppm $filename > $pnmfile

elif [$extension = tif]; then

* NetPBM is a free, portable graphics conversion utility package. Further details can be found on the NetPBM
homepage http://netpbm.sourceforge.net/

116 | Chapter5: Flow Control

tifftopnm $filename > $pnmfile
elif [$extension = gif]; then
giftopnm $filename > $pnmfile
else
echo "procfile: $filename is an unknown graphics file."
exit 1
fi

pnmtojpeg $pnmfile > $outfile

m $pnmfile

Recall from the previous chapter that the expression ${filename%.*} deletes the
extension from filename; ${filename##*.} deletes the basename and keeps the
extension.

Once the correct conversion is chosen, the script runs the utility and writes the out-
put to a temporary file. The second to last line takes the temporary file and converts
it to a JPEG. The temporary file is then removed. Notice that if the original file was a
JPEG we just exit without having to do any processing.

This script has a few problems. We’ll look at improving it later in this chapter.

File attribute checking

The other kind of operator that can be used in conditional expressions checks a file
for certain properties. There are 24 such operators. We will cover those of most gen-
eral interest here; the rest refer to arcana like sticky bits, sockets, and file descrip-
tors, and thus are of interest only to systems hackers. Refer to Appendix B for the
complete list. Table 5-2 lists those that we will examine.

Table 5-2. File attribute operators

Operator Trueif...

-a file file exists

-dfile file exists and is a directory

-efile file exists; same as -a

-ffile file exists and is a reqular file (i.e., not a directory or other special type of file)
-r file You have read permission on file

-s file file exists and is not empty

-w file You have write permission on file

-x file You have execute permission on file, or directory search permission if it is a directory
-N file file was modified since it was last read

-Ofile You own file

-Gfile file's group ID matches yours (or one of yours, if you are in multiple groups)

iffelse | 117

Table 5-2. File attribute operators (continued)

Operator Trueif...
file1 -nt file2 file1 is newer than file2 a
file1 -ot file2 file1 is older than file2

a Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressions inside [
and] can also be combined using the logical operators && and |/, just as we saw
with plain shell commands, in the previous section entitled “Combinations of Exit
Statuses.” For example:

if [condition] && [condition]; then

It’s also possible to combine shell commands with conditional expressions using log-
ical operators, like this:

if command 88 [condition]; then

You can also negate the truth value of a conditional expression by preceding it with
an exclamation point (!), so that ! expr evaluates to true only if expr is false. Further-
more, you can make complex logical expressions of conditional operators by group-
ing them with parentheses (which must be “escaped” with backslashes to prevent the
shell from treating them specially), and by using two logical operators we haven’t
seen yet: -a (AND) and -o (OR).

The -a and -o operators are similar to the && and || operators used with exit sta-
tuses. However, unlike those operators, -a and -o are only available inside a test con-
ditional expression.

Here is how we would use two of the file operators, a logical operator, and a string
operator to fix the problem of duplicate stack entries in our pushd function. Instead
of having cd determine whether the argument given is a valid directory—i.e., by
returning with a bad exit status if it’s not—we can do the checking ourselves. Here is
the code:

pushd ()
{
dirname=$1
if [-n "$dirname"] && [\(-d "$dirname" \) -a \
\(-x "$dirname" \)]; then
DIR_STACK="$dirname ${DIR STACK:-$PWD' '}"
cd $dirname
echo "$DIR_STACK"
else
echo "still in $PWD."
fi

118 | Chapter5: Flow Control

The conditional expression evaluates to true only if the argument $1 is not null (-n), a
directory (-d) and the user has permission to change to it (-x).” Notice that this condi-
tional handles the case where the argument is missing ($dirname is null) first; if it is,
the rest of the condition is not executed. This is important because, if we had just put:
if [\(-n "$dirname"\) -a \(-d "$dirname" \) -a \
\(-x "$dirname" \)]; then

the second condition, if null, would cause test to complain and the function would
exit prematurely.

Here is a more comprehensive example of the use of file operators.

Task 5-1

Write a script that prints essentially the same information as Is -1 but in a more user-
friendly way.

Although the code for this task looks at first sight quite complicated, it is a straight-
forward application of many of the file operators:

if [] -e "$1"]; then
echo "file $1 does not exist."
exit 1
fi
if [-d "$1"]; then
echo -n "$1 is a directory that you may "
if [! -x "$1"]; then
echo -n "not "
fi
echo "search."
elif [-f "$1"]; then
echo "$1 is a regular file."
else
echo "$1 is a special type of file."
fi
if [-0 "$1"]; then
echo 'you own the file.'
else
echo 'you do not own the file.'
fi
if [-r "$1"]; then
echo 'you have read permission on the file.'
fi
if [-w "$1"]; then

* Remember that the same permission flag that determines execute permission on a regular file determines
search permission on a directory. This is why the -x operator checks both things depending on file type.

iffelse | 119

echo 'you have write permission on the file.'
fi
if [-x "$1" -a ! -d "$1"]; then

echo 'you have execute permission on the file.'
fi

We'll call this script fileinfo. Here’s how it works:

The first conditional tests if the file given as argument does not exist (the excla-
mation point is the “not” operator; the spaces around it are required). If the file
does not exist, the script prints an error message and exits with error status.

The second conditional tests if the file is a directory. If so, the first echo prints
part of a message; remember that the -n option tells echo not to print a LINE-
FEED at the end. The inner conditional checks if you do not have search permis-
sion on the directory. If you don’t have search permission, the word “not” is
added to the partial message. Then, the message is completed with “search.” and
a LINEFEED.

The elif clause checks if the file is a regular file; if so, it prints a message.

The else clause accounts for the various special file types on recent UNIX sys-
tems, such as sockets, devices, FIFO files, etc. We assume that the casual user
isn’t interested in details of these.

The next conditional tests to see if the file is owned by you (i.e., if its owner ID is
the same as your login ID). If so, it prints a message saying that you own it.

The next two conditionals test for your read and write permission on the file.

The last conditional checks if you can execute the file. It checks to see if you
have execute permission and that the file is not a directory. (If the file were a
directory, execute permission would really mean directory search permission.) In
this test we haven’t used any brackets to group the tests and have relied on oper-
ator precedence. Simply put, operator precedence is the order in which the shell
processes the operators. This is exactly the same concept as arithmetic prece-
dence in mathematics, where multiply and divide are done before addition and
subtraction. In our case, [-x “$1” -a!-d “$1”] is equivalent to [\(-x “$1”\) -a \(
1-d “$1”\)]. The file tests are done first, followed by any negations (!) and fol-
lowed by the AND and OR tests.

As an example of fileinfo’s output, assume that you do an Is -1 of your current direc-
tory and it contains these lines:

-IWXY-Xr-X 1 cam users 2987 Jan 10 20:43 adventure
-IW-Y--r-- 1 cam users 30 Jan 10 21:45 alice
-r--r--1— 1 root root 58379 Jan 11 21:30 core
drwxr-xr-x 2 cam users 1024 Jan 10 21:41 dodo

alice and core are regular files, dodo is a directory, and adventure is a shell script.
Typing fileinfo adventure produces this output:

120

| Chapter5: Flow Control

adventure is a regular file.

you own the file.

you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

Typing fileinfo alice results in this:

alice is a regular file.

you own the file.

you have read permission on the file.
you have write permission on the file.

Finally, typing fileinfo dodo results in this:

dodo is a directory that you may search.
you own the file.

you have read permission on the file.
you have write permission on the file.

Typing fileinfo core produces this:

core is a regular file.
you do not own the file.
you have read permission on the file.

Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character string
comparisons like < and >, which compare lexicographic values of strings,” not numeric

values. For example, “6” is greater than “57” lexicographically, just as “p” is greater
than “ox,” but of course the opposite is true when they’re compared as integers.

The integer comparison operators are summarized in Table 5-3.

Table 5-3. Arithmetic test operators

Test Comparison

-It Less than

-le Less than or equal
-eq Equal

-ge Greater than or equal
-gt Greater than

-ne Not equal

You’ll find these to be of the most use in the context of the integer variables we’ll see
in the next chapter. They’re necessary if you want to combine integer tests with other
types of tests within the same conditional expression.

* “Lexicographic order” is really just “dictionary order.”

iffelse | 121

However, the shell has a separate syntax for conditional expressions that involve
integers only. It’s considerably more efficient, so you should use it in preference to
the arithmetic test operators listed above. Again, we’ll cover the shell’s integer condi-
tionals in the next chapter.

for

The most obvious enhancement to make the previous script is the ability to report on
multiple files instead of just one. Tests like -e and -d take only single arguments, so
we need a way of calling the code once for each file given on the command line.

The way to do this—indeed, the way to do many things with bash—is with a loop-
ing construct. The simplest and most widely applicable of the shell’s looping con-
structs is the for loop. We’ll use for to enhance fileinfo soon.

The for loop allows you to repeat a section of code a fixed number of times. During
each time through the code (known as an iteration), a special variable called a loop
variable is set to a different value; this way each iteration can do something slightly
different.

The for loop is somewhat, but not entirely, similar to its counterparts in conven-
tional languages like C and Pascal. The chief difference is that the shell’s standard
for loop doesn’t let you specify a number of times to iterate or a range of values
over which to iterate; instead, it only lets you give a fixed list of values. In other
words, you can’t do anything like this Pascal-type code, which executes statements
10 times:

for x := 1 to 10 do

begin

statements. ..

end
However, the for loop is ideal for working with arguments on the command line and
with sets of files (e.g., all files in a given directory). We’ll look at an example of each
of these. But first, we’ll show the syntax for the for construct:

for name [in list]

do

statements that can use $name...

done
The list is a list of names. (If in [ist is omitted, the list defaults to “$@?7, i.e., the
quoted list of command-line arguments, but we’ll always supply the in [list for the
sake of clarity.) In our solutions to the following task, we’ll show two simple ways to
specify lists.

122 | Chapter5: Flow Control

Task 5-2

Task 4-4 used pattern matching and substitution to list the directories in PATH, one
to a line. Unfortunately, old versions of bash don’t have that particular pattern opera-
tor. Write a general shell script, listpath, that prints each directory in PATH, one per
line. In addition, have it print out information about each directory, such as the per-
missions and the modification times.

The easiest way to do this is by changing the IFS variable we saw in Chapter 4:
IFS=:

for dir in $PATH
do
1s -1d $dir

done
This sets the IFS to be a colon, which is the separator used in PATH. The for loop
loops through, setting dir to each of the colon delimited fields in PATH. Is is used to
print out the directory name and associated information. The -1 parameter specifies the
“long” format and the -d tells Is to show only the directory itself and not its contents.

In using this you might see an error generated by Is saying, for example, Is: /usr/TeX/
bin: No such file or directory. It indicates that a directory in PATH doesn’t exist. We
can modify the listpath script to check the PATH variable for nonexistent directories
by adding some of the tests we saw earlier:

IFS=:

for dir in $PATH; do
if [-z "$dir"]; then dir=.; fi

if | [-e "$dir"]; then
echo "$dir doesn't exist"
elif ! [-d "$dir"]; then
echo "$dir isn't a directory"”
else
1s -1d $dir
fi
done
This time, as the script loops, we first check to see if the length of $dir is zero (caused
by having a value of :: in the PATH). If it is, we set it to the current directory, then
check to see if the directory doesn’t exist. If it doesn’t, we print out an appropriate mes-
sage. Otherwise, we check to see if the file is not a directory. If it isn’t, we say so.

The foregoing illustrated a simple use of for, but it’s much more common to use for
to iterate through a list of command-line arguments. To show this, we can enhance

for | 123

the fileinfo script above to accept multiple arguments. First, we write a bit of “wrap-
per” code that does the iteration:

for filename in "$@" ; do
finfo "$filename"
echo

done

Next, we make the original script into a function called finfo:"

finfo ()

{
if [1 -e "$1"]; then
print "file $1 does not exist."
return 1
fi

}

The complete script consists of the for loop code and the above function, in either
order; good programming style dictates that the function definition should go first.

The fileinfo script works as follows: in the for statement, “$@” is a list of all posi-
tional parameters. For each argument, the body of the loop is run with filename set
to that argument. In other words, the function finfo is called once for each value of
$filename as its first argument ($1). The call to echo after the call to finfo merely
prints a blank line between sets of information about each file.

Given a directory with the same files as the earlier example, typing fileinfo* would
produce the following output:

adventure is a regular file.

you own the file.

you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

alice is a regular file.

you own the file.

you have read permission on the file.
you have write permission on the file.

core is a regular file.
you do not own the file.
you have read permission on the file.

dodo is a directory that you may search.
you own the file.

you have read permission on the file.
you have write permission on the file.

* A function can have the same name as a script; however, this isn’t good programming practice.

124 | Chapter5: Flow Control

Here is a programming task that exploits the other major use of for.

Task 5-3

It is possible to print out all of the directories below a given one by using the -R option
of Is. Unfortunately, this doesn’t give much idea about the directory structure because
it prints all the files and directories line by line. Write a script that performs a recursive
directory listing and produces output that gives an idea of the structure for a small
number of subdirectories.

We’ll probably want output that looks something like this:

adventure
aaiw
dodo
duchess
hatter
march_hare
queen
tarts
biog
ttlg
red queen
tweedledee
tweedledum
lewis.carroll

Each column represents a directory level. Entries below and to the right of an entry
are files and directories under that directory. Files are just listed with no entries to
their right. This example shows that the directory adventure and the file lewis.carroll
are in the current directory; the directories aaiw and ttlg, and the file biog are under
adventure, etc. To make life simple, we’ll use TABs to line the columns up and ignore
any “bleed over” of filenames from one column into an adjacent one.

We need to be able to traverse the directory hierarchy. To do this easily we’ll use a
programming technique known as recursion. Recursion is simply referencing some-
thing from itself; in our case, calling a piece of code from itself. For example, con-
sider this script, tracedir, in your home directory:

file=$1
echo $file

if [-d "$file"]; then
cd $file
~/tracedir $(1s)
cd ..

fi

for | 125

First we copy and print the first argument. Then we test to see if it is a directory. If it
is, we cd to it and call the script again with an argument of the files in that directory.
This script is recursive; when the first argument is a directory, a new shell is invoked
and a new script is run on the new directory. The old script waits until the new script
returns, then the old script executes a cd back up one level and exits. This happens
in each invocation of the tracedir script. The recursion will stop only when the first
argument isn’t a directory.

Running this on the directory structure listed above with the argument adventure will
produce:
adventure

aaiw
dodo

dodo is a file and the script exits.

This script has a few problems, but it is the basis for the solution to this task. One
major problem with the script is that it is very inefficient. Each time the script is
called, a new shell is created. We can improve on this by making the script into a
function, because (as you probably remember from Chapter 4) functions are part of
the shell they are started from. We also need a way to set up the TAB spacing. The
easiest way is to have an initializing script or function and call the recursive routine
from that. Let’s look at this routine.

recls ()

{
singletab="\t"

for tryfile in "$@"; do
echo $tryfile
if [-d "$tryfile"]; then
thisfile=$tryfile
recdir $(command 1s $tryfile)
fi
done

unset dir singletab tab
}

First, we set up a variable to hold the TAB character for the echo command
(Chapter 7 explains all of the options and formatting commands you can use with
echo). Then we loop through each argument supplied to the function and print it
out. If it is a directory, we call our recursive routine, supplying the list of files with Is.
We have introduced a new command at this point: command. command is a shell
built-in that disables function and alias look-up. In this case, it is used to make sure
that the Is command is one from your command search path, PATH, and not a func-
tion (for further information on command see Chapter 7). After it’s all over, we clean
up by unsetting the variables we have used.

126 | Chapter5: Flow Control

Now we can expand on our earlier shell script.

recdir ()

{
tab=tabsingletab

for file in "$@"; do
echo -e tabfile
thisfile=$thisfile/$file

if [-d "$thisfile"]; then
recdir $(command 1s $thisfile)
fi

thisfile=${thisfile%/*}
done

tab=${tab%"$singletab"}
}
Each time it is called, recdir loops through the files it is given as arguments. For each
one it prints the filename and then, if the file is a directory, calls itself with argu-
ments set to the contents of the directory. There are two details that have to be taken
care of: the number of TABs to use, and the pathname of the “current” directory in
the recursion.

Each time we go down a level in the directory hierarchy we want to add a TAB char-
acter, so we append a TAB to the variable tab every time we enter recdir. Likewise,
when we exit recdir we are moving up a directory level, so we remove the TAB when
we leave the function. Initially, tab is not set, so the first time recdir is called, tab will
be set to one TAB. If we recurse into a lower directory, recdir will be called again and
another TAB will be appended. Remember that tab is a global variable, so it will
grow and shrink in TABs for every entry and exit of recdir. The -e option to echo tells
it to recognize escaped formatting characters, in our case the TAB character, \t.

In this version of the recursive routine we haven’t used cd to move between directo-
ries. That means that an Is of a directory will have to be supplied with a relative path
to files further down in the hierarchy. To do this, we need to keep track of the direc-
tory we are currently examining. The initialization routine sets the variable thisfile to
the directory name each time a directory is found while looping. This variable is then
used in the recursive routine to keep the relative pathname of the current file being
examined. On each iteration of the loop, thisfile has the current filename appended
to it, and at the end of the loop the filename is removed.

You might like to think of ways to modify the behavior and improve the output of
this code. Here are some programming challenges:

1. In the current version, there is no way to determine if biog is a file or a directory.
An empty directory looks no different to a file in the listing. Change the output
so it appends a / to each directory name when it displays it.

for | 127

2. Modify the code so that it only recurses down a maximum of eight subdirecto-
ries (which is about the maximum before the lines overflow the right-hand side
of the screen). Hint: think about how TABs have been implemented.

3. Change the output so it includes dashed lines and adds a blank line after each
directory, thus:

[------- adventure

| |

‘ [------- aaiw

\ | |

‘ | [-=----- dodo

‘ | [------- duchess
‘ | [------- hatter
‘ | [-=----- march_hare
‘ | [------- queen

‘ | [------- tarts

| |

‘ [------- biog

Hint: you need at least two other variables that contain the characters “|” and “-”.

At the start of this section we pointed out that the for loop in its standard form
wasn’t capable of iterating over a specified range of values as can be done in most
programming languages. bash 2.0 introduced a new style of for loop which caters for
this task; the arithmetic for loop. Well come back to it in the next chapter when we
look at arithmetic operations.

case

The next flow-control construct we will cover is case. While the case statement in
Pascal and the similar switch statement in Java and C can be used to test simple val-
ues like integers and characters, bash’s case construct lets you test strings against
patterns that can contain wildcard characters. Like its conventional-language coun-
terparts, case lets you express a series of if-then-else type statements in a concise
way.

The syntax of case is as follows:

case expression in
patterni)
statements ;;
pattern2)
statements ;;

esac

128 | Chapter5: Flow Control

Any of the patterns can actually be several patterns separated by pipe characters (|).
If expression matches one of the patterns, its corresponding statements are executed.
If there are several patterns separated by pipe characters, the expression can match
any of them in order for the associated statements to be run. The patterns are
checked in order until a match is found; if none is found, nothing happens.

This construct should become clearer with an example. Let’s revisit our solution to
Task 4-2 and the additions to it presented earlier in this chapter (our graphics util-
ity). Remember that we wrote some code that processed input files according to their
suffixes (.pcx for PCX format, .gif for GIF format, etc.).

We can improve upon this solution in two ways. Firstly, we can use a for loop to
allow multiple files to be processed one at a time; secondly, we can use the case con-
struct to streamline the code:

for filename in "$@"; do
pnmfile=${filename%.*}.ppm

case $filename in
*.jpg) exit 0 ;3

*.tga) tgatoppm $filename > $pnmfile ;;
*.xpm) xpmtoppm $filename > $pnmfile ;;
*.pcx) pextoppm $filename > $pnmfile ;;
*.tif) tifftopnm $filename > $pnmfile ;;
*.gif) giftopnm $filename > $pnmfile ;;
*) echo "procfile: $filename is an unknown graphics file."
exit 1 ;;

esac

outfile=${pnmfile%.ppm}.new.jpg

pnmtojpeg $pnmfile > $outfile

m $pnmfile

done

The case construct in this code does the same thing as the if statements that we saw
in the earlier version. It is, however, clearer and easier to follow.

The first six patterns in the case statement match the various file extensions that we
wish to process. The last pattern matches anything that hasn’t already been matched
by the previous statements. It is essentially a catchall and is analogous to the default
case in C.

ase | 129

There is another slight difference to the previous version; we have moved the pattern
matching and replacement inside the added for loop that processes all of the com-
mand-line arguments. Each time we pass through the loop, we want to create a tem-
porary and final file with a name based on the name in the current command-line
argument.

We'll return to this example in Chapter 6, when we further develop the script and
discuss how to handle dash options on the command line. In the meantime, here is a
task that requires that we use case.

Task 5-4

Write a function that implements the Korn shell’s ¢d old new. cd takes the pathname
of the current directory and tries to find the string old. If it finds it, it substitutes new
and attempts to change to the resulting directory.

We can implement this by using a case statement to check the number of arguments
and the built-in ¢d command to do the actual change of directory.

Here is the code:”

cd()
{
case "$#" in
0 | 1) builtin cd $1 ;;
2) newdir=${PWD//$1/$2}
case "$newdir" in
$PWD) echo "bash: cd: bad substitution" >82 ;

return 1 ;;
*) builtin cd "$newdir" ;;
esac ;;
*) echo "bash: cd: wrong arg count" 1>& ; return 1 ;;

esac

}

The case statement in this task tests the number of arguments to our ¢d command
against three alternatives.

For zero or one arguments, we want our cd to work just like the built-in one. The first
alternative in the case statement does this. It includes something we haven’t used so
far; the pipe symbol between the 0 and 1 means that either pattern is an acceptable
match. If the number of arguments is either of these, the built-in cd is executed.

* To make the function a little clearer, we’ve used some advanced 1/O redirection. I/O redirection is covered
in Chapter 7.

130 | Chapter5: Flow Control

The next alternative is for two arguments, which is where we’ll add the new func-
tionality to cd. The first thing that has to be done is finding and replacing the old
string with the new one. We use the pattern matching and replacement that we saw
in the last chapter, the result being assigned to newdir. If the substitution didn’t take
place, the pathname will be unchanged. We’ll use this fact in the next few lines.

Another case statement chooses between performing the cd or reporting an error
because the new directory is unchanged. The * alternative is a catchall for anything
other than the current pathname (caught by the first alternative).

You might notice one small problem with this code: if your old and new strings are
the same you’ll get bash:: cd: bad substitution. It should just leave you in the same
directory with no error message, but because the directory path doesn’t change, it
uses the first alternative in the inner case statement. The problem lies in knowing if
sed has performed a substitution or not. You might like to think about ways to fix
this problem (hint: you could use grep to check whether the pathname has the old
string in it).

The last alternative in the outer case statement prints an error message if there are
more than two arguments.

select

All of the flow-control constructs we have seen so far are also available in the Bourne
shell, and the C shell has equivalents with different syntax. Our next construct,
select, is available only in the Korn shell and bash;” moreover, it has no analogy in
conventional programming languages.

select allows you to generate simple menus easily. It has concise syntax, but it does
quite a lot of work. The syntax is:

select name [in list]

do

statements that can use $name...

done
This is the same syntax as for except for the keyword select. And like for, you can
omit the in [ist and it will default to “$@”, i.e., the list of quoted command-line
arguments. Here is what select does:

1. Generates a menu of each item in list, formatted with numbers for each choice
2. Prompts the user for a number

3. Stores the selected choice in the variable name and the selected number in the
built-in variable REPLY

*

select is not available in bash versions prior to 1.14.

select | 131

4. Executes the statements in the body

5. Repeats the process forever (but see below for how to exit)

Here is a task that adds another command to our pushd and popd utilities.

Task 5-5

Write a function that allows the user to select a directory from a list of directories cur-
rently in the pushd directory stack. The selected directory is moved to the front of the
stack and becomes the current working directory.

The display and selection of directories is best handled by using select. We can start
off with something along the lines of:"

selectd ()
{
PS3="directory? '
select selection in $DIR_STACK; do
if [$selection]; then
#statements that manipulate the stack...

break
else
echo 'invalid selection.'
fi
done
}
If you type DIR_STACK="/usr /home /bin” and execute this function, you’ll see:
1) /usr
2) /home
3) /bin
directory?

The built-in shell variable PS3 contains the prompt string that select uses; its default
value is the not particularly useful “#2”. So the first line of the above code sets it to a
more relevant value.

The select statement constructs the menu from the list of choices. If the user enters a
valid number (from 1 to the number of directories), then the variable selection is set
to the corresponding value; otherwise it is null. (If the user just presses RETURN, the
shell prints the menu again.)

* Versions of bash prior to 1.14.3 have a serious bug with select. These versions will crash if the select list is
empty. In this case, surround selects with a test for a null list.

132 | Chapter5: Flow Control

The code in the loop body checks if selection is non-null. If so, it executes the state-
ments we will add in a short while; then the break statement exits the select loop. If
selection is null, the code prints an error message and repeats the menu and prompt.

The break statement is the usual way of exiting a select loop. Actually (like its ana-
log in Java and C), it can be used to exit any surrounding control structure we’ve
seen so far (except case, where the double semicolons act like break) as well as the
while and until we will see soon. We haven’t introduced break until now because it
is considered bad coding style to use it to exit a loop. However, it can make code eas-
ier to read if used judiciously. break is necessary for exiting select when the user
makes a valid choice.”

Now we’ll add the missing pieces to the code:

selectd ()

{
PS3="directory? '
dirstack=" $DIR_STACK "

select selection in $dirstack; do
if [$selection]; then
DIR_STACK="$selection${dirstack¥% $selection *}"
DIR STACK="$DIR STACK ${dirstackit* $selection }"
DIR_STACK=${DIR_STACK% }
cd $selection
break
else
echo 'invalid selection.'
fi
done

}
The first two lines initialize environment variables. dirstack is a copy of DIR_STACK
with spaces appended at the beginning and end so that each directory in the list is of
the form space directory space. This form simplifies the code when we come to
manipulating the directory stack.

The select and if statements are the same as in our initial function. The new code
inside the if uses bash’s pattern-matching capability to manipulate the directory stack.

The first statement sets DIR_STACK to selection, followed by dirstack with everything
from selection to the end of the list removed. The second statement adds everything in
the list from the directory following selection to the end of DIR_STACK. The next line
removes the trailing space that was appended at the start. To complete the operation, a
cd is performed to the new directory, followed by a break to exit the select code.

* A user can also type CTRL-D (for end-of-input) to get out of a select loop. This gives the user a uniform way
of exiting, but it doesn’t help the shell programmer much.

select | 133

As an example of the list manipulation performed in this function, consider a
DIR_STACK set to /home /bin /usr2. In this case, dirstack would become /home /bin
fusr2. Typing selectd would result in:

$ selectd

1) /home

2) /bin

3) /usr2

directory?
After selecting /bin from the list, the first statement inside the if section sets DIR_
STACK to /bin followed by dirstack with everything from /bin onwards removed,
i.e., /home.

The second statement then takes DIR_STACK and appends everything in dirstack
following /bin (i.e., /usr2) to it. The value of DIR_STACK becomes /bin /home fusr2.
The trailing space is removed in the next line.

while and until

The remaining two flow control constructs bash provides are while and until. These
are similar; they both allow a section of code to be run repetitively while (or until) a
certain condition becomes true. They also resemble analogous constructs in Pascal
(while/do and repeat/until) and C (while and do/until).

while and until are actually most useful when combined with features we will see in
the next chapter, such as integer arithmetic, input/output of variables, and com-
mand-line processing. Yet we can show a useful example even with what we have
covered so far.

The syntax for while is:

while conditiondo
statements. ..done

For until, just substitute until for while in the above example. As with if, the condi-
tion is really a list of statements that are run; the exit status of the last one is used as
the value of the condition. You can use a conditional with test here, just as you can
with if.

Note that the only difference between while and until is the way the condition is
handled. In while, the loop executes as long as the condition is true; in until, it runs

as long as the condition is false. The until condition is checked at the top of the loop,
not at the bottom as it is in analogous constructs in C and Pascal.

The result is that you can convert any until into a while by simply negating the con-
dition. The only place where until might be more meaningful is something like this:

until command; do
statements. . .done

134 | Chapter5: Flow Control

The meaning of this is essentially, “Do statements until command runs correctly.”
This is not a likely contingency.

Here is an earlier task that can be rewritten using a while.

Task 5-6

Reimplement Task 5-2 without the use of the IFS variable.

We can use the while construct and pattern matching to traverse the PATH list:

path=$PATH:

while [$path]; do
1s -1d ${path%s:*}
path=${path#*:}
done
The first line copies PATH to a temporary copy, path, and appends a colon to it.
Normally colons are used only between directories in PATH; adding one to the end
makes the code simple.

Inside the while loop we display the directory with Is as we did in Task 5-2. path is
then updated by removing the first directory pathname and colon (which is why we
needed to append the colon in the first line of the script). The while will keep loop-
ing until $path expands to nothing (the empty string “”), which occurs once the last
directory in path has been listed.

Here is another task that is a good candidate for until.

Task 5-7

Write a script that attempts to copy a file to a directory and, if it fails, waits five sec-
onds, then tries again, continuing until it succeeds.

Here is the code:

until cp $1 $2; do
echo 'Attempt to copy failed. waiting...'
sleep 5

done

This is a fairly simple use of until. First, we use the ¢p command to perform the copy
for us. If it can’t perform the copy for any reason, it will return with a non-zero exit

whileanduntil | 135

code. We set our until loop so that if the result of the copy is not 0 then the script
prints a message and waits five seconds.

As we said earlier, an until loop can be converted to a while by the use of the !
operator:
while ! cp $1 $2; do
echo 'Attempt to copy failed. waiting...'
sleep 5
done
In our opinion, you’ll seldom need to use until; therefore, we’ll use while through-
out the rest of this book. We’ll see further use of the while construct in Chapter 7.

136 | Chapter5: Flow Control

CHAPTER 6

Command-Line Options and Typed
Variables

You should have a healthy grasp of shell programming techniques now that you have
gone through the previous chapters. What you have learned up to this point enables
you to write many non-trivial, useful shell scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to write
shell code that behaves like the UNIX commands you are used to. In particular, if
you are an experienced UNIX user, it might have occurred to you that none of the
example scripts shown so far have the ability to handle options preceded by a dash (-)
on the command line. And if you program in a conventional language like C or Pas-
cal, you will have noticed that the only type of data that we have seen in shell vari-
ables is character strings; we haven’t seen how to do arithmetic, for example.

These capabilities are certainly crucial to the shell’s ability to function as a useful
UNIX programming language. In this chapter, we will show how bash supports these
and related features.

Command-Line Options

We have already seen many examples of the positional parameters (variables called 1,
2, 3, etc.) that the shell uses to store the command-line arguments to a shell script or
function when it runs. We have also seen related variables like * (for the string of all
arguments) and # (for the number of arguments).

Indeed, these variables hold all of the information on the user’s command-line. But
consider what happens when options are involved. Typical UNIX commands have
the form command [-options]args, meaning that there can be 0 or more options. If a
shell script processes the command teatime alice hatter, then $1 is “alice” and $2 is
“hatter”. But if the command is teatime -o alice hatter, then $1 is -0, $2 is “alice”,
and $3 is “hatter”.

137

You might think you could write code like this to handle it:

if [$1 = -0]; then
code that processes the -o option
1=$2
2=$3

fi

normal processing of $1 and $2...

But this code has several problems. First, assignments like 1=$2 are illegal because
positional parameters are read-only. Even if they were legal, another problem is that
this kind of code imposes limitations on how many arguments the script can han-
dle—which is very unwise. Furthermore, if this command had several possible
options, the code to handle all of them would get very messy very quickly.

shift

Luckily, the shell provides a way around this problem. The command shift performs
the function of:

1=$2
2=$3

for every argument, regardless of how many there are. If you supply a numeric argu-
ment to shift, it will shift the arguments that many times over; for example, shift 3
has this effect:
1=$4
2=$5
This leads immediately to some code that handles a single option (call it -0) and arbi-
trarily many arguments:
if [$1 = -0]; then
process the -o option
shift
fi
normal processing of arguments...

After the if construct, $1, $2, etc., are set to the correct arguments.

We can use shift together with the programming features we have seen so far to
implement simple option schemes. However, we will need additional help when
things get more complex. The getopts built-in command, which we will introduce
later, provides this help.

shift by itself gives us enough power to implement the -N option to the highest script
we saw in Chapter 4 (Task 4-1). Recall that this script takes an input file that lists

138 | Chapter6: Command-Line Options and Typed Variables

artists and the number of albums you have by them. It sorts the list and prints out
the N highest numbers, in descending order. The code that does the actual data pro-
cessing is:
filename=$1
howmany=${2:-10}
sort -nr $filename | head -$howmany
Our original syntax for calling this script was highest filename [-N], where N defaults
to 10 if omitted. Let’s change this to a more conventional UNIX syntax, in which
options are given before arguments: highest [-N] filename. Here is how we would
write the script with this syntax:
if [-n "$(echo $1 | grep '~-[0-9][0-9]*$")"]; then
howmany=$1
shift
elif [-n "$(echo $1 | grep '~-")" 1; then
print 'usage: highest [-N] filename'
exit 1

else
howmany="-10

fi

filename=$1

sort -nr $filename | head $howmany
This uses the grep search utility to test if $1 matches the appropriate pattern. To do
this we provide the regular expression A-[0-9][0-9]*$ to grep, which is interpreted as
“an initial dash followed by a digit, optionally followed by one or more digits.” If a
match is found then grep will return the match and the test will be true, otherwise
grep will return nothing and processing will pass to the elif test. Notice that we have
enclosed the regular expression in single quotes to stop the shell from interpreting
the $ and *, and pass them through to grep unmodified.

If $1 doesn’t match, we test to see if it’s an option at all, i.e., if it matches the pat-
tern - followed by anything else. If it does, then it’s invalid; we print an error mes-
sage and exit with error status. If we reach the final (else) case, we assume that $1 is
a filename and treat it as such in the ensuing code. The rest of the script processes
the data as before.

We can extend what we have learned so far to a general technique for handling mul-
tiple options. For the sake of concreteness, assume that our script is called alice and
we want to handle the options -a, -b, and -c:

while [-n "$(echo $1 | grep '-"')"]; do
case $1 in
-a) process option -a ;;
-b) process option -b ;;
-Cc) process option -c ;;
*) echo 'usage: alice [-a] [-b] [-c] args...'
exit 1

Command-Line Options | 139

esac
shift

done

normal processing of arguments...
This code checks $1 repeatedly as long as it starts with a dash (-). Then the case con-
struct runs the appropriate code depending on which option $1 is. If the option is
invalid—i.e., if it starts with a dash but isn’t -a, -b, or -c—then the script prints a
usage message and returns with an error exit status.

After each option is processed, the arguments are shifted over. The result is that the
positional parameters are set to the actual arguments when the while loop finishes.

Notice that this code is capable of handling options of arbitrary length, not just one
letter (e.g., -adventure instead of -a).

Options with Arguments

We need to add one more ingredient to make option processing really useful. Recall
that many commands have options that take their own arguments. For example, the
cut command, on which we relied heavily in Chapter 4, accepts the option -d with an
argument that determines the field delimiter (if it is not the default TAB). To handle
this type of option, we just use another shift when we are processing the option.

Assume that, in our alice script, the option -b requires its own argument. Here is the
modified code that will process it:
while [-n "$(echo $1 | grep '-")" 1; do
case $1 in
-a) process option -a ;;
-b) process option -b
$2 is the option's argument
shift ;;
-c) process option -c ;;
*) echo 'usage: alice [-a] [-b barg] [-c] args...'
exit 1
esac
shift
done

normal processing of arguments...

getopts

So far, we have a complete, but constrained, way of handling command-line options.
The above code does not allow a user to combine arguments with a single dash, e.g.,
-abc instead of -a -b -c. It also doesn’t allow one to specify arguments to options
without a space in between, e.g., -barg in addition to -b arg.’

* Although most UNIX commands allow this, it is actually contrary to the Command Syntax Standard Rules
in intro of the User’s Manual.

140 | Chapter6: Command-Line Options and Typed Variables

The shell provides a built-in way to deal with multiple complex options without
these constraints. The built-in command getopts” can be used as the condition of the
while in an option-processing loop. Given a specification of which options are valid
and which require their own arguments, it sets up the body of the loop to process
each option in turn.

getopts takes two arguments. The first is a string that can contain letters and colons.
Each letter is a valid option; if a letter is followed by a colon, the option requires an
argument. getopts picks options off the command line and assigns each one (with-
out the leading dash) to a variable whose name is getopts’s second argument. As
long as there are options left to process, getopts will return exit status 0; when the
options are exhausted, it returns exit status 1, causing the while loop to exit.

getopts does a few other things that make option processing easier; we’ll encounter
them as we examine how to use getopts in this example:

while getopts ":ab:c" opt; do
case $opt in
a) process option -a ;;
b) process option -b
$OPTARG is the option's argument ;;
c) process option -c ;;
\?) echo 'usage: alice [-a] [-b barg] [-c] args...
exit 1
esac
done
shift $(($OPTIND - 1))
normal processing of arguments...
The call to getopts in the while condition sets up the loop to accept the options -a, -b,
and -c, and specifies that -b takes an argument. (We will explain the : that starts the
option string in a moment.) Each time the loop body is executed, it will have the lat-

est option available, without a dash (-), in the variable opt.

If the user types an invalid option, getopts normally prints an unfortunate error mes-
sage (of the form cmd: getopts: illegal option — 0) and sets opt to 2. However if you
begin the option letter string with a colon, getopts won’t print the message.t We rec-
ommend that you specify the colon and provide your own error message in a case
that handles ?, as above.

We have modified the code in the case construct to reflect what getopts does. But
notice that there are no more shift statements inside the while loop: getopts does not
rely on shifts to keep track of where it is. It is unnecessary to shift arguments over
until getopts is finished, i.e., until the while loop exits.

* getopts replaces the external command getopt, used in Bourne shell programming; getopts is better inte-
grated into the shell’s syntax and runs more efficiently. C programmers will recognize getopts as very similar
to the standard library routine getopt.

T You can also turn off the getopts messages by setting the environment variable OPTERR to 0. We will con-
tinue to use the colon method in this book.

Command-Line Options | 141

If an option has an argument, getopts stores it in the variable OPTARG, which can
be used in the code that processes the option.

The one shift statement left is after the while loop. getopts stores in the variable
OPTIND the number of the next argument to be processed; in this case, that’s the
number of the first (non-option) command-line argument. For example, if the com-
mand line were alice -ab rabbit, then $OPTIND would be “3”. If it were alice -a -b
rabbit, then $OPTIND would be “4”.

The expression $((SOPTIND - 1)) is an arithmetic expression (as we’ll see later in
this chapter) equal to $OPTIND minus 1. This value is used as the argument to
shift. The result is that the correct number of arguments are shifted out of the way,
leaving the “real” arguments as $1, $2, etc.

Before we continue, now is a good time to summarize everything getopts does:

1. Tts first argument is a string containing all valid option letters. If an option requires
an argument, a colon follows its letter in the string. An initial colon causes getopts
not to print an error message when the user gives an invalid option.

2. Tts second argument is the name of a variable that will hold each option letter
(without any leading dash) as it is processed.

3. If an option takes an argument, the argument is stored in the variable OPTARG.

4. The variable OPTIND contains a number equal to the next command-line argu-
ment to be processed. After getopts is done, it equals the number of the first
“real” argument.

The advantages of getopts are that it minimizes extra code necessary to process
options and fully supports the standard UNIX option syntax (as specified in intro of
the User’s Manual).
As a more concrete example, let’s return to our graphics utility (Task 4-2). So far, we
have given our script the ability to process various types of graphics files such as PCX
files (ending with .pcx), GIF files (.gif), XPM files (.xpm), etc. As a reminder, here is
what we have coded in the script so far:
filename=$1
if [-z $filename]; then
echo "procfile: No file specified"
exit 1
fi

for filename in "$@"; do
pnmfile=${filename%.*}.ppm

case $filename in
*.jpg) exit 0 ;;

*.tga) tgatoppm $filename > $pnmfile ;;

*.xpm) xpmtoppm $filename > $pnmfile ;;

142 | Chapter6: Command-Line Options and Typed Variables

*.pcx) pextoppm $filename > $pnmfile ;;
*.tif) tifftopnm $filename > $pnmfile ;;

*.gif) giftopnm $filename > $pnmfile ;;

*) echo "procfile: $filename is an unknown graphics file."
exit 1 ;;
esac

outfile=${pnmfile%.ppm}.new.Jjpg

pnmtojpeg $pnmfile > $outfile
m $pnmfile

done

This script works quite well, in that it will convert the various different graphics files
that we have lying around into JPEG files suitable for our web page. However, Net-
PBM has a whole range of useful utilities besides file converters that we could use on
the images. It would be nice to be able to select some of them from our script.

Things we might wish to do to modify the images include changing the size and plac-
ing a border around them. We want to make the script as flexible as possible; we will
want to change the size of the resulting images and we might not want a border
around every one of them, so we need to be able to specify to the script what it
should do. This is where the command-line option processing will come in useful.

We can change the size of an image by using the NetPBM utility pnmscale. You'll
recall from the last chapter that the NetPBM package has its own format called
PNM, the Portable Anymap. The fancy utilities we’ll be using to change the size and
add borders work on PNMs. Fortunately, our script already converts the various for-
mats we give it into PNMs. Besides a PNM file, pnmscale also requires some argu-
ments telling it how to scale the image.” There are various different ways to do this,
but the one we’ll choose is -xysize which takes a horizontal and a vertical size in pix-
els for the final image.t

The other utility we need is pnmmargin, which places a colored border around an
image. Its arguments are the width of the border in pixels and the color of the border.

Our graphics utility will need some options to reflect the ones we have just seen. -s
size will specify a size into which the final image will fit (minus any border), -w width
will specify the width of the border around the image, and -c color-name will specify
the color of the border.

* We’'ll also need the -quiet option, which suppresses diagnostic output from some NetPBM utilities.

1 Actually, -xysize fits the image into a box defined by its arguments without changing the aspect ratio of the
image, i.e., without stretching the image horizontally or vertically. For example, if you had an image of size
200 by 100 pixels and you processed it with pnmscale -xysize 100 100, you’d end up with an image of size
100 by 50 pixels.

Command-Line Options | 143

Here is the code for the script procimage that includes the option processing:

Set up the defaults
size=320
width=1
colour="-color black"
usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."
while getopts ":s:w:c:" opt; do

case $opt in

s) size=$0PTARG ;;

w) width=$OPTARG ;;
c) colour="-color $OPTARG" ;;
\?) echo $usage
exit 1 ;;
esac

done
shift $(($OPTIND - 1))

if [-z "$@"]; then
echo $usage
exit 1

fi

Process the input files
for filename in "$@"; do
ppmfile=${filename%.*}.ppm

case $filename in
*.gif) giftopnm $filename > $ppmfile

}

-

*.tga) tgatoppm $filename > $ppmfile

)

-

*.xpm) xpmtoppm $filename > $ppmfile

)

..

*.pcx) pextoppm $filename > $ppmfile ;;
*.tif) tifftopnm $filename > $ppmfile ;;
*.jpg) jpegtopnm -quiet $filename > $ppmfile ;;
*) echo "$0: Unknown filetype '${filenameftt*.}"'"
exit 1;;
esac
outfile=${ppmfile%.ppm}.new.jpg
pnmscale -quiet -xysize $size $size $ppmfile |
pnmmargin $colour $width
pnmtojpeg > $outfile
m $ppmfile

done

144 | Chapter6: Command-Line Options and Typed Variables

The first several lines of this script initialize variables with default settings. The
defaults set the image size to 320 pixels and a black border of width 1 pixel.

The while, getopts, and case constructs process the options in the same way as in
the previous example. The code for the first three options assigns the respective argu-
ment to a variable (replacing the default value). The last option is a catchall for any
invalid options.

The rest of the code works in much the same way as in the previous example except we
have added the pnmscale and pnmmargin utilities in a processing pipeline at the end.

The script also now generates a different filename; it appends .new.jpg to the base-
name. This allows us to process a JPEG file as input, applying scaling and borders,
and write it out without destroying the original file.

This version doesn’t address every issue, e.g., what if we don’t want any scaling to be
performed? We’ll return to this script and develop it further in the next chapter.

Typed Variables

So far we've seen how bash variables can be assigned textual values. Variables can
also have other attributes, including being read only and being of type integer.

You can set variable attributes with the declare built-in.” Table 6-1 summarizes the
available options with declare.t A - turns the option on, while + turns it off.

Table 6-1. Declare options

Option Meaning

-a The variables are treated as arrays

f Use function names only

-F Display function names without definitions

-i The variables are treated as integers
-r Makes the variables read-only
X Marks the variables for export via the environment

Typing declare on its own displays the values of all variables in the environment.
The -f option limits this display to the function names and definitions currently in
the environment. -F limits it further by displaying only the function names.

The -a option declares arrays—a variable type that we haven’t seen yet, but will be
discussed shortly.

* The typeset built-in is synonymous with declare but is considered obsolete.
1 The -a and -F options are not available in bash prior to version 2.0.

Typed Variables | 145

The -i option is used to create an integer variable, one that holds numeric values and
can be used in and modified by arithmetic operations. Consider this example:

$ vali=12 val2=5

$ resulti=val*val2

$ echo $resulti

vali*val2

$

$ declare -i val3=12 val4=5

$ declare -i result2

$ result2=val3*val4

$ echo $result2

60
In the first example, the variables are ordinary shell variables and the result is just the
string “vall*val2”. In the second example, all of the variables have been declared as
type integer. The variable result contains the result of the arithmetic computation
twelve multiplied by five. Actually, we didn’t need to declare val3 and val4 as type
integer. Anything being assigned to result2 is interpreted as an arithmetic statement
and evaluation is attempted.

The -x option to declare operates in the same way as the export built-in that we saw
in Chapter 3. It allows the listed variables to be exported outside the current shell
environment.

The -r option creates a read-only variable, one that cannot have its value changed by
subsequent assignment statements and cannot be unset.

A related built-in is readonly name ... which operates in exactly the same way as declare
-r. readonly has three options: -f, which makes readonly interpret the name arguments
as function names rather than variable names, -p, which makes the built-in print a list of
all read-only names, and -a, which interprets the name arguments as arrays.

Lastly, variables declared in a function are local to that function, just like using local
to declare them.

Integer Variables and Arithmetic

The expression $((SOPTIND - 1)) in the last graphics utility example shows another
way that the shell can do integer arithmetic. As you might guess, the shell interprets
words surrounded by $((and)) as arithmetic expressions.” Variables in arithmetic
expressions do not need to be preceded by dollar signs, though it is not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and
command substitutions. We’re finally in a position to state the definitive rule about

* You can also use the older form $[...], but we don’t recommend this because it will be phased out in future
versions of bash.

146 | Chapter6: Command-Line Options and Typed Variables

quoting strings: when in doubt, enclose a string in single quotes, unless it contains
tildes or any expression involving a dollar sign, in which case you should use double
quotes.

For example, the date command on modern versions of UNIX accepts arguments
that tell it how to format its output. The argument +%;j tells it to print the day of the
year, i.e., the number of days since December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:
echo "Only $(((365-$(date +%j)) / 7)) weeks until the New Year"

We'll show where this fits in the overall scheme of command-line processing in
Chapter 7.

The arithmetic expression feature is built into bash’s syntax, and was available in the
Bourne shell (most versions) only through the external command expr. Thus it is yet
another example of a desirable feature provided by an external command being bet-
ter integrated into the shell. getopts, as we have already seen, is another example of
this design trend.

bash arithmetic expressions are equivalent to their counterparts in the Java and C
languages.” Precedence and associativity are the same as in C. Table 6-2 shows the
arithmetic operators that are supported. Although some of these are (or contain) spe-
cial characters, there is no need to backslash-escape them, because they are within
the $((...)) syntax.

Table 6-2. Arithmetic operators

Operator Meaning
++ Increment by one (prefix and postfix)
- Decrement by one (prefix and postfix)

+ Plus

- Minus

* Multiplication

/ Division (with truncation)
% Remainder

** Exponentiationa

<< Bit-shift left

>> Bit-shift right

& Bitwise and

| Bitwise or

*

The assignment forms of these operators are also permitted. For example, $((x +=2)) adds 2 to x and stores
the result back in x.

Integer Variables and Arithmetic | 147

Table 6-2. Arithmetic operators (continued)

Operator Meaning

~ Bitwise not

! Logical not

A Bitwise exclusive or

, Sequential evaluation

a Note that ** is not in the C language.

The ++ and — operators are useful when you want to increment or decrement a value
by one.” They work the same as in Java and C, e.g., value++ increments value by 1.
This is called post-increment; there is also a pre-increment: ++value. The difference
becomes evident with an example:

$ i=0

$ echo $i

0

$ echo $((i++))

0

$ echo $i

1

$ echo $((++1))

2

$ echo $i

2
In both cases the value has been incremented by one. However, in the first case
(post-increment) the value of the variable was passed to echo and then the variable
was incremented. In the second case (pre-increment) the increment was performed
and then the variable passed to echo.

Parentheses can be used to group subexpressions. The arithmetic expression syntax
also (as in C) supports relational operators as “truth values” of 1 for true and 0 for
false. Table 6-3 shows the relational operators and the logical operators that can be
used to combine relational expressions.

Table 6-3. Relational operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

* ++ and — are not available in versions of bash prior to 2.04.

148 | Chapter6: Command-Line Options and Typed Variables

Table 6-3. Relational operators (continued)

Operator Meaning
= Not equal to
&& Logical and
| Logical or

For example, $((3 > 2)) has the value 1; $(((3 >2) || (4 <=1))) also has the value 1,
since at least one of the two subexpressions is true.

The shell also supports base N numbers, where N can be from 2 to 36. The notation
B#N means “N base B”. Of course, if you omit the B#, the base defaults to 10.

Arithmetic Conditionals

In Chapter 5, we saw how to compare strings by the use of [...] notation (or with the
test built-in). Arithmetic conditions can also be tested in this way. However, the tests
have to be carried out with their own operators. These are shown in Table 6-4.

Table 6-4. Test relational operators

Operator Meaning

It Less than

-gt Greater than

-le Less than or equal to
-ge Greater than or equal to
-eq Equal to

-ne Not equal to

And as with string comparisons, the arithmetic test returns a result of true or
false; 0 if true, 1 otherwise. So, for example, [3 -gt 2] produces exit status 0, as
does [\(3-gt2\) |[\(4-le1\)], but [\(3 -gt2\) && \(4 -le 1\)] has exit status 1
since the second subexpression isn’t true.

In these examples we have had to escape the parentheses and pass them to test as
separate arguments. As you can see, the result can look rather unreadable if there are
many parentheses.

Another way to make arithmetic tests is to use the $((...)) form to encapsulate the
condition. For example: [$(((3 > 2) && (4 <=1))) = 1]. This evaluates the condi-
tionals and then compares the resulting value to 1 (true).”

* Note that the truth values returned by $((...)) are 1 for true, 0 for false—the reverse of the test and exit statuses.

Integer Variables and Arithmetic | 149

There is an even neater and more efficient way of performing an arithmetic test: by
using the ((...)) construct.” This returns an exit status of 0 if the expression is true,
and 1 otherwise.

The above expression using this construct becomes (((3 > 2) && (4 <= 1))). This
example returns with an exit status of 1 because, as we said, the second subexpres-
sion is false.

Arithmetic Variables and Assignment

As we saw earlier, you can define integer variables by using declare. You can also
evaluate arithmetic expressions and assign them to variables with the use of let. The
syntax is:

let intvar=expression

It is not necessary (because it’s actually redundant) to surround the expression with
$((and)) in a let statement. let doesn’t create a variable of type integer; it only
causes the expression following the assignment to be interpreted as an arithmetic
one. As with any variable assignment, there must not be any space on either side of
the equal sign (=). It is good practice to surround expressions with quotes, since
many characters are treated as special by the shell (e.g., *, #, and parentheses); fur-
thermore, you must quote expressions that include whitespace (spaces or TABs). See
Table 6-5 for examples.

Table 6-5. Sample integer expression assignments

Assignment Value
letx= $x
1+4 5
T+4 5
243)*5 25
2+3*5 17
17173 5
T%3 2
T<<4 16
48>>3' 6
17&3 1
73 19
N3 18

* ((...)) is not available in versions of bash prior to 2.0.

150 | Chapter6: Command-Line Options and Typed Variables

Task 6-1

Here is a small task that makes use of integer arithmetic. Write a script called ndu that
prints a summary of the disk space usage for each directory argument (and any subdirec-
tories), both in terms of bytes, and kilobytes or megabytes (whichever is appropriate).

Here is the code:
for dir in ${*:-.}; do
if [-e $dir]; then
result=$(du -s $dir | cut -f 1)
let total=$result*1024

echo -n "Total for $dir = $total bytes"

if [$total -ge 1048576]; then
echo " ($((total/1048576)) Mb)"
elif [$total -ge 1024]; then
echo " ($((total/1024)) Kb)"
fi
fi
done
To obtain the disk usage of files and directories, we can use the UNIX utility du. The
default output of du is a list of directories with the amount of space each one uses,
and looks something like this:
6 ./toc
3 ./figlist
6 ./tablist
1 ./exlist
1 ./index/idx
22 ./index

If you don’t specify a directory to du, it will use the current directory (.). Each direc-
tory and subdirectory is listed along with the amount of space it uses. The grand
total is given in the last line.

The amount of space used by each directory and all the files in it is listed in terms of
blocks. Depending on the UNIX system you are running on, one block can represent
512 or 1024 bytes. Each file and directory uses at least one block. Even if a file or
directory is empty, it is still allocated a block of space in the filesystem.

In our case, we are only interested in the total usage, given on the last line of du’s
output. To obtain only this line, we can use the -s option of du. Once we have the
line, we want only the number of blocks and can throw away the directory name. For
this we use our old friend cut to extract the first field.

Integer Variables and Arithmetic | 151

Once we have the total, we can multiply it by the number of bytes in a block (1024 in
this case) and print the result in terms of bytes. We then test to see if the total is greater
than the number of bytes in one megabyte (1048576 bytes, which is 1024 x 1024) and
if it is, we can print how many megabytes it is by dividing the total by this large num-
ber. If not, we see if it can be expressed in kilobytes, otherwise nothing is printed.

We need to make sure that any specified directories exist, otherwise du will print an
error message and the script will fail. We do this by using the test for file or directory
existence (-e) that we saw in Chapter 5 before calling du.

To round out this script, it would be nice to imitate du as closely as possible by pro-
viding for multiple arguments. To do this, we wrap the code in a for loop. Notice
how parameter substitution has been used to specify the current directory if no argu-
ments are given.

As a bigger example of integer arithmetic, we will complete our emulation of the
pushd and popd functions (Task 4-8). Remember that these functions operate on
DIR_STACK, a stack of directories represented as a string with the directory names
separated by spaces. bash’s pushd and popd take additional types of arguments,
which are:

* pushd +n takes the nth directory in the stack (starting with 0), rotates it to the
top, and cds to it.

* pushd without arguments, instead of complaining, swaps the two top directo-
ries on the stack and cds to the new top.

* popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the nth directory in the stack.
Here are the latest versions of both functions:

.ps 8
pushd ()
{
dirname=$1 if [-n $dirname] && [\(-d $dirname \) -a
\(-x $dirname \)]; then
DIR_STACK="$dirname ${DIR STACK:-$PWD' '}"
cd $dirname
echo "$DIR_STACK"
else
echo "still in $PWD."

fi
}
popd ()
{

if [-n "$DIR_STACK"]; then
DIR_STACK=${DIR STACK#* }

cd ${DIR_STACK%% *}
echo "$PWD"

152 | Chapter6: Command-Line Options and Typed Variables

else
echo "stack empty, still in $PWD."
fi
}
To get at the nth directory, we use a while loop that transfers the top directory to a
temporary copy of the stack # times. We’ll put the loop into a function called getNdirs
that looks like this:

getNdirs ()
{
stackfront=""
let count=0
while [$count -le $1]; do
target=${DIR_STACK%${DIR_STACK#* }}
stackfront="$stackfront$target"
DIR STACK=${DIR STACK#$target}
let count=count+1
done

stackfront=${stackfront%$target}
}
The argument passed to getNdirs is the n in question. The variable target contains
the directory currently being moved from DIR_STACK to a temporary stack, stack-
front. target will contain the nth directory and stackfront will have all of the directo-
ries above (and including) target when the loop finishes. stackfront starts as null;
count, which counts the number of loop iterations, starts as 0.

The first line of the loop body copies the first directory on the stack to target. The
next line appends target to stackfront and the following line removes target from the
stack ${DIR_STACK#S$target}. The last line increments the counter for the next
iteration. The entire loop executes n+1 times, for values of count from 0 to N.

When the loop finishes, the directory in $target is the nth directory. The expression
${stackfront%$target} removes this directory from stackfront so that stackfront will
contain the first n-1 directories. Furthermore, DIR_STACK now contains the “back”
of the stack, i.e., the stack without the first n directories. With this in mind, we can
now write the code for the improved versions of pushd and popd:

pushd ()

{
if [$(echo $1 | grep '~+[0-9][0-9]*$')]; then

case of pushd +n: rotate n-th directory to top
let num=${1#+}
getNdirs $num

DIR_STACK="$target$stackfront$DIR_STACK"
cd $target
echo "$DIR_STACK"

Integer Variables and Arithmetic | 153

elif [-z "$1"]; then
case of pushd without args; swap top two directories
firstdir=${DIR_STACK%% *}
DIR_STACK=${DIR_STACK#* }
seconddir=${DIR_STACK%% *}
DIR_STACK=${DIR_STACK#* }
DIR_STACK="$seconddir $firstdir $DIR_STACK"
cd $seconddir

else
normal case of pushd dirname
dirname=$1
if [\(-d $dirname \) -a \(-x $dirname \)]; then
DIR_STACK="$dirname ${DIR_STACK:-$PWD" "}"
cd $dirname
echo "$DIR_STACK"
else
echo still in "$PWD."
fi
fi
}

?Opd 0
if [$(echo $1 | grep '~+[0-9][0-9]*$')]; then

case of popd +n: delete n-th directory from stack
let num=${1#+}

getNdirs $num

DIR_STACK="$stackfront$DIR STACK"

cd ${DIR_STACK%% *}

echo "$PWD"

else

normal case of popd without argument
if [-n "$DIR_STACK"]; then
DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"
else
echo "stack empty, still in $PWD."
fi
fi
}

These functions have grown rather large; let’s look at them in turn. The if at the
beginning of pushd checks if the first argument is an option of the form +N. If so, the
first body of code is run. The first let simply strips the plus sign (+) from the argu-
ment and assigns the result—as an integer—to the variable num. This, in turn, is
passed to the getNdirs function.

154 | Chapter6: Command-Line Options and Typed Variables

The next assignment statement sets DIR_STACK to the new ordering of the list.
Then the function cds to the new directory and prints the current directory stack.

The elif clause tests for no argument, in which case pushd should swap the top two
directories on the stack. The first four lines of this clause assign the top two directo-
ries to firstdir and seconddir, and delete these from the stack. Then, as above, the
code puts the stack back together in the new order and cds to the new top directory.

The else clause corresponds to the usual case, where the user supplies a directory
name as argument.

popd works similarly. The if clause checks for the +N option, which in this case
means “delete the nth directory.” A let extracts the N as an integer; the getNdirs
function puts the first n directories into stackfront. Finally, the stack is put back
together with the nth directory missing, and a cd is performed in case the deleted
directory was the first in the list.

The else clause covers the usual case, where the user doesn’t supply an argument.

Before we leave this subject, here are a few exercises that should test your under-
standing of this code:

1. Implement bash’s dirs command and the options +n and -l. dirs by itself dis-
plays the list of currently remembered directories (those in the stack). The +n
option prints out the nth directory (starting at 0) and the -1 option produces a
long listing; any tildes (~) are replaced by the full pathname.

2. Modify the getNdirs function so that it checks for N exceeding the number of
directories in the stack and exits with an appropriate error message if true.

3. Modify pushd, popd, and getNdirs so that they use variables of type integer in the
arithmetic expressions.

4. Change getNdirs so that it uses cut (with command substitution), instead of the
while loop, to extract the first N directories. This uses less code but runs more
slowly because of the extra processes generated.

5. bash’s versions of pushd and popd also have a -N option. In both cases -N
causes the nth directory from the right-hand side of the list to have the opera-
tion performed on it. As with +N, it starts at 0. Add this functionality.

6. Use getNdirs to reimplement the selectd function from the last chapter.

Arithmetic for Loops

Chapter 5 introduced the for loop and briefly mentioned another type of for loop,
more akin to the construct found in many programming languages like Java and C.
This type of for loop is called an arithmetic for loop.”

* Versions of bash prior to 2.04 do not have this type of loop.

Integer Variables and Arithmetic | 155

The form of an arithmetic for loop is very similar to those found in Java and C:

for ((initialisation ; ending condition ; update))
do
statements. ..
done
There are four sections to the loop, the first three being arithmetic expressions and
the last being a set of statements just as in the standard loop that we saw in the last
chapter.

The first expression, initialisation, is something that is done once at the start of the
loop and if it evaluates to true the loop continues its process; otherwise, it skips the
loop and continues with the next statement. When initialisation is true the loop then
evaluates ending condition. If this is true then it executes statements, evaluates update
and repeats the cycle again by evaluation ending condition. The loop continues until
ending condition becomes false or the loop is exited via one of the statements.

Usually initialisation is used to set an arithmetic variable to some initial value, update
updates that variable, and ending condition tests the variable. Any of the values may
be left out in which case they automatically evaluate to true. The following simple
example:
for ((55))
do
read var
if ["$var" = "."]; then
break
fi
done
loops forever reading lines until a line consisting of a . is found. We’ll look at using
the expressions in an arithmetic for loop in our next task.

Task 6-2

Write a script that uses for loops to print out a multiplication table for the numbers 1
to 12.

This task is best accomplished using nested for loops:

for ((i=1; i <= 12 ; i++))

do
for ((j=1; j <=12 ; j++))
do
echo -ne "$((j * i))\t"
done
echo
done

156 | Chapter6: Command-Line Options and Typed Variables

The script begins with a for loop using a variable i; the initialisation clause setsi to 1,
the ending condition clause tests i against the limit (12 in our case), and the update
clause adds 1 to i each time around the loop. The body of the loop is another for
loop, this time with a variable called j. This is identical to the i for loop except that j
is being updated.

The body of the j loop has an echo statement where the two variables are multiplied
together and printed along with a trailing tab. We deliberately don’t print a newline
(with the -n option to echo) so that the numbers appear on one line. Once the inner
loop has finished a newline is printed so that the set of numbers starts on the next
line.

Arithmetic for loops are useful when dealing with arrays, which we’ll now look at.

Arrays

The pushd and popd functions use a string variable to hold a list of directories and
manipulate the list with the string pattern-matching operators. Although this is quite
efficient for adding or retrieving items at the beginning or end of the string, it
becomes cumbersome when attempting to access items that are anywhere else, e.g.,
obtaining item N with the getNdirs function. It would be nice to be able to specify
the number, or index, of the item and retrieve it. Arrays allow us to do this.’

An array is like a series of slots that hold values. Each slot is known as an element,
and each element can be accessed via a numerical index. An array element can con-
tain a string or a number, and you can use it just like any other variable. The indices
for arrays start at O and continue up to a very large number.t So, for example, the
fifth element of array names would be names[4]. Indices can be any valid arithmetic
expression that evaluates to a number greater than or equal to 0.

There are several ways to assign values to arrays. The most straightforward way is
with an assignment, just like any other variable:

names[2]=alice
names[0]=hatter
names|[1]=duchess

This assigns hatter to element 0, duchess to element 1, and alice to element 2 of the
array names.

Another way to assign values is with a compound assignment:

names=([2]=alice [0]=hatter [1]=duchess)

* Support for arrays is not available in versions of bash prior to 2.0.
T Actually, up to 599147937791. That’s almost six hundred billion, so yes, it’s pretty large.

Arrays | 157

This is equivalent to the first example and is convenient for initializing an array with
a set of values. Notice that we didn’t have to specify the indices in numerical order.
In fact, we don’t even have to supply the indices if we reorder our values slightly:

names=(hatter duchess alice)

bash automatically assigns the values to consecutive elements starting at 0. If we pro-
vide an index at some point in the compound assignment, the values get assigned
consecutively from that point on, so:

names=(hatter [5]=duchess alice)
assigns hatter to element 0, duchess to element 5, and alice to element 6.

An array is created automatically by any assignment of these forms. To explicitly cre-
ate an empty array, you can use the -a option to declare. Any attributes that you set
for the array with declare (e.g., the read-only attribute) apply to the entire array. For
example, the statement declare -ar names would create a read-only array called
names. Every element of the array would be read-only.

An element in an array may be referenced with the syntax ${arrayli]}. So, from our
last example above, the statement echo ${names[5]} would print the string “duch-
ess”. If no index is supplied, array element 0 is assumed.

You can also use the special indices @ and *. These return all of the values in the
array and work in the same way as for the positional parameters; when the array ref-
erence is within double quotes, using * expands the reference to one word consisting
of all the values in the array separated by the first character of the IFS variable, while
@ expands the values in the array to separate words. When unquoted, both of them
expand the values of the array to separate words. Just as with positional parameters,
this is useful for iterating through the values with a for loop:

for i in "${names[@]}"; do

echo $i

done
Any array elements which are unassigned don’t exist; they default to null strings if
you explicitly reference them. Therefore, the previous looping example will print out
only the assigned elements in the array names. If there were three values at indexes
1, 45, and 1005, only those three values would be printed.

If you want to know what indices currently have values in an array then you can use
${larray|@]]}. In the last example this would return 1 45 1005.

A useful operator that you can use with arrays is #, the length operator that we saw
in Chapter 4. To find out the length of any element in the array, you can use
${#arrayli]}. Similarly, to find out how many values there are in the array, use * or @

* This is not available in versions of bash prior to 3.0.

158 | Chapter6: Command-Line Options and Typed Variables

as the index. So, for names=(hatter [5]=duchess alice), ${#names[5]} has the value
7, and ${#names[@]} has the value 3.

Reassigning to an existing array with a compound array statement replaces the old
array with the new one. All of the old values are lost, even if they were at different
indices to the new elements. For example, if we reassigned names to be ([100]=twee-
dledee tweedledum), the values hatter, duchess, and alice would disappear.

You can destroy any element or the entire array by using the unset built-in. If you
specify an index, that particular element will be unset. unset names[100], for
instance, would remove the value at index 100; tweedledee in the example above.
However, unlike assignment, if you don’t specify an index the entire array is unset,
not just element 0. You can explicitly specify unsetting the entire array by using * or

@ as the index.

Let’s now look at a simple example that uses arrays to match user IDs to account
names on the system. The code takes a user ID as an argument and prints the name
of the account plus the number of accounts currently on the system:

for i in $(cut -f 1,3 -d: /etc/passwd) ; do

array[${i#*:}]=${i%:*}
done

echo "User ID $1 is ${array[$1]}."

echo "There are currently ${#array[@]} user accounts on the system."
We use cut to create a list from fields 1 and 3 in the /etc/passwd file. Field 1 is the
account name and field 3 is the user ID for the account. The script loops through this
list using the user ID as an index for each array element and assigns each account name
to that element. The script then uses the supplied argument as an index into the array,
prints out the value at that index, and prints the number of existing array values.

We'll now look at combining our knowledge of arrays with arithmetic for loops in
the next task:

Task 6-3

Write a selection sort script that takes numbers in an array and sorts them.

Selection sort is a common algorithm for quickly sorting a set of elements. While it
isn’t the quickest sorting algorithm available, it is easy to understand and implement.

It works by selecting the smallest element in the set and moving it to the head of the
set. It then repeats the process for the remainder of the set until the end of the set is
reached.

Arrays | 159

For example, to sort the set 21543 it would start at 2 and then move down the set. 1
is less than 2 (and the other elements) so 1 is moved to the start: 12543. Then look-
ing at 2 and moving down the list it finds nothing less than 2 so it moves to the next
element, 5. Moving down the list 4 is less than 5, but 3 is less than 4, so 3 is moved:
12354. The next element is 5, and 4 is less than this so 4 is moved: 12345. Five is the
last element so the sort is finished.

The code for this is as follows:

values=(39 5 36 12 9 3 2 30 4 18 22 1 28 25)
numvalues=${#fvalues[@]}

for ((i=0; i < numvalues; i++)); do
lowest=$i

for ((j=i; j < numvalues; j++)); do
if [${values[j]} -le ${values[$lowest]}]; then
lowest=$j
fi
done

temp=${values[i]}
values[i]=${values[lowest]}
values[lowest]=$temp

done

for ((i=0; i < numvalues; i++)); do
echo -ne "${values[$i]}\t"
done

echo

At the start of the script we set up an array of randomly ordered values and a vari-
able to hold the number of array elements as a convenience.

The outer i for loop is for looping over the entire array and pointing to the current
“head” (where we put any value we need to swap). The variable lowest is set to this
index.

The inner j loop is for looping over the remainder of the array. It compares the
remaining elements with the value at lowest; if a value is less then lowest is set to the
index of that element.

Once the inner loop is finished the values of the “head” (i) element and lowest are
swapped by using a temporary variable temp.

On completing the outer loop, the script prints out the sorted array elements.

Note that some of the environment variables in bash are arrays; DIRSTACK func-
tions as a stack for the pushd and popd built-ins, BASH_VERSINFO is an array of
version information for the current instance of the shell, and PIPESTATUS is an
array of exit status values for the last foreground pipe that was executed.

160 | Chapter6: Command-Line Options and Typed Variables

We'll see a further use of arrays when we build a bash debugger in Chapter 9.

To end this chapter, here are some problems relating to what we’ve just covered:

1.

Improve the account ID script so that it checks whether the argument is a num-
ber. Also, add a test to print an appropriate message if the user ID doesn’t exist.

. Make the script print out the username (field 5) as well. Hint: this isn’t as easy as

it sounds. A username can have spaces in it, causing the for loop to iterate on
each part of the name.

. As mentioned earlier, the built-in versions of pushd and popd use an array to

implement the stack. Change the pushd, popd, and getNdirs code that we devel-
oped in this chapter so that it uses arrays.

. Change the selection sort in the last task into a bubble sort. A bubble sort works

by iterating over the list comparing pairs of elements and swapping them if they
are in incorrect order. It then repeats the process from the start of the list and
continues until the list is traversed with no swaps.

Arrays | 161

CHAPTER 7

Input/Output and Command-Line
Processing

The past few chapters have gone into detail about various shell programming tech-
niques, mostly focused on the flow of data and control through shell programs. In
this chapter, we switch the focus to two related topics. The first is the shell’s mecha-
nisms for doing file-oriented input and output. We present information that expands
on what you already know about the shell’s basic I/O redirectors.

Second, we’ll “zoom in” and talk about I/O at the line and word level. This is a fun-
damentally different topic, since it involves moving information between the
domains of files/terminals and shell variables. echo and command substitution are
two ways of doing this that we’ve seen so far.

Our discussion of line and word I/O will lead into a more detailed explanation of
how the shell processes command lines. This information is necessary so that you
can understand exactly how the shell deals with quotation, and so that you can
appreciate the power of an advanced command called eval, which we will cover at
the end of the chapter.

1/0 Redirectors

In Chapter 1, you learned about the shell’s basic 1/O redirectors: >, <, and |.
Although these are enough to get you through 95% of your UNIX life, you should
know that bash supports many other redirectors. Table 7-1 lists them, including the
three we’ve already seen. Although some of the rest are broadly useful, others are
mainly for systems programmers.

Table 7-1. I/O redirectors

Redirector Function

and1 | cmd2 Pipe; take standard output of cmd? as standard input to cmd2.
> file Direct standard output to file.

< file Take standard input from file.

>> file Direct standard output to file; append to file if it already exists.

162

Table 7-1. 1/O redirectors (continued)

Redirector
>|file
n>|file
<> file
n<> file
<< label
n> file
n< file
n>> file
n>&
n<&
n>&m
n<&m
&>file
<&-

>&-
n>&-
n<&-
n>&word

n<&word

n>&digit-

n<é&digit-

Function

Force standard output to file even if noclobber is set.

Force output to file from file descriptor n even if noclobber is set.
Use file as both standard input and standard output.

Use file as both input and output for file descriptor n.
Here-document; see text.

Direct file descriptor n to file.

Take file descriptor n from file.

Direct file descriptor n to file; append to file if it already exists.
Duplicate standard output to file descriptor .

Duplicate standard input from file descriptor n.

File descriptor n is made to be a copy of the output file descriptor.
File descriptor n is made to be a copy of the input file descriptor.
Directs standard output and standard error to file.

Close the standard input.

Close the standard output.

Close the output from file descriptor n.

Close the input from file descriptor n.

If nis not specified, the standard output (file descriptor 1) is used. If the digits in word do not specify a file
descriptor open for output, a redirection error occurs. As a special case, if n is omitted, and word does not
expand to one or more digits, the standard output and standard error are redirected as described
previously.

If word expands to one or more digits, the file descriptor denoted by n is made to be a copy of that file
descriptor. If the digits in word do not specify a file descriptor open for input, a redirection error occurs. If
word evaluates to -, file descriptor niis closed. If n is not specified, the standard input (file descriptor 0) is
used.

Moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1) if nis not
specified.

Moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0) if n is not speci-
fied. digit is closed after being duplicated to n.

Notice that some of the redirectors in Table 7-1 contain a digit n, and that their
descriptions contain the term file descriptor; we’ll cover that in a little while.

The first two new redirectors, >> and >|, are simple variations on the standard out-
put redirector >. The >> appends to the output file (instead of overwriting it) if it
already exists; otherwise it acts exactly like >. A common use of >> is for adding a
line to an initialization file (such as .bashrc or .mailrc) when you don’t want to
bother with a text editor. For example:

$ cat >> .bashrc
alias cdmnt="mount -t is09660 /dev/sbpcd /cdrom'

"D

I/0 Redirectors | 163

As we saw in Chapter 1, cat without an argument uses standard input as its input.
This allows you to type the input and end it with CTRL-D on its own line. The alias
line will be appended to the file .bashrc if it already exists; if it doesn’t, the file is cre-
ated with that one line.

Recall from Chapter 3, that you can prevent the shell from overwriting a file with >
file by typing set -0 noclobber. >| overrides noclobber—it’s the “Do it anyway, dam-
mit!” redirector.

The redirector <> is mainly meant for use with device files (in the /dev directory), i.e.,
files that correspond to hardware devices such as terminals and communication
lines. Low-level systems programmers can use it to test device drivers; otherwise, it’s
not very useful.

The rest of the redirectors will only be useful in special situations and you are
unlikely to need them most of the time.

Here-documents

The << label redirector essentially forces the input to a command to be the shell’s
standard input, which is read until there is a line that contains only label. The input
in between is called a here-document. Here-documents aren’t very interesting when
used from the command prompt. In fact, it’s the same as the normal use of standard
input except for the label. We could use a here-document to simulate the mail facil-
ity. When you send a message to someone with the mail utility, you end the message
with a dot (.). The body of the message is saved in a file, msgfile:
$ cat >> msgfile << .
> this is the text of

> our message.
> .

Here-documents are meant to be used from within shell scripts; they let you specify
“batch” input to programs. A common use of here-documents is with simple text

editors like ed. Task 7-1 is a programming task that uses a here-document in this
way.

Task 7-1

The s file command in mail saves the current message in file. If the message came over
a network (such as the Internet), then it has several header lines prepended that give
information about network routing. Write a shell script that deletes the header lines
from the file.

164 | Chapter7: Input/Output and Command-Line Processing

We can use ed to delete the header lines. To do this, we need to know something about
the syntax of mail messages; specifically, that there is always a blank line between the
header lines and the message text. The ed command 1,/2[]*$/d does the trick: it means,
“Delete from line 1 until the first blank line.” We also need the ed commands w (write
the changed file) and q (quit). Here is the code that solves the task:

ed $1 << EOF
1,/”[1*$/d
W

q
EOF

The shell does parameter (variable) substitution and command substitution on text
in a here-document, meaning that you can use shell variables and commands to cus-
tomize the text. A good example of this is the bashbug script, which sends a bug
report to the bash maintainer (see Chapter 11). Here is a stripped-down version:

MACHINE="1586"

0S="linux-gnu"

CC="gcc"

CFLAGS=" -DPROGRAM='"bash' -DHOSTTYPE='i586"' -DOSTYPE='linux-gnu' \
-DMACHTYPE="1586-pc-linux-gnu' -DSHELL -DHAVE CONFIG H -I. \
-I. -I./1ib -g -02"

RELEASE="2.01"

PATCHLEVEL="0"

RELSTATUS="release"

MACHTYPE="1586-pc-1inux-gnu"

TEMP=/tmp/bbug. $$

case "$RELSTATUS" in

alpha*|beta*) BUGBASH=chet@po.cwru.edu ;;

*) BUGBASH=bug-bash@prep.ai.mit.edu ;;
esac

BUGADDR="${1-$BUGBASH}"

UN=

if (uname) >/dev/null 2>81; then
UN="uname -a°

fi

cat > $TEMP <<EOF

From: ${USER}

To: ${BUGADDR}

Subject: [50 character or so descriptive subject here (for reference)]

Configuration Information [Automatically generated, do not change]:
Machine: $MACHINE

0S: $0S

Compiler: $CC

Compilation CFLAGS: $CFLAGS

I/0 Redirectors | 165

uname output: $UN
Machine Type: $MACHTYPE

bash Version: $RELEASE
Patch Level: $PATCHLEVEL
Release Status: $RELSTATUS

Description:
[Detailed description of the problem, suggestion, or complaint.]

Repeat-By:
[Describe the sequence of events that causes the problem
to occur.]

Fix:

[Description of how to fix the problem. If you don't know a
fix for the problem, don't include this section.]
EOF

vi $TEMP

mail $BUGADDR < $TEMP

The first eight lines are generated when bashbug is installed. The shell will then sub-
stitute the appropriate values for the variables in the text whenever the script is run.

The redirector << has two variations. First, you can prevent the shell from doing
parameter and command substitution by surrounding the label in single or double
quotes. In the above example, if you used the line cat > $STEMP <<‘EOF’, then text
like $USER and $MACHINE would remain untouched (defeating the purpose of
this particular script).

The second variation is <<-, which deletes leading TABs (but not blanks) from the
here-document and the label line. This allows you to indent the here-document’s
text, making the shell script more readable:

cat > $TEMP <<-EOF
From: ${USER}
To: ${BUGADDR}
Subject: [50 character or so descriptive subject here]

Configuration Information [Automatically generated,
do not change]:

Machine: $MACHINE

0S: $0S

Compiler: $CC

Compilation CFLAGS: $CFLAGS

EOF

166 | Chapter7: Input/Output and Command-Line Processing

Make sure you are careful when choosing your label so that it doesn’t appear as an
actual input line.

A slight variation on this is provided by the here string. It takes the form <<<word,
the word is expanded and supplied on the standard input.

File Descriptors

The next few redirectors in Table 7-1 depend on the notion of a file descriptor. Like
the device files used with <>, this is a low-level UNIX I/O concept that is of interest
only to systems programmers—and then only occasionally. You can get by with a
few basic facts about them; for the whole story, look at the entries for read(), write(),
fentl(), and others in Section 2 of the UNIX manual. You might wish to refer to
UNIX Power Tools by Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides
(O’Reilly).

File descriptors are integers starting at O that refer to particular streams of data associ-
ated with a process. When a process starts, it usually has three file descriptors open.
These correspond to the three standards: standard input (file descriptor 0), standard
output (1), and standard error (2). If a process opens additional files for input or out-
put, they are assigned to the next available file descriptors, starting with 3.

By far the most common use of file descriptors with bash is in saving standard error
in a file. For example, if you want to save the error messages from a long job in a file
so that they don’t scroll off the screen, append 2> file to your command. If you also
want to save standard output, append > filel 2> file2.

This leads to another programming task.

Task 7-2

You want to start a long job in the background (so that your terminal is freed up) and
save both standard output and standard error in a single log file. Write a script that
does this.

We'll call this script start. The code is very terse:
"$@" > logfile 2>8&1 &

This line executes whatever command and parameters follow start. (The command
cannot contain pipes or output redirectors.) It sends the command’s standard out-
put to logfile.

Then, the redirector 2>&1 says, “send standard error (file descriptor 2) to the same
place as standard output (file descriptor 1).” Since standard output is redirected to

I/0 Redirectors | 167

logfile, standard error will go there too. The final & puts the job in the background
so that you get your shell prompt back.

As a small variation on this theme, we can send both standard output and standard
error into a pipe instead of a file: command 2>&1 | ... does this. (Make sure you
understand why.) Here is a script that sends both standard output and standard
error to the logfile (as above) and to the terminal:

"$@" 2>81 | tee logfile &

The command tee takes its standard input and copies it to standard output and the
file given as argument.

These scripts have one shortcoming: you must remain logged in until the job com-
pletes. Although you can always type jobs (see Chapter 1) to check on progress, you
can’t leave your terminal until the job finishes, unless you want to risk a breach of
security.” We’ll see how to solve this problem in the next chapter.

The other file-descriptor-oriented redirectors (e.g., <&mn) are usually used for read-
ing input from (or writing output to) more than one file at the same time. We’ll see
an example later in this chapter. Otherwise, they’re mainly meant for systems pro-
grammers, as are <&- (force standard input to close) and >&- (force standard out-
put to close).

Before we leave this topic, we should just note that 1> is the same as >, and 0< is the
same as <. If you understand this, then you probably know all you need to know
about file descriptors.

String 1/0

Now we’ll zoom back in to the string I/O level and examine the echo and read state-
ments, which give the shell I/O capabilities that are more analogous to those of con-
ventional programming languages.

echo

As we’ve seen countless times in this book, echo simply prints its arguments to stan-
dard output. Now we’ll explore the command in greater detail.

Options to echo

echo accepts a few dash options, listed in Table 7-2.

* Don’t put it past people to come up to your unattended terminal and cause mischief!

168 | Chapter7: Input/Output and Command-Line Processing

Table 7-2. echo options

Option Function
-e Turns on the interpretation of backslash-escaped characters
-E Turns off the interpretation of backslash-escaped characters on systems where this mode is the default
-n Omits the final newline (same as the \c escape sequence)
echo escape sequences

echo accepts a number of escape sequences that start with a backslash.” They are
listed in Table 7-3.

These sequences exhibit fairly predictable behavior, except for \f: on some displays,
it causes a screen clear, while on others it causes a line feed. It ejects the page on
most printers. \v is somewhat obsolete; it usually causes a line feed.

Table 7-3. echo escape sequences

Sequence
\a

\b

\c

\e

\E

\f

\n

\r

\t

\v

\n
\Onnn
\xHH
\\

Character printed

ALERT or CTRL-G (bell)

BACKSPACE or CTRL-H

Omit final NEWLINE

Escape character (same as \E)

Escape charactera

FORMFEED or CTRL-L

NEWLINE (not at end of command) or CTRL-J

RETURN (ENTER) or CTRL-M

TAB or CTRL-I

VERTICAL TAB or CTRL-K

ASCIl character with octal (base-8) value n, where niis 1to 3 digits

The eight-bit character whose value is the octal (base-8) value nnn where nnnis 1 to 3 digits
The eight-bit character whose value is the hexadecimal (base-16) value HH (one or two digits)
Single backslash

a Not available in versions of bash prior to 2.0.

The \n, \0, and \x sequences are even more device-dependent and can be used for
complex I/0, such as cursor control and special graphics characters.

* You must use a double backslash if you don’t surround the string that contains them with quotes; otherwise,
the shell itself “steals” a backslash before passing the arguments to echo.

Stringl/0 | 169

printf

bash’s echo command is quite powerful and for most cases entirely adequate. How-
ever, there are occasions where a more powerful and flexible approach is needed for
printing information, especially when the information needs to be formatted. bash
provides this by giving access to a powerful system-level printing library known as

printf.”
The printf command can output a string similar to the echo command:
printf "hello world"

Unlike the echo command, printf does not automatically provide a newline. If we
want to make it do the exactly same as a standard echo then we must provide one by
adding \n to the end:

printf "hello world\n"

You may ask why this is any better than echo. The printf command has two parts,
which is what makes it so powerful.

printf format-string [arguments]

The first part is a string that describes the format specifications; this is best supplied
as a string constant in quotes. The second part is an argument list, such as a list of
strings or variable values that correspond to the format specifications. (The format is
reused as necessary to use up all of the arguments. If the format requires more argu-
ments than are supplied, the extra format specifications behave as if a zero value or
null string, as appropriate, had been supplied). A format specification is preceded by
a percent sign (%), and the specifier is one of the characters described below. Two of
the main format specifiers are %s for strings and %d for decimal integers.

This sounds complicated but we can begin by re-casting the last example:
printf "%s %s\n" hello world

This prints hello world on a line of its own, just as the previous example did. The
word hello has been assigned to the first format specification, %s. Likewise, world
has been assigned to the second %s. printf then prints these two strings followed by
the newline.

We could also achieve the same result by making hello an explicit part of the format
string:

$ printf "hello %s\n" world
hello world

The allowed specifiers are shown in Table 7-4.

* printf is not available in versions of bash prior to version 2.02.

170 | Chapter7: Input/Output and Command-Line Processing

Table 7-4. printf format specifiers

Specifier Description

%c ASCII character (prints first character of corresponding argument)

%d Decimal integer

%i Same as %d

%e Floating-point format ([-1d.precisione[-+-]dd) (see following text for meaning of precision)
9%E Floating-point format ([-1d.precisionE[+-]dd)

9%f Floating-point format ([-1ddd.precision)

%g %e or %f conversion, whichever is shorter, with trailing zeros removed
%G 9%E or %f conversion, whichever is shortest, with trailing zeros removed
%0 Unsigned octal value

%s String

%u Unsigned decimal value

%X Unsigned hexadecimal number; uses a-f for 10 to 15

%X Unsigned hexadecimal number; uses A-F for 10 to 15

%% Literal %

The printf command can be used to specify the width and alignment of output
fields. A format expression can take three optional modifiers following % and pre-
ceding the format specifier:
%flags width.precision format-specifier

The width of the output field is a numeric value. When you specify a field width, the
contents of the field are right-justified by default. You must specify a flag of “-” to get
left-justification. (The rest of the flags are discussed shortly.) Thus, “%-20s” outputs
a left-justified string in a field 20 characters wide. If the string is less than 20 charac-
ters, the field is padded with whitespace to fill. In the following examples, a | is out-
put to indicate the actual width of the field. The first example right-justifies the text:

printf "|%10s|\n" hello
It produces:
\ hello|
The next example left-justifies the text:
printf "|%-10s|\n" hello
It produces:
|hello |

The precision modifier, used for decimal or floating-point values, controls the num-
ber of digits that appear in the result. For string values, it controls the maximum
number of characters from the string that will be printed.

Stringl/0 | 171

You can specify both the width and precision dynamically, via values in the printf
argument list. You do this by specifying asterisks, instead of literal values.

$ myvar=42.123456
$ printf "|%*.*G|\n" 5 6 $myvar
[42.1235]

In this example, the width is 5, the precision is 6, and the value to print comes from
the value of myvar.

The precision is optional. Its exact meaning varies by control letter, as shown in
Table 7-5.
Table 7-5. Meaning of precision

Conversion Precision means

%d, %I, %0, %u, The minimum number of digits to print. When the value has fewer digits, it is padded with leading zeros.
%¥, %X The default precision is 1.

%e, %E The minimum number of digits to print. When the value has fewer digits, it is padded with zeros after the
decimal point. The default precision is 10. A precision of 0 inhibits printing of the decimal point.

%f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

9%s The maximum number of characters to print.

Finally, one or more flags may precede the field width and the precision. We've
already seen the “-” flag for left-justification. The rest of the flags are shown in
Table 7-6.

Table 7-6. Flags for printf

Character Description
- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.
+ Always prefix numeric values with a sign, even if the value is positive.
Use an alternate form: %o has a preceding 0; %x and %X are prefixed with Ox and 0X, respectively; %e,

9%E and %f always have a decimal point in the result; and %g and %G do not have trailing zeros removed.

0 Pad output with zeros, not spaces. This only happens when the field width is wider than the converted
result. In the Clanguage, this flag applies to all output formats, even non-numeric ones. For bash, it only
applies to the numeric formats.

If printf cannot perform a format conversion, it returns a non-zero exit status.

172 | Chapter7: Input/Output and Command-Line Processing

Additional bash printf specifiers

Besides the standard specifiers just described, the bash shell (and other POSIX com-
pliant shells) accepts two additional specifiers. These provide useful features at the
expense of nonportability to versions of the printf command found in some other
shells and in other places in UNIX:

%b
When used instead of %s, expands echo-style escape sequences in the argument
string. For example:

$ printf "%s\n" 'hello\nworld'
hello\nworld
$ printf "%b\n" 'hello\nworld'
hello
world
%q
When used instead of %s, prints the string argument in such a way that it can be
used for shell input. For example:

$ printf "%g\n" "greetings to the world"
greetings\ to\ the\ world

read

The other half of the shell’s string I/O facilities is the read command, which allows
you to read values into shell variables. The basic syntax is:

read var1l var2...

This statement takes a line from the standard input and breaks it down into words
delimited by any of the characters in the value of the environment variable IFS (see
Chapter 4; these are usually a space, a TAB, and NEWLINE). The words are
assigned to variables varl, var2, etc. For example:

$ read characteri character2alice duchess$ echo $characterialice

$ echo $character2duchess
If there are more words than variables, then excess words are assigned to the last

variable. If you omit the variables altogether, the entire line of input is assigned to
the variable REPLY.

You may have identified this as the “missing ingredient” in the shell programming
capabilities we have seen thus far. It resembles input statements in conventional lan-
guages, like its namesake in Pascal. So why did we wait this long to introduce it?

Actually, read is sort of an “escape hatch” from traditional shell programming phi-
losophy, which dictates that the most important unit of data to process is a text file,
and that UNIX utilities such as cut, grep, sort, etc., should be used as building blocks
for writing programs.

Stingl/0 | 173

read, on the other hand, implies line-by-line processing. You could use it to write a
shell script that does what a pipeline of utilities would normally do, but such a script
would inevitably look like:
while (read a line) do
process the line
print the processed line
end
This type of script is usually much slower than a pipeline; furthermore, it has the
same form as a program someone might write in C (or some similar language) that
does the same thing much faster. In other words, if you are going to write it in this
line-by-line way, there is little point in writing a shell script.

Reading lines from files

Nevertheless, shell scripts with read are useful for certain kinds of tasks. One is when
you are reading data from a file small enough so that efficiency isn’t a concern (say a few
hundred lines or less), and it’s really necessary to get bits of input into shell variables.

Consider the case of a UNIX machine that has terminals that are hardwired to the
terminal lines of the machine. It would be nice if the TERM environment variable
was set to the correct terminal type when a user logged in.

One way to do this would be to have some code that sets the terminal information
when a user logs in. This code would presumably reside in /etc/profile, the system-
wide initialization file that bash runs before running a user’s .bash_profile. If the ter-
minals on the system change over time—as surely they must—then the code would
have to be changed. It would be better to store the information in a file and change
just the file instead.

Assume we put the information in a file whose format is typical of such UNIX “sys-
tem configuration” files: each line contains a device name, a TAB, and a TERM
value.

We'll call the file /etc/terms, and it would typically look something like this:

console console
ttyo1l wy60
ttyo3 vt100
ttyo4 vt100
ttyo7 wy85
ttyo8 vt100

The values on the left are terminal lines and those on the right are the terminal types
that TERM can be set to. The terminals connected to this system are a Wyse 60
(wy60), three VT100s (vt100), and a Wyse 85 (wy85). The machines’ master termi-
nal is the console, which has a TERM value of console.

174 | Chapter7: Input/Output and Command-Line Processing

We can use read to get the data from this file, but first we need to know how to test
for the end-of-file condition. Simple: read’s exit status is 1 (i.e., non-zero) when there
is nothing to read. This leads to a clean while loop:
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break
fi
done
The while loop reads each line of the input into the variables dev and termtype. In
each pass through the loop, the if looks for a match between $dev and the user’s tty
($line, obtained by command substitution from the tty command). If a match is
found, TERM is set, a message is printed, and the loop exits; otherwise TERM
remains at the default setting of vt100.

We are not quite done, though: this code reads from the standard input, not from
letc/terms! We need to know how to redirect input to multiple commands. It turns
out that there are a few ways of doing this.

1/0 redirection and multiple commands

One way to solve the problem is with a subshell, as we’ll see in the next chapter. This
involves creating a separate process to do the reading. However, it is usually more
efficient to do it in the same process; bash gives us four ways of doing this.

The first, which we have seen already, is with a function:

findterm () {
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;
fi
done

}

findterm < /etc/terms

A function acts like a script in that it has its own set of standard I/O descriptors,
which can be redirected in the line of code that calls the function. In other words,
you can think of this code as if findterm were a script and you typed findterm < /etc/
terms on the command line. The read statement takes input from /etc/terms a line at
a time, and the function runs correctly.

Stringl/0 | 175

The second way is to simplify this slightly by placing the redirection at the end of the
function:

findterm () {
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;
fi
done
} < /etc/terms

Whenever findterm is called, it takes its input from /etc/terms.

The third way is by putting the I/O redirector at the end of the loop, like this:
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;
fi
done < /etc/terms
You can use this technique with any flow-control construct, including if...fi, case...
esac, select...done, and until...done. This makes sense because these are all com-
pound statements that the shell treats as single commands for these purposes. This
technique works fine—the read command reads a line at a time—as long as all of the
input is done within the compound statement.

Command blocks

But if you want to redirect I/O to or from an arbitrary group of commands without
creating a separate process, you need to use a construct that we haven’t seen yet. If
you surround some code with { and }, the code will behave like a function that has
no name. This is another type of compound statement. In accordance with the equiv-
alent concept in the C language, we’ll call this a command block.

What good is a block? In this case, it means that the code within the curly brackets
({}) will take standard 1/O descriptors just as we described in the last block of code.
This construct is appropriate for the current example because the code needs to be
called only once, and the entire script is not really large enough to merit breaking
down into functions. Here is how we use a block in the example:

{

TERM=vt100 # assume this as a default
line=$(tty)

176 | Chapter7: Input/Output and Command-Line Processing

while read dev termtype; do
if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;
fi
done
} < /etc/terms

To help you understand how this works, think of the curly brackets and the code
inside them as if they were one command, i.e.:

{ TERM=vt100; line=$(tty); while ... } < /etc/terms;

Configuration files for system administration tasks like this one are actually fairly
common; a prominent example is /etc/hosts, which lists machines that are accessible
in a TCP/IP network. We can make /etc/terms more like these standard files by allow-
ing comment lines in the file that start with #, just as in shell scripts. This way /etc/
terms can look like this:

#

System Console is console
console console

#

Cameron's line has a Wyse 60

ttyo1l wy60

We can handle comment lines by modifying the while loop so that it ignores lines
begining with #. We can place a grep in the test:

if [-z "$(echo $dev | grep *#)"] && [$dev = $line]; then

As we saw in Chapter 5, the && combines the two conditions so that both must be
true for the entire condition to be true.

As another example of command blocks, consider the case of creating a standard
algebraic notation frontend to the dc command. dc is a UNIX utility that simulates a
Reverse Polish Notation (RPN) calculator:”
{ while read line; do
echo "$(alg2rpn $line)"

done
} | dc

We’ll assume that the actual conversion from one notation to the other is handled by
a function called alg2rpn. It takes a line of standard algebraic notation as an argu-

ment and prints the RPN equivalent on the standard output. The while loop reads
lines and passes them through the conversion function, until an EOF is typed.

* If you have ever owned a Hewlett-Packard calculator you will be familiar with RPN. We’ll discuss RPN fur-
ther in one of the exercises at the end of this chapter.

Stingl/0 | 177

Everything is executed inside the command block and the output is piped to the dc
command for evaluation.

Reading user input

The other type of task to which read is suited is prompting a user for input. Think
about it: we have hardly seen any such scripts so far in this book. In fact, the only
ones were the modified solutions to Task 5-4, which involved select.

As you’ve probably figured out, read can be used to get user input into shell variables.

We can use echo to prompt the user, like this:

echo -n 'terminal? '
read TERM
echo "TERM is $TERM"

Here is what this looks like when it runs:
terminal? wy60TERM is wy60

However, shell convention dictates that prompts should go to standard error, not
standard output. (Recall that select prompts to standard error.) We could just use
file descriptor 2 with the output redirector we saw earlier in this chapter:

echo -n 'terminal? ' >&2
read TERM
echo TERM is $TERM

We'll now look at a more complex example by showing how Task 5-5 would be
done if select didn’t exist. Compare this with the code in Chapter 5:

echo 'Select a directory:'
done=false

while [$done = false]; do

do=true

num=1

for direc in $DIR_STACK; do
echo $num) $direc
num=$((num+1))

done

echo -n 'directory? '

read REPLY

if [$REPLY -1t $num] 8& [$REPLY -gt 0]; then
set - $DIR_STACK

#statements that manipulate the stack...

break
else
echo 'invalid selection.'
fi
done

178 | Chapter7: Input/Output and Command-Line Processing

The while loop is necessary so that the code repeats if the user makes an invalid
choice. select includes the ability to construct multicolumn menus if there are many
choices, and better handling of null user input.

Before leaving read, we should note that it has eight options: -a, -d, -e, -n, -p, -1, -t,
and -s.” The first of these options allows you to read values into an array. Each suc-
cessive item read in is assigned to the given array starting at index 0. For example:

$ read -a people

alice duchess dodo

$ echo ${people[2]}

dodo

$

In this case, the array people now contains the items alice, duchess, and dodo.

A delimiter can be specified with the -d option. This will read a line up until the first
character of the delimiter is reached. For example:

$ read -s stop aline

alice duches$

$ echo $aline

alice duche

$
The option -e can be used only with scripts run from interactive shells. It causes
readline to be used to gather the input line, which means that you can use any of the
readline editing features that we looked at in Chapter 2.

The -n option specifies how many characters will be read by read. For example, if we
specify that it should read only ten characters in then it will return after reading that
many:

$ read -n 10 aline

abcdefghij$

$ echo $aline

abcdefghij

$
The -p option followed by a string argument prints the string before reading input.
We could have used this in the earlier examples of read, where we printed out a
prompt before doing the read. For example, the directory selection script could have
used read -p ‘directory?’ REPLY.

read lets you input lines that are longer than the width of your display by providing a
backslash (\) as a continuation character, just as in shell scripts. The -r option over-
rides this, in case your script reads from a file that may contain lines that happen to
end in backslashes. read -r also preserves any other escape sequences the input might
contain. For example, if the file hatter contains this line:

A line with a\n escape sequence

*

-a, -d, -e, -n, —p, -t and -s are not available in versions of bash prior to 2.0.

Stringl/0 | 179

Then read -r aline will include the backslash in the variable aline, whereas without
the -1, read will “eat” the backslash. As a result:

$ read -r aline < hatter$ echo -e "$aline"

A line with a

escape sequence

$
However:

$ read aline < hatter$ echo -e "$aline"

A line with an escape sequence

$
The -s option forces read to not echo the characters that are typed to the terminal.
This can be useful in cases where a shell may want to take single keystroke com-
mands without displaying the typed characters on the terminal (e.g., moving some-
thing around with the arrow keys). In this case it could be combined with the -n
option to read a single character each time in a loop: read -s -n1 key

The last option, -t, allows a time in seconds to be specified. read will wait the speci-
fied time for input and then finish. This is useful if you want a script to wait for input
but continue processing if nothing is supplied.

Command-Line Processing

We've seen how the shell uses read to process input lines: it deals with single quotes
(V), double quotes (“”), and backslashes (\); it separates lines into words, according
to delimiters in the environment variable IFS; and it assigns the words to shell vari-
ables. We can think of this process as a subset of the things the shell does when pro-
cessing command lines.

We’ve touched upon command-line processing throughout this book; now is a good
time to make the whole thing explicit. Each line that the shell reads from the stan-
dard input or a script is called a pipeline; it contains one or more commands sepa-
rated by zero or more pipe characters (|). For each pipeline it reads, the shell breaks
it up into commands, sets up the I/O for the pipeline, then does the following for
each command (Figure 7-1):

1. Splits the command into tokens that are separated by the fixed set of metachar-
acters: SPACE, TAB, NEWLINE, ;, (,), <, >, |, and &. Types of tokens include
words, keywords, I/0 redirectors, and semicolons.

2. Checks the first token of each command to see if it is a keyword with no quotes
or backslashes. If it’s an opening keyword, such as if and other control-structure
openers, function, {, or (, then the command is actually a compound command.
The shell sets things up internally for the compound command, reads the next
command, and starts the process again. If the keyword isn’t a compound com-
mand opener (e.g., is a control-structure “middle” like then, else, or do, an
“end” like fi or done, or a logical operator), the shell signals a syntax error.

180 | Chapter7: Input/Output and Command-Line Processing

>| splitinto tokens I—

read next

check 1st token
syntax error

opening keyword other keyword

not keyword

expanded alias

check 1st token

not alias

double quotes

0 | brace expansion

9 | tilde expansion

<

0 | parameter expansion

single quotes

<

0 | command substitution

<

0 | arithmetic substitution

make arguments into next command

I

0 | word splitting

S
+ S
<
~
m | pathname expansion | E
+ S
Q command lookup: function, built-in command,
executable file

[12)

run

eval command

Figure 7-1. Steps in command-line processing

Command-Line Processing | 181

. Checks the first word of each command against the list of aliases. If a match is

found, it substitutes the alias’s definition and goes back to Step 1; otherwise, it
goes on to Step 4. This scheme allows recursive aliases (see Chapter 3). It also
allows aliases for keywords to be defined, e.g., alias aslongas=while or alias
procedure=function.

. Performs brace expansion. For example, a{b,c} becomes ab ac.

. Substitutes the user’s home directory (SHOME) for tilde if it is at the beginning

of a word. Substitutes user’s home directory for ~user.”

. Performs parameter (variable) substitution for any expression that starts with a

dollar sign ($).

7. Does command substitution for any expression of the form $(string).

8. Evaluates arithmetic expressions of the form $((string)).

9. Takes the parts of the line that resulted from parameter, command, and arith-

10.

11.

12.

metic substitution and splits them into words again. This time it uses the charac-
ters in $IFS as delimiters instead of the set of metacharacters in Step 1.

Performs pathname expansion, a.k.a. wildcard expansion, for any occurrences of
*,?, and [/] pairs.

Uses the first word as a command by looking up its source according to the rest
of the list in Chapter 4, i.e., as a function command, then as a built-in, then as a
file in any of the directories in $PATH.

Runs the command after setting up I/O redirection and other such things.

That’s a lot of steps—and it’s not even the whole story! But before we go on, an
example should make this process clearer. Assume that the following command has
been run:

alias 11="1s -1"

Further assume that a file exists called .hist537 in user alice’s home directory, which
is /homelalice, and that there is a double-dollar-sign variable $$ whose value is 2537
(we’ll see what this special variable is in the next chapter).

Now let’s see how the shell processes the following command:

11 $(type -path cc) ~alice/.*$(($$%1000))

Here is what happens to this line:

1.

11 $(type -path cc) ~alice/.*$(($$%1000)) splits the input into words.

2. 11 is not a keyword, so Step 2 does nothing.

*

Two obscure variations on this: the shell substitutes the current directory ($PWD) for ~+ and the previous

directory (SOLDPWD) for ~-. In bash 2.0 there are two more: ~N+ and ~N-. These are replaced by the cor-
responding element in the directory stack as given by the dirs command.

182

| Chapter7: Input/Output and Command-Line Processing

11.
12.

. 1s -1 $(type -path cc) ~alice/.*$(($$%1000)) substitutes Is -1 for its alias “Il”.

The shell then repeats Steps 1 through 3; Step 2 splits the Is -1 into two words.

. 1s -1 $(type -path cc) ~alice/.*$(($$%1000)) does nothing.
. 1s -1 $(type -path cc) /home/alice/.*$(($$%1000)) expands ~alice into /home/

alice.

. 1s -1 $(type -path cc) /home/alice/.*$((2537%1000)) substitutes 2537 for $$.
. 1s -1 /usr/bin/cc /home/alice/.*$((2537%1000)) does command substitution on

“type -path cc”.

.1s -1 /usr/bin/cc /home/alice/.*537 evaluates the arithmetic expression

2537%1000.

. 1s -1 /usx/bin/cc /home/alice/.*537 does nothing.
10.

1s -1 /usr/bin/cc /home/alice/.hist537 substitutes the filename for the wild-
card expression .*537.

The command Is is found in /usr/bin.

/usr/bin/1s is run with the option -1 and the two arguments.

Although this list of steps is fairly straightforward, it is not the whole story. There are
still five ways to modify the process: quoting; using command, builtin, or enable;
and using the advanced command eval.

Quoting

You can think of quoting as a way of getting the shell to skip some of the 12 steps
above. In particular:

Single quotes () bypass everything through Step 10—including aliasing. All
characters inside a pair of single quotes are untouched. You can’t have single
quotes inside single quotes—not even if you precede them with backslashes.”

[433]

Double quotes (“”) bypass Steps 1 through 4, plus steps 9 and 10. That is, they
ignore pipe characters, aliases, tilde substitution, wildcard expansion, and split-
ting into words via delimiters (e.g., blanks) inside the double quotes. Single
quotes inside double quotes have no effect. But double quotes do allow parame-
ter substitution, command substitution, and arithmetic expression evaluation.
You can include a double quote inside a double-quoted string by preceding it
with a backslash (\). You must also backslash-escape $, * (the archaic command
substitution delimiter), and \ itself.

Table 7-7 has simple examples to show how these work; they assume the statement
person=hatter was run and user alice’s home directory is /home/alice.

* However, as we saw in Chapter 1, ‘\” (i.e., single quote, backslash, single quote, single quote) acts pretty
much like a single quote in the middle of a single-quoted string; e.g., ‘abc‘**def” evaluates to abc‘def.

Command-Line Processing | 183

If you are wondering whether to use single or double quotes in a particular shell pro-
gramming situation, it is safest to use single quotes unless you specifically need
parameter, command, or arithmetic substitution.

Table 7-7. Examples of quoting rules

Expression Value
Sperson hatter
“Sperson” hatter
\Sperson $person
‘Sperson’ Sperson
“$person” "hatter’
~alice /home/alice
“~alice” ~alice
‘~alice’ ~alice

command, builtin, and enable

Before moving on to the last part of the command-line processing cycle, we’ll take a
look at the command lookup order that we touched on in Chapter 4 and how it can
be altered with several shell built-ins.

The default order for command lookup is functions, followed by built-ins, with
scripts and executables last. There are three built-ins that you can use to override this
order: command, builtin, and enable.

command removes alias and function lookup.” Only built-ins and commands found
in the search path are executed. This is useful if you want to create functions that
have the same name as a shell built-in or a command in the search path and you
need to call the original command from the function. For instance, we might want to
create a function called cd that replaces the standard cd command with one that does
some fancy things and then executes the built-in cd:

cd ()

{
#Some fancy things
command cd

}

In this case we avoid plunging the function into a recursive loop by placing com-
mand in front of cd. This ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7-8.

*

command removes alias lookup as a side effect. Because the first argument of command is no longer the first
word that bash parses, it is not subjected to alias lookup.

184 | Chapter7: Input/Output and Command-Line Processing

Table 7-8. command options

Option Description

-p Uses a default value for PATH

-v Prints the command or pathname used to invoke the command
-V A more verbose description than with -v

- Turns off further option checking

The -p option is a default path which guarantees that the command lookup will find
all of the standard UNIX utilities. In this case, command will ignore the directories in
your PATH.

builtin is very similar to command but is more restrictive. It looks up only built-in
commands, ignoring functions and commands found in PATH. We could have
replaced command with builtin in the cd example above.

The last command enables and disables shell built-ins—it is called enable. Disabling
a built-in allows a shell script or executable of the same name to be run without giv-
ing a full pathname. Consider the problem many beginning UNIX shell program-
mers have when they name a script test. Much to their surprise, executing test
usually results in nothing, because the shell is executing the built-in test, rather than
the shell script. Disabling the built-in with enable overcomes this.*

Table 7-9 lists the options available with enable.¥ Some options are for working with
dynamically loadable built-ins. See Appendix C for details on these options, and how
to create and load your own built-in commands.

Table 7-9. enable options

Option Description

-a Displays every built-in and whether it is enabled or not
-d Deletes a built-in loaded with -f

-f filename Loads a new built-in from the shared-object £11ename
-n Disables a built-in or displays a list of disabled built-ins
-p Displays alist of all of the built-ins

-S Restricts the output to POSIX “special” built-ins

*

Unless bash has been compiled with a brain-dead value for the default. See Chapter 11 for how to change
the default value.

T Note that the wrong test may still be run. If your current directory is the last in PATH you’ll probably execute
the system file test. test is not a good name for a program.

1 The -d, -f, -p, and -s options are not available in versions of bash prior to 2.0.

Command-Line Processing | 185

Of these options, -n is the most useful; it is used to disable a built-in. enable without an
option enables a built-in. More than one built-in can be given as arguments to enable,
so enable -n pushd popd dirs would disable the pushd, popd, and dirs built-ins."

You can find out what built-ins are currently enabled and disabled by using the com-
mand on its own, or with the -p option; enable or enable -p will list all enabled built-
ins, and enable -n will list all disabled built-ins. To get a complete list with their cur-
rent status, you can use enable -a.

The -s option restricts the output to POSIX “special’ built-ins. These are :, ., source,
break, continue, eval, exec, exit, export, readonly, return, set, shift, trap, and
unset.

eval

We have seen that quoting lets you skip steps in command-line processing. Then
there’s the eval command, which lets you go through the process again. Performing
command-line processing twice may seem strange, but it’s actually very powerful: it
lets you write scripts that create command strings on the fly and then pass them to
the shell for execution. This means that you can give scripts “intelligence” to modify
their own behavior as they are running.

The eval statement tells the shell to take eval’s arguments and run them through the
command-line processing steps all over again. To help you understand the implica-
tions of eval, we’ll start with a trivial example and work our way up to a situation in
which we’re constructing and running commands on the fly.

eval Is passes the string Is to the shell to execute; the shell prints a list of files in the
current directory. Very simple; there is nothing about the string Is that needs to be
sent through the command-processing steps twice. But consider this:

listpage="1s | more"

$listpage
Instead of producing a paginated file listing, the shell will treat | and more as argu-
ments to Is, and Is will complain that no files of those names exist. Why? Because the
pipe character “appears” in Step 6 when the shell evaluates the variable, after it has
actually looked for pipe characters. The variable’s expansion isn’t even parsed until
Step 9. As a result, the shell will treat | and more as arguments to Is, so that Is will try
to find files called | and more in the current directory!

Now consider eval $listpage instead of just $listpage. When the shell gets to the last
step, it will run the command eval with arguments Is, |, and more. This causes the
shell to go back to Step 1 with a line that consists of these arguments. It finds | in

* Be careful—it is possible to disable enable (enable -n enable). There is a compile-time option that allows
builtin to act as an escape-hatch. For more details, see Chapter 11.

186 | Chapter7: Input/Output and Command-Line Processing

Step 2 and splits the line into two commands, Is and more. Each command is pro-
cessed in the normal (and in both cases trivial) way. The result is a paginated list of
the files in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that
requires considerable programming cleverness to be used most effectively. It even has
a bit of the flavor of artificial intelligence, in that it enables you to write programs
that can “write” and execute other programs.” You probably won’t use eval for every-
day shell programming, but it’s worth taking the time to understand what it can do.

As a more interesting example, we’ll revisit Task 4-1, the very first task in the book.
In it, we constructed a simple pipeline that sorts a file and prints out the first N lines,
where N defaults to 10. The resulting pipeline was:

sort -nr $1 | head -${2:-10}
The first argument specified the file to sort; $2 is the number of lines to print.

Now suppose we change the task just a bit so that the default is to print the entire file
instead of 10 lines. This means that we don’t want to use head at all in the default
case. We could do this in the following way:
if [-n "$2"]; then
sort -nr $1 | head -$2
else
sort -nr $1
fi
In other words, we decide which pipeline to run according to whether $2 is null. But
here is a more compact solution:

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string | head -\$2 if $2 exists (is not
null); if $2 is null, then the expression is null too. We backslash-escape dollar signs
(\$) before variable names to prevent unpredictable results if the variables’ values
contain special characters like > or |. The backslash effectively puts off the variables’
evaluation until the eval command itself runs. So the entire line is either:

eval sort -nr \$1 | head -\$2
if $2 is given, or:
eval sort -nr \$1

if $2 is null. Once again, we can’t just run this command without eval because the
pipe is “uncovered” after the shell tries to break the line up into commands. eval
causes the shell to run the correct pipeline when $2 is given.

* You could actually do this without eval, by echoing commands to a temporary file and then “sourcing” that
file with . filename. But that is much less efficient.

Command-Line Processing | 187

Next, we’ll revisit Task 7-2 from earlier in this chapter, the start script that lets you
start a command in the background and save its standard output and standard error
in a logfile. Recall that the one-line solution to this task had the restriction that the
command could not contain output redirectors or pipes. Although the former
doesn’t make sense when you think about it, you certainly would want the ability to
start a pipeline in this way.

eval is the obvious way to solve this problem:
eval "$@" > logfile 2>8&1 &

The only restriction that this imposes on the user is that pipes and other such special
characters be quoted (surrounded by quotes or preceded by backslashes).

Here’s a way to apply eval in conjunction with various other interesting shell pro-
gramming concepts.

Task 7-3

Implement the core of the make utility as a shell script.

make is known primarily as a programmer’s tool, but it seems as though someone
finds a new use for it every day. Without going into too much extraneous detail,
make basically keeps track of multiple files in a particular project, some of which
depend on others (e.g., a document depends on its word processor input file(s)). It
makes sure that when you change a file, all of the other files that depend on it are
processed.

For example, assume you’re using the troff word processor to write a book. You have
files for the book’s chapters called chl.t, ch2.t, and so on; the troff output for these
files are chl.out, ch2.out, etc. You run commands like troff chN.t > chN.out to do
the processing. While you’re working on the book, you tend to make changes to sev-
eral files at a time.

In this situation, you can use make to keep track of which files need to be repro-
cessed, so that all you need to do is type make, and it will figure out what needs to
be done. You don’t need to remember to reprocess the files that have changed.

How does make do this? Simple: it compares the modification times of the input and
output files (called sources and targets in make terminology), and if the input file is
newer, then make reprocesses it.

You tell make which files to check by building a file called makefile that has con-
structs like this:

target : sourcel source2 ...
commands to make target

188 | Chapter7: Input/Output and Command-Line Processing

This essentially says, “For target to be up to date, it must be newer than all of the
sources. If it’s not, run the commands to bring it up to date.” The commands are on
one or more lines that must start with TABs: e.g., to make ch7.out:

ch7.out : ch7.t
troff ch7.t > ch7.out

Now suppose that we write a shell function called makecmd that reads and executes
a single construct of this form. Assume that the makefile is read from standard input.
The function would look like the following code.

makecmd ()
{

read target colon sources
for src in $sources; do
if [$src -nt $target]; then
while read cmd 8& [$(grep \t* $cmd)]; do
echo "$cmd"
eval ${cmd#\t}
done
break
fi
done
}
This function reads the line with the target and sources; the variable colon is just a
placeholder for the :. Then it checks each source to see if it’s newer than the target,
using the -nt file attribute test operator that we saw in Chapter 5. If the source is
newer, it reads, prints, and executes the commands until it finds a line that doesn’t
start with a TAB or it reaches end-of-file. (The real make does more than this; see the
exercises at the end of this chapter.) After running the commands (which are
stripped of the initial TAB), it breaks out of the for loop, so that it doesn’t run the
commands more than once.

As a final example of eval, we’ll look again at procimage, the graphics utility that we
developed in the last three chapters. Recall that one of the problems with the script
as it stands is that it performs the process of scaling and bordering regardless of
whether you want them. If no command-line options are present, a default size, bor-
der width, and border color are used. Rather than invent some if then logic to get
around this, we’ll look at how you can dynamically build a pipeline of commands in
the script; those commands that aren’t needed simply disappear when the time
comes to execute them. As an added bonus, we’ll add another capability to our
script: image enhancement.

Looking at the procimage script you’ll notice that the NetPBM commands form a nice
pipeline; the output of one operation becomes the input to the next, until we end up
with the final image. If it weren’t for having to use a particular conversion utility, we
could reduce the script to the following pipeline (ignoring options for now):

cat $filename | convertimage | pnmscale | pnmmargin |\
pnmtojpeg > $outfile

Command-Line Processing | 189

Or, better yet:

convertimage $filename | pnmscale | pnmmargin | pnmtojpeg \
> $outfile

As we’ve already seen, this is equivalent to:

eval convertimage $filename | pnmscale | pnmmargin |\
pnmtojpeg > $outfile

And knowing what we do about how eval operates, we can transform this into:

eval "convertimage" $filename
" | pnmtojpeg " > $outfile

| pnmscale | pnmmargin” \

And thence to:

convert="convertimage'

scale=" | pnmscale’
border=" | pnmmargin’
standardise=" | pnmtojpeg

eval $convert $filename $scale $border $standardise > $outfile

Now consider what happens when we don’t want to scale the image. We do this:

scale=

while getopts ":s:w:c:" opt; do
case $opt in
s) scale=' | pnmscale' ;;

eval $convert $filename $scale $border $standardise > $outfile

In this code fragment, scale is set to a default of the empty string. If -s is not given on
the command line, then the final line evaluates with $scale as the empty string and
the pipeline will “collapse” into:

$convert $filename $border $standardise > $outfile

Using this principle, we can modify the previous version of the procimage script and
produce a pipeline version. For each input file we need to construct and run a pipe-
line based upon the options given on the command line. Here is the new version:

Set up the defaults

width=1

colour="-color grey'

usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

Initialise the pipeline components
standardise=" | pnmtojpeg -quiet’
while getopts ":s:w:c:" opt; do
case $opt in
s) size=$0PTARG

190 | Chapter7: Input/Output and Command-Line Processing

scale=" | pnmscale -quiet -xysize $size $size' ;;

w) width=$0PTARG
border=" | pnmmargin $colour $width' ;;

¢) colour="-color $OPTARG"
border=" | pnmmargin $colour $width' ;;

\?) echo $usage
exit 1 ;;

esac
done

shift $(($OPTIND - 1))

if [-z "$@"]; then
echo $usage
exit 1

fi

Process the input files
for filename in "$@"; do
case $filename in
*.gif) convert='giftopnm' ;;

..

*.tga) convert="tgatoppm' ;

*.xpm) convert="xpmtoppm' ;

-

*.pcx) convert='pcxtoppm'

-

*.tif) convert="tifftopnm' ;;
*.jpg) convert='jpegtopnm -quiet' ;;
*) echo "$0: Unknown filetype '${filenamefft*.}"'"

exit 1;;
esac

outfile=${filename%.*}.new.jpg
eval $convert $filename $scale $border $standardise > $outfile

done

This version has been simplified somewhat from the previous one in that it no longer
needs a temporary file to hold the converted file. It is also a lot easier to read and
understand. To show how easy it is to add further processing to the script, we’ll now
add one more NetPBM utility.

NetPBM provides a utility to enhance an image and make it sharper: pnmnlfilt. This
utility is an image filter that samples the image and can enhance edges in the image
(it can also smooth the image if given the appropriate values). It takes two parame-
ters that tell it how much to enhance the image. For the purposes of our script, we’ll

Command-Line Processing | 191

just choose some optimal values and provide an option to switch enhancement on
and off in the script.

To put the new capability in place all we have to do is add the new option (-S) to the
getopts case statement, update the usage line, and add a new variable to the pipe-
line. Here is the new code:

Set up the defaults

width=1

colour="-color grey'

usage="Usage: $0 [-S] [-s N] [-w N] [-c S] imagefile..."”

Initialise the pipeline components
standardise=" | pnmtojpeg -quiet’
while getopts ":Ss:w:c:" opt; do
case $opt in
S) sharpness=' | pnmnlfilt -0.7 0.45" ;;
s) size=$0PTARG

scale=" | pnmscale -quiet -xysize $size $size' ;;
w) width=$0PTARG

border=" | pnmmargin $colour $width' ;;
¢) colour="-color $OPTARG"

border=" | pnmmargin $colour $width' ;;
\?) echo $usage

exit 1 ;;

esac
done

shift $(($OPTIND - 1))

if [-z "$@"]; then
echo $usage
exit 1

fi

Process the input files
for filename in "$@"; do
case $filename in
*.gif) convert='giftopnm' ;;

*.tga) convert="tgatoppm' ;;

*.xpm) convert="xpmtoppm' ;

-

*.pcx) convert='pcxtoppm'

-

*.tif) convert="tifftopnm' ;;
*.jpg) convert='jpegtopnm -quiet' ;;
*) echo "$0: Unknown filetype '${filenamettt*.}"'"

exit 1;;
esac

192 | Chapter7: Input/Output and Command-Line Processing

outfile=${filename%.*}.new.jpg
eval $convert $filename $scale $border $sharpness $standardise > $outfile

done

We could go on forever with increasingly complex examples of eval, but we’ll settle
for concluding the chapter with a few exercises. The questions in Exercise 3 are really
more like items on the menu of food for thought.

1. Here are a couple of ways to enhance procimage, the graphics utility:

a. Add an option, -q, that allows the user to turn on and off the printing of
diagnostic information from the NetPBM utilities. You’ll need to map -q to
the -quiet option of the utilities. Also, add your own diagnostic output for
those utilities that don’t print anything, e.g., the format conversions.

b. Add an option that allows the user to specify the order that the NetPBM
processes take place, i.e., whether enhancing the image comes before bor-
dering, or bordering comes before resizing. Rather than using an if con-
struct to make the choice amongst hard-coded orders, construct a string
dynamically which will look similar to this:

"eval $convert $filename $scale $border $sharpness
$standardise > $outfile"
You’ll then need eval to evaluate this string.

2. The function makecmd in the solution to Task 7-3 represents an oversimplifica-
tion of the real make’s functionality. make actually checks file dependencies
recursively, meaning that a source on one line in a makefile can be a target on
another line. For example, the book chapters in the example could themselves
depend on some figures in separate files that were made with a graphics package.

a. Write a function called readtargets that goes through the makefile and
stores all of the targets in a variable or temporary file.

b. makecmd merely checks to see if any of the sources are newer than the given
target. It should really be a recursive routine that looks like this:

function makecmd ()
{
target=$1
get sources for $target
for each source src; do
if $src is also a target in this makefile then
makecmd $src
fi
if [$src -nt $target]; then
run commands to make target
return
fi
done

}

Implement this.

Command-Line Processing | 193

c. Write the “driver” script that turns the makecmd function into a full make

program. This should make the target given as argument, or if none is given,
the first target listed in the makefile.

. The above makecmd still doesn’t do one important thing that the real make

does: allow for “symbolic” targets that aren’t files. These give make much of
the power that makes it applicable to such an incredible variety of situa-
tions. Symbolic targets always have a modification time of 0, so that make
always runs the commands to make them. Modify makecmd so that it allows
for symbolic targets. (Hint: the crux of this problem is to figure out how to
get a file’s modification time. This is quite difficult.)

3. Here are some problems that really test your knowledge of eval and the shell’s
command-line processing rules. Solve these and you’re a true bash hacker!

a. Advanced shell programmers sometimes use a little trick that includes eval:

using the value of a variable as the name of another variable. In other words,
you can give a shell script control over the names of variables to which it
assigns values. The latest version of bash has this built in in the form of
${'varname}, where varname contains the name of another variable that will
be the target of the operation. This is known as indirect expansion. How
would you do this only using eval? (Hint: if $object equals “person”, and
Sperson is “alice”, then you might think that you could type echo $$Sobject
and get the response alice. This doesn’t actually work, but it’s on the right
track.)

. You could use the above technique together with other eval tricks to imple-

ment new control structures for the shell. For example, see if you can write a
script that emulates the behavior of a for loop in a conventional language
like C or Pascal, i.e., a loop that iterates a fixed number of times, with a loop
variable that steps from 1 to the number of iterations (or, for C fans, 0 to
iterations-1). Call your script loop to avoid clashes with the keywords for

and do.

. The pushd, popd, and dirs functions that we built up in previous chapters

can’t handle directories with spaces in their names (because DIR_STACK
uses a space as a delimiter). Use eval to overcome this limitation. (Hint: use
eval to implement an array. Each array element is called arrayl, array2, ...
arrayn, and each array element contains a directory name.)

. (The following doesn’t have that much to do with the material in this chap-

ter per se, but it is a classic programming exercise:) Write the function
alg2rpn used in the section on command blocks. Here’s how to do this:
Arithmetic expressions in algebraic notation have the form expr op expr,
where each expr is either a number or another expression (perhaps in paren-
theses), and op is +, -, x, /, or % (remainder). In RPN, expressions have the
form expr expr op. For example: the algebraic expression 2+3 is 2 3 + in

194

Chapter7: Input/Output and Command-Line Processing

RPN; the RPN equivalent of (2+3) x (9-5) is 2 3 + 9 5 - x. The main advan-
tage of RPN is that it obviates the need for parentheses and operator prece-
dence rules (e.g., x is evaluated before +). The dc program accepts standard
RPN, but each expression should have “p” appended to it, which tells dc to
print its result; e.g., the first example above should be given to dc as 2 3 + p.

. You need to write a routine that converts algebraic notation to RPN. This
should be (or include) a function that calls itself (a recursive function) when-
ever it encounters a subexpression. It is especially important that this func-
tion keep track of where it is in the input string and how much of the string
it “eats up” during its processing. (Hint: make use of the pattern-matching
operators discussed in Chapter 4 to ease the task of parsing input strings.)
To make your life easier, don’t worry about operator precedence for now;
just convert to RPN from left to right: e.g., treat 34+4x5 as (3+4)x5 and
3x4+5 as (3x4)+5. This makes it possible for you to convert the input string
on the fly, i.e., without having to read in the whole thing before doing any
processing.

. Enhance your solution to the previous exercise so that it supports operator
precedence in the “usual” order: x, /, % (remainder) +, -. For example, treat
3+4x5 as 3+(4x5) and 3x4+5 as (3x4)+5.

. Here is something else to really test your skills; write a graphics utility script,
index, that takes a list of image files, reduces them in size and creates an
“index” image. An index image is comprised of thumbnail-sized versions of
the original images, placed neatly in columns and rows, and with a caption
underneath (usually the name of the original file). Besides the list of files,
you’ll need some options, including the number of columns to create and
the size of the thumbnail images. You might also like to include an option to
specify the gap between each image. The new NetPBM utilities you’ll need
are pbmtext and pnmcat. You’ll also need pnmscale and one or more of the
conversion utilities, depending upon whether you decide to take in various
formats (as we did for procimage) and what output format you decide on.
pbmtext takes as an argument some text and converts the text into a PNM
bitmap. pnmcat is a little more complex. Like cat, it concatenates things; in
this case, images. You can specify as many PNM files as you like as
arguments and pnmcat will put them together into one long image. By using
the -Ir and -tb options, you can specify whether you want the images to be
placed one after the other going from left to right, or from top to bottom.
The first option to pnmcat is the background color. It can be either -black for
a black background, or -white for a white background. We suggest -white to
match the pbmtext black text on a white background. You’ll need to take
each file, run the filename through pbmtext, and use pnmcat to place it
underneath a scaled down version of the original image. Then you’ll need to
continue doing this for each file and use pnmecat to connect them together.

Command-Line Processing | 195

In addition, you’ll have to keep tabs on how many columns you have com-
pleted and when to start a new row. Note that you’ll need to build up the
rows individually and use pnmcat to connect them together. pnmcat won’t
do this for you automatically.

196 | Chapter7: Input/Output and Command-Line Processing

CHAPTER 8
Process Handling

The UNIX operating system built its reputation on a small number of concepts, all of
which are simple yet powerful. We’ve seen most of them by now: standard input/out-
put, pipes, text-filtering utilities, the tree-structured file system, and so on. UNIX also
gained notoriety as the first small-computer operating system to give each user con-
trol over more than one process. We call this capability user-controlled multitasking.

You may not think that multitasking is a big deal. You’re probably used to the idea
of running a process in the background by putting an ampersand (&) at the end of
the command line. You have also seen the idea of a subshell in Chapter 4, when we
showed how shell scripts run.

In this chapter, we will cover most of bash’s features that relate to multitasking and
process handling in general. We say “most” because some of these features are, like
the file descriptors we saw in the previous chapter, of interest only to low-level sys-
tems programmers.

We'll start out by looking at certain important primitives for identifying processes
and for controlling them during login sessions and within shell scripts. Then we will
move out to a higher-level perspective, looking at ways to get processes to communi-
cate with each other. We’ll look in more detail at concepts we’ve already seen, like
pipes and subshells.

Don’t worry about getting bogged down in low-level technical details about UNIX.
We will provide only the technical information that is necessary to explain higher-
level features, plus a few other tidbits designed to pique your curiosity. If you are
interested in finding out more about these areas, refer to your UNIX Programmer’s
Manual or a book on UNIX internals that pertains to your version of UNIX. You
might also find UNIX Power Tools of value.

We strongly recommend that you try out the examples in this chapter. The behavior
of code that involves multiple processes is not as easy to understand on paper as
most of the other examples in this book.

197

Process IDs and Job Numbers

UNIX gives all processes numbers, called process IDs, when they are created. You
will notice that when you run a command in the background by appending & to it,
the shell responds with a line that looks like this:

$ alice &[1] 93

In this example, 93 is the process ID for the alice process. The [1] is a job number
assigned by the shell (not the operating system). What’s the difference? Job numbers
refer to background processes that are currently running under your shell, while pro-
cess IDs refer to all processes currently running on the entire system, for all users.
The term job basically refers to a command line that was invoked from your shell.

If you start up additional background jobs while the first one is still running, the
shell will number them 2, 3, etc. For example:

$ duchess &[2] 102
$ hatter &[3] 104

Clearly, 1, 2, and 3 are easier to remember than 93, 102, and 104!

The shell includes job numbers in messages it prints when a background job completes:*
[1]+ Done alice

We'll explain what the plus sign means soon. If the job exits with non-zero status
(see Chapter 5), the shell will indicate the exit status:t

[1]+ Exit 1 alice

The shell prints other types of messages when certain abnormal things happen to
background jobs; we’ll see these later in this chapter.

Job Control

Why should you care about process IDs or job numbers? Actually, you could proba-
bly get along fine through your UNIX life without ever referring to process IDs
(unless you use a windowing workstation—as we’ll see soon). Job numbers are more
important, however: you can use them with the shell commands for job control

* The messages are, by default, printed before the next prompt is displayed so as not to interrupt any output
on the display. You can make the notification messages display immediately by using set -b.

1 In POSIX mode, the message is slightly different: “[1]+ Done(1) alice”. The number in parentheses is the
exit status of the job. POSIX mode can be selected via the set command or by starting bash in POSIX mode.
For further information, see Table 2-1 and Table 2-5

1 If you have an older version of UNIX; it is possible that your system does not support job control. This is par-
ticularly true for many systems derived from Xenix, System III, or early versions of System V. On such systems,
bash does not have the fg and bg commands, job number arguments to kill and wait, typing CTRL-Z to sus-
pend a job, or the TSTP signal.

198 | Chapter8: ProcessHandling

You already know the most obvious way of controlling a job: create one in the back-
ground with &. Once a job is running in the background, you can let it run to com-
pletion, bring it into the foreground, or send it a message called a signal.

Foreground and Background

The built-in command fg brings a background job into the foreground. Normally
this means that the job will have control of your terminal or window and therefore
will be able to accept your input. In other words, the job will begin to act as if you
typed its command without the &.

If you have only one background job running, you can use fg without arguments,
and the shell will bring that job into the foreground. But if you have several jobs run-
ning in the background, the shell will pick the one that you put into the background
most recently. If you want some other job put into the foreground, you need to use
the job’s command name, preceded by a percent sign (%), or you can use its job
number, also preceded by %, or its process ID without a percent sign. If you don’t
remember which jobs are running, you can use the command jobs to list them.

A few examples should make this clearer. Let’s say you created three background
jobs as above. Then if you type jobs, you will see this:

[1] Running alice &
[2]- Running duchess &
[3]+ Running hatter &

jobs has a few interesting options. jobs -1 also lists process IDs:

[1] 93 Running alice &
[2]- 102 Running duchess &
[3]+ 104 Running hatter &

The -p option tells jobs to list only process IDs:

93

102

104
(This could be useful with command substitution; see Task 8-1.) The -n option lists
only those jobs whose status has changed since the shell last reported it—whether
with a jobs command or otherwise. -r restricts the list to jobs that are running, while
-s restricts the list to those jobs which are stopped, e.g., waiting for input from the
keyboard." Finally, you can use the -x option to execute a command. Any job num-
ber provided to the command will be substituted with the process ID of the job. For
example, if alice is running in the background, then executing jobs -x echo %1 will
print the process ID of alice.

* Options -r and -s are not available in bash prior to version 2.0.

JobControl | 199

If you type fg without an argument, the shell will put hatter in the foreground,
because it was put in the background most recently. But if you type fg %duchess (or
fg %2), duchess will go in the foreground.

You can also refer to the job most recently put in the background by %-+. Similarly, %-
refers to the next-most-recently backgrounded job (duchess in this case). That explains
the plus and minus signs in the above: the plus sign shows the most recent job whose
status has changed; the minus sign shows the next-most-recently invoked job."

If more than one background job has the same command, then %command will dis-
tinguish between them by choosing the most recently invoked job (as you’d expect).
If this isn’t what you want, you need to use the job number instead of the command
name. However, if the commands have different arguments, you can use %?string
instead of %command. %?string refers to the job whose command contains the
string. For example, assume you started these background jobs:

$ hatter mad &[1] 189

$ hatter teatime &[2] 190

$
Then you can use %?mad and %?teatime to refer to each of them, although actually
%?ma and %?tea are sufficient to uniquely identify them.

Table 8-1 lists all of the ways to refer to background jobs. Given how infrequently
people use job control commands, job numbers or command names are sufficient,
and the other ways are superfluous.

Table 8-1. Ways to refer to background jobs

Reference Background job

%N Job number N

%string Job whose command begins with string
%?string Job whose command contains string

%+ Most recently invoked background job

%% Same as above

%- Second most recently invoked background job

Suspending a Job

Just as you can put background jobs into the foreground with fg, you can also put a
foreground job into the background. This involves suspending a job, so that the shell
regains control of your terminal.

* This is analogous to ~+ and ~- as references to the current and previous directory; see the footnote in
Chapter 7. Also: %% is a synonym for %-+.

200 | Chapter8: Process Handling

To suspend a job, type CTRL-Z while it is running.” This is analogous to typing
CTRL-C (or whatever your interrupt key is), except that you can resume the job after
you have stopped it. When you type CTRL-Z, the shell responds with a message like
this:

[1]+ Stopped command

Then it gives you your prompt back. To resume a suspended job so that it continues
to run in the foreground, just type fg. If, for some reason, you put other jobs in the
background after you typed CTRL-Z, use fg with a job name or number.

For example:

alice is running...CTRL-Z[1]+ Stopped alice

$ hatter &[2] 145

$ fg %alicealice resumes in the foreground...
The ability to suspend jobs and resume them in the foreground comes in very handy
when you have a conventional terminal (as opposed to a windowing workstation)
and you are using a text editor like vi on a file that needs to be processed. For exam-
ple, if you are editing a file for the troff text processor, you can do the following:

$ vi myfileedit the file... CTRL-ZStopped [1] vi

$ troff myfiletroff reports an error$ fgvi comes back up in the same place in your
file

Programmers often use the same technique when debugging source code.

You will probably also find it useful to suspend a job and resume it in the back-
ground instead of the foreground. You may start a command in the foreground (i.e.,
normally) and find that it takes much longer than you expected—for example, a
grep, sort, or database query. You need the command to finish, but you would also
like control of your terminal back so that you can do other work. If you type CTRL-Z
followed by bg, you will move the job to the background.t

You can also suspend a job with CTRL-Y. This is slightly different from CTRL-Z in
that the process is only stopped when it attempts to read input from the terminal.

Signals

We mentioned earlier that typing CTRL-Z to suspend a job is similar to typing
CTRL-C to stop a job, except that you can resume the job later. They are actually
similar in a deeper way: both are particular cases of the act of sending a signal to a
process.

* This assumes that the CTRL-Z key is set up as your suspend key; just as with CTRL-C and interrupts, this
is conventional but by no means required.

T Be warned, however, that not all commands are “well-behaved” when you do this. Be especially careful with
commands that run over a network on a remote machine; you may end up confusing the remote program.

Signals | 201

A signal is a message that one process sends to another when some abnormal event
takes place or when it wants the other process to do something. Most of the time, a
process sends a signal to a subprocess it created. You’re undoubtedly already comfort-
able with the idea that one process can communicate with another through an I/O
pipeline; think of a signal as another way for processes to communicate with each
other. (In fact, any textbook on operating systems will tell you that both are exam-
ples of the general concept of interprocess communication, or IPC.")

Depending on the version of UNIX, there are two or three dozen types of signals,
including a few that can be used for whatever purpose a programmer wishes. Signals
have numbers (from 1 to the number of signals the system supports) and names;
we’ll use the latter. You can get a list of all the signals on your system, by name and
number, by typing kill -1. Bear in mind, when you write shell code involving signals,
that signal names are more portable to other versions of UNIX than signal numbers.

Control-Key Signals

When you type CTRL-C, you tell the shell to send the INT (for “interrupt”) signal to
the current job; CTRL-Z sends TSTP (on most systems, for “terminal stop”). You
can also send the current job a QUIT signal by typing CTRL-\ (control-backslash);
this is sort of like a “stronger” version of CTRL-C.T You would normally use CTRL-\
when (and only when) CTRL-C doesn’t work.

As we’ll see soon, there is also a “panic” signal called KILL that you can send to a
process when even CTRL-\ doesn’t work. But it isn’t attached to any control key,
which means that you can’t use it to stop the currently running process. INT, TSTP,
and QUIT are the only signals you can use with control keys.¥

You can customize the control keys used to send signals with options of the stty
command. These vary from system to system—consult your manpage for the com-
mand—but the usual syntax is stty signame char. signame is a name for the signal
that, unfortunately, is often not the same as the names we use here. Table 1-7 in
Chapter 1 lists stty names for signals found on all versions of UNIX. char is the con-
trol character, which you can give using the convention that " (circumflex) repre-
sents “control.” For example, to set your INT key to CTRL-X on most systems, use:

stty intr *X

* Pipes and signals were the only IPC mechanisms in early versions of UNIX. More modern versions like Sys-
tem V and BSD have additional mechanisms, such as sockets, named pipes, and shared memory. Named
pipes are accessible to shell programmers through the mknod(1) command, which is beyond the scope of this
book.

+ CTRL-\ can also cause the shell to leave a file called core in your current directory. This file contains an image
of the process to which you sent the signal; a programmer could use it to help debug the program that was
running. The file’s name is a (very) old-fashioned term for a computer’s memory. Other signals leave these
“core dumps” as well; unless you require them, or someone else does, just delete them.

1 Some BSD-derived systems have additional control-key signals.

202 | Chapter8: Process Handling

Now that we’ve told you how to do this, we should add that we don’t recommend it.
Changing your signal keys could lead to trouble if someone else has to stop a run-
away process on your machine.

Most of the other signals are used by the operating system to advise processes of
error conditions, like a bad machine code instruction, bad memory address, or divi-
sion by zero, or “interesting” events such as a timer (“alarm”) going off. The remain-
ing signals are used for esoteric error conditions of interest only to low-level systems
programmers; newer versions of UNIX have even more signal types.

kill

You can use the built-in shell command kill to send a signal to any process you cre-
ated—mnot just the currently running job. kill takes as an argument the process 1D,
job number, or command name of the process to which you want to send the signal.
By default, kill sends the TERM (“terminate”) signal, which usually has the same
effect as the INT signal you send with CTRL-C. But you can specify a different sig-
nal by using the signal name (or number) as an option, preceded by a dash.

kill is so named because of the nature of the default TERM signal, but there is another
reason, which has to do with the way UNIX handles signals in general. The full details
are too complex to go into here, but the following explanation should suffice.

Most signals cause a process that receives them to die; therefore, if you send any one
of these signals, you “kill” the process that receives it. However, programs can be set
up to “trap specific signals and take some other action. For example, a text editor
would do well to save the file being edited before terminating when it receives a sig-
nal such as INT, TERM, or QUIT. Determining what to do when various signals
come in is part of the fun of UNIX systems programming.

Here is an example of kill. Say you have an alice process in the background, with
process ID 150 and job number 1, which needs to be stopped. You would start with
this command:

$ kill %1
If you were successful, you would see a message like this:
[1]+ Terminated alice

If you don’t see this, then the TERM signal failed to terminate the job. The next step
would be to try QUIT:

$ kill -QUIT %1
If that worked, you would see this message:

[1]+ Exit 131 alice

Signals | 203

The 131 is the exit status returned by alice.” But if even QUIT doesn’t work, the
“last-ditch” method would be to use KILL:

$ kill -KILL %1
This produces the message:
[1]+ Killed alice

It is impossible for a process to “trap a KILL signal—the operating system should ter-
minate the process immediately and unconditionally. If it doesn’t, then either your
process is in one of the “funny states” we’ll see later in this chapter, or (far less likely)
there’s a bug in your version of UNIX.

Here’s another example.

Task 8-1
Write a script called killalljobs that kills all background jobs.

The solution to this task is simple, relying on jobs -p:
kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately, instead of trying TERM
(the default) and QUIT first. Don’t do this. TERM and QUIT are designed to give a
process the chance to “clean up” before exiting, whereas KILL will stop the process,
wherever it may be in its computation. Use KILL only as a last resort!

You can use the kill command with any process you create, not just jobs in the back-
ground of your current shell. For example, if you use a windowing system, then you
may have several terminal windows, each of which runs its own shell. If one shell is
running a process that you want to stop, you can kill it from another window—but
you can’t refer to it with a job number because it’s running under a different shell.
You must instead use its process ID.

ps
This is probably the only situation in which a casual user would need to know the ID

of a process. The command ps gives you this information; however, it can give you
lots of extra information as well.

* When a shell script is sent a signal, it exits with status 128+N, where N is the number of the signal it received.
In this case, alice is a shell script, and QUIT happens to be signal number 3.

204 | Chapter8: Process Handling

ps is a complex command. It takes several options, some of which differ from one
version of UNIX to another. To add to the confusion, you may need different options
on different UNIX versions to get the same information! We will use options avail-
able on the two major types of UNIX systems, those derived from System V (such as
many of the versions for Intel Pentium PCs, as well as IBM’s AIX and Hewlett-Pack-
ard’s HP/UX) and BSD (Mac OS X, SunOS, BSD/OS). If you aren’t sure which kind
of UNIX version you have, try the System V options first.

You can invoke ps in its simplest form without any options. In this case, it will print
a line of information about the current login shell and any processes running under it
(i.e., background jobs). For example, if you were to invoke three background jobs, as
we saw earlier in the chapter, the ps command on System V—derived versions of
UNIX would produce output that looks something like this:

PID TTY TIME COMD

146 pts/10 0:03 -bash

2349 pts/10 0:03 alice

2367 pts/10 0:17 hatter

2389 pts/10 0:09 duchess
2390 pts/10 0:00 ps

The output on BSD-derived systems looks like this:

PID TT STAT TIME COMMAND
146 10 S 0:03 /bin/bash
2349 10 R 0:03 alice
2367 10 D 0:17 hatter teatime
2389 10 R 0:09 duchess
2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the jobs command. PID is the
process ID; TTY (or TT) is the terminal (or pseudo-terminal, if you are using a win-
dowing system) the process was invoked from; TIME is the amount of processor
time (not real or “wall clock” time) the process has used so far; COMD (or COM-
MAND) is the command. Notice that the BSD version includes the command’s argu-
ments, if any; also notice that the first line reports on the parent shell process, and in
the last line, ps reports on itself.

ps without arguments lists all processes started from the current terminal or pseudo-
terminal. But since ps is not a shell command, it doesn’t correlate process IDs with
the shell’s job numbers. It also doesn’t help you find the ID of the runaway process
in another shell window.

To get this information, use ps -a (for “all”); this lists information on a different set
of processes, depending on your UNIX version.

Signals | 205

SystemV

Instead of listing all processes that were started under a specific terminal, ps -a on
System V-derived systems lists all processes associated with any terminal that aren’t
group leaders. For our purposes, a “group leader” is the parent shell of a terminal or
window. Therefore, if you are using a windowing system, ps -a lists all jobs started in
all windows (by all users), but not their parent shells.

Assume that, in the previous example, you have only one terminal or window. Then
ps -a will print the same output as plain ps except for the first line, since that’s the
parent shell. This doesn’t seem to be very useful.

But consider what happens when you have multiple windows open. Let’s say you
have three windows, all running terminal emulators like xterm for the X Window
System. You start background jobs alice, duchess, and hatter in windows with
pseudo-terminal numbers 1, 2, and 3, respectively. This situation is shown in
Figure 8-1.

~ =]
) | 1
= ==
$ alice &
[1] 2349
| S|
= $ hatter &
[1] 2389
13 i
$ duchess &
[1] 2367
13 i

Figure 8-1. Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something

like this:

PID TTY TIME COMD
146 pts/1 0:03 bash
2349 pts/1 0:03 alice

2390 pts/1 0:00 ps

But if you type ps -a, you will see this:

PID TTY TIME COMD
146 pts/1 0:03 bash
2349 pts/1 0:03 alice
2367 pts/2 0:17 duchess
2389 pts/3 0:09 hatter
2390 pts/1 0:00 ps

206 | Chapter8: Process Handling

Now you should see how ps -a can help you track down a runaway process. If it’s
hatter, you can type kill 2389. If that doesn’t work, try kill -QUIT 2389, or in the
worst case, kill -KILL 2389.

BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in
other words, it’s a bit like concatenating the results of plain ps for every user on the
system. Given the above scenario, ps -a will show you all processes that the System V
version shows, plus the group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not report processes that are in
certain conditions where they “forget” things like what shell invoked them and what
terminal they belong to. Such processes are known as “zombies” or “orphans.” If
you have a serious runaway process problem, it’s possible that the process has
entered one of these states.

Let’s not worry about why or how a process gets this way. All you need to understand
is that the process doesn’t show up when you type ps-a. You need another option to
ps to see it: on System V, it’s ps -e (“everything”), whereas on BSD, it’s ps -ax.

These options tell ps to list processes that either weren’t started from terminals or
“forgot” what terminal they were started from. The former category includes lots of
processes that you probably didn’t even know existed: these include basic processes
that run the system and so-called daemons (pronounced “demons”) that handle sys-
tem services like mail, printing, network filesystems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about UNIX
system internals, if you’re curious about them. Run the command on your system
and, for each line of the listing that looks interesting, invoke man on the process
name or look it up in the UNIX Programmer’s Manual for your system.

User shells and processes are listed at the very bottom of ps -e or ps -ax output; this
is where you should look for runaway processes. Notice that many processes in the
listing have ? instead of a terminal. Either these aren’t supposed to have one (such as
the basic daemons) or they’re runaways. Therefore it’s likely that if ps -a doesn’t find
a process you're trying to kill, ps -e (or ps -ax) will list it with ? in the TTY (or TT)
column. You can determine which process you want by looking at the COMD (or
COMMAND) column.

trap

We've been discussing how signals affect the casual user; now let’s talk a bit about
how shell programmers can use them. We won’t go into too much depth about this,
because it’s really the domain of systems programmers.

trap | 207

We mentioned above that programs in general can be set up to “trap specific signals
and process them in their own way. The trap built-in command lets you do this from
within a shell script. trap is most important for “bullet-proofing” large shell pro-
grams so that they react appropriately to abnormal events—just as programs in any
language should guard against invalid input. It’s also important for certain systems
programming tasks, as we’ll see in the next chapter.

The syntax of trap is:
trap cmd sigl sig2 ...

That is, when any of sigl, sig2, etc., are received, run c¢md, then resume execution.
After ¢md finishes, the script resumes execution just after the command that was
interrupted.”

Of course, cmd can be a script or function. The sigs can be specified by name or by
number. You can also invoke trap without arguments, in which case the shell will
print a list of any traps that have been set, using symbolic names for the signals.

Here’s a simple example that shows how trap works. Suppose we have a shell script
called loop with this code:

while true; do

sleep 60

done
This will just pause for 60 seconds (the sleep command) and repeat indefinitely. true
is a “do-nothing” command whose exit status is always 0.t Try typing in this script.
Invoke it, let it run for a little while, then type CTRL-C (assuming that is your inter-
rupt key). It should stop, and you should get your shell prompt back.

Now insert this line at the beginning of the script:
trap "echo 'You hit control-C!'" INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are
interrupting the sleep command (as opposed to true). You should see the message
“You hit control-C!”, and the script will not stop running; instead, the sleep com-
mand will abort, and it will loop around and start another sleep. Hit CTRL-Z to get it
to stop and then type kill %1.

Next, run the script in the background by typing loop &. Type kill %loop (i.e., send
it the TERM signal); the script will terminate. Add TERM to the trap command, so
that it looks like this:

trap "echo 'You hit control-C!'" INT TERM

* This is what usually happens. Sometimes the command currently running will abort (sleep acts like this, as
we’ll see soon); at other times it will finish running. Further details are beyond the scope of this book.

1 This command is the same as the built-in shell no-op command “:”.

208 | Chapter8: Process Handling

Now repeat the process: run it in the background and type kill %loop. As before,
you will see the message and the process will keep on running. Type kill -KILL
%loop to stop it.

Notice that the message isn’t really appropriate when you use kill. We’ll change the
script so it prints a better message in the kill case:

trap "echo 'You hit control-C!'" INT
trap "echo 'You tried to kill me!'" TERM

while true; do
sleep 60
done

Now try it both ways: in the foreground with CTRL-C and in the background with
kill. You’ll see different messages.

Traps and Functions

The relationship between traps and shell functions is straightforward, but it has cer-
tain nuances that are worth discussing. The most important thing to understand is
that functions are considered part of the shell that invokes them. This means that
traps defined in the invoking shell will be recognized inside the function, and more
importantly, any traps defined in the function will be recognized by the invoking
shell once the function has been called. Consider this code:

settrap () {
trap "echo 'You hit control-C!'" INT
}

settrap

while true; do
sleep 60

done

If you invoke this script and hit your interrupt key, it will print “You hit control-C!”
In this case the trap defined in settrap still exists when the function exits.

Now consider:

Toop () {
trap "echo 'How dare you!'" INT

while true; do
sleep 60
done

}

trap "echo 'You hit control-C!'" INT
loop

trap | 209

When you run this script and hit your interrupt key, it will print “How dare you!” In
this case the trap is defined in the calling script, but when the function is called the
trap is redefined. The first definition is lost. A similar thing happens with:

Loop () {
trap "echo 'How dare you!'" INT
}

trap "echo 'You hit control-C!'" INT
loop
while true; do
sleep 60
done

Once again, the trap is redefined in the function; this is the definition used once the
loop is entered.

We’ll now show a more practical example of traps.

Task 8-2

As part of an electronic mail system, write the shell code that lets a user compose a
message.

The basic idea is to use cat to create the message in a temporary file and then hand
the file’s name off to a program that actually sends the message to its destination.
The code to create the file is very simple:

msgfile=/tmp/msg$$

cat > $msgfile
Since cat without an argument reads from the standard input, this will just wait for
the user to type a message and end it with the end-of-text character CTRL-D.

Process ID Variables and Temporary Files

The only thing new about this script is $$ in the filename expression. This is a spe-
cial shell variable whose value is the process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process (bash).
Then type echo “$$”; the shell will respond with that same number. Now type bash
to start a subshell, and when you get a prompt, repeat the process. You should see a
different number, probably slightly higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!), which contains the process ID
of the most recently invoked background job. To see how this works, invoke any job

210 | Chapter8: Process Handling

in the background and note the process ID printed by the shell next to [1]. Then type
echo “$!”; you should see the same number.

To return to our mail example: since all processes on the system must have unique
process IDs, $$ is excellent for constructing names of temporary files.

The directory /tmp is conventionally used for temporary files. Many systems also
have another directory, /var/tmp, for the same purpose.

Nevertheless, a program should clean up such files before it exits, to avoid taking up
unnecessary disk space. We could do this in our code very easily by adding the line
rm $msgfile after the code that actually sends the message. But what if the program
receives a signal during execution? For example, what if a user changes her mind
about sending the message and hits CTRL-C to stop the process? We would need to
clean up before exiting. We’ll emulate the actual UNIX mail system by saving the
message being written in a file called dead.letter in the current directory. We can do
this by using trap with a command string that includes an exit command:

trap 'mv $msgfile dead.letter; exit' INT TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile
When the script receives an INT or TERM signal, it will remove the temp file and
then exit. Note that the command string isn’t evaluated until it needs to be run, so
$msgfile will contain the correct value; that’s why we surround the string in single
quotes.

But what if the script receives a signal before msgfile is created—unlikely though
that may be? Then mv will try to rename a file that doesn’t exist. To fix this, we need
to test for the existence of the file $msgfile before trying to delete it. The code for
this is a bit unwieldy to put in a single command string, so we’ll use a function
instead:

function cleanup {
if [-e $msgfile]; then
mv $msgfile dead.letter
fi
exit

}

trap cleanup INT TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...
rm $msgfile

trap | 211

Ignoring Signals

Sometimes a signal comes in that you don’t want to do anything about. If you give
the null string (“” or) as the command argument to trap, then the shell will effec-
tively ignore that signal. The classic example of a signal you may want to ignore is
HUP (hangup). This can occur on some UNIX systems when a hangup (disconnec-
tion while using a modem—Iliterally “hanging up”) or some other network outage
takes place.

HUP has the usual default behavior: it will kill the process that receives it. But there
are bound to be times when you don’t want a background job to terminate when it
receives a hangup signal.

To do this, you could write a simple function that looks like this:

function ignorehup {
trap "" HUP
eval "$@"
}
We write this as a function instead of a script for reasons that will become clearer
when we look in detail at subshells at the end of this chapter.

Actually, there is a UNIX command called nohup that does precisely this. The start
script from the last chapter could include nohup:

eval nohup "$@" > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and error
output in a file. Actually, the following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this case,
then you have a firm grasp on the material in the previous chapter. Note that if you
don’t specify a redirection for any output from the command, nohup places it in a file
called nohup.out.

disown

Another way to ignore the HUP signal is with the disown built-in.” disown takes as
an argument a job specification, such as the process ID or job ID, and removes the
process from the list of jobs. The process is effectively “disowned” by the shell from
that point on, i.e., you can only refer to it by its process ID since it is no longer in the
job table.

* disown is not available in versions of bash prior to 2.0.

212 | Chapter8: Process Handling

disown’s -h option performs the same function as nohup; it specifies that the shell
should stop the hangup signal from reaching the process under certain circum-
stances. Unlike nohup, it is up to you to specify where the output from the process is
to go.

disown also provides two options which can be of use. -a with no other arguments
applies the operation to all jobs owned by the shell. The -r option with does the same
but only for currently running jobs.

Resetting Traps

Another “special case” of the trap command occurs when you give a dash (-) as the
command argument. This resets the action taken when the signal is received to the
default, which usually is termination of the process.

As an example of this, let’s return to Task 8-2, our mail program. After the user has
finished sending the message, the temporary file is erased. At that point, since there
is no longer any need to clean up, we can reset the signal trap to its default state. The
code for this, apart from function definitions, is:

trap abortmsg INT
trap cleanup TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...
m $msgfile

trap - INT TERM
The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that you could get seriously carried away with signal
handling in a shell script. It is true that “industrial strength” programs devote consider-
able amounts of code to dealing with signals. But these programs are almost always
large enough so that the signal-handling code is a tiny fraction of the whole thing. For
example, you can bet that the real UNIX mail system is pretty darn bullet-proof.

However, you will probably never write a shell script that is complex enough, and
that needs to be robust enough, to merit lots of signal handling. You may write a
prototype for a program as large as mail in shell code, but prototypes by definition do
not need to be bullet-proofed.

Therefore, you shouldn’t worry about putting signal-handling code in every 20-line
shell script you write. Our advice is to determine if there are any situations in which
a signal could cause your program to do something seriously bad and add code to
deal with those contingencies. What is “seriously bad”? Well, with respect to the

trap | 213

above examples, we’d say that the case where HUP causes your job to terminate is
seriously bad, while the temporary file situation in our mail program is not.

Coroutines

We've spent the last several pages on almost microscopic details of process behav-
ior. Rather than continue our descent into the murky depths, we’ll revert to a higher-
level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs
within an interactive login session; now we’ll consider multiple process control within
shell programs. When two (or more) processes are explicitly programmed to run
simultaneously and possibly communicate with each other, we call them coroutines.

This is actually nothing new: a pipeline is an example of coroutines. The shell’s pipe-
line construct encapsulates a fairly sophisticated set of rules about how processes
interact with each other. If we take a closer look at these rules, we’ll be better able to
understand other ways of handling coroutines—most of which turn out to be sim-
pler than pipelines.

When you invoke a simple pipeline—say, ls | more—the shell invokes a series of
UNIX primitive operations, or system calls. In effect, the shell tells UNIX to do the
following things; in case you're interested, we include in parentheses the actual sys-
tem call used at each step:

1. Create two subprocesses, which we’ll call P1 and P2 (the fork system call).

2. Set up I/O between the processes so that P1’s standard output feeds into P2’s
standard input (pipe).

3. Start /bin/ls in process P1 (exec).
4. Start /bin/more in process P2 (exec).
5. Wait for both processes to finish (wait).

You can probably imagine how the above steps change when the pipeline involves
more than two processes.

Now let’s make things simpler. We’ll see how to get multiple processes to run at the
same time if the processes do not need to communicate. For example, we want the
processes alice and hatter to run as coroutines, without communication, in a shell
script. Our initial solution would be this:

alice &

hatter
Assume for the moment that hatter is the last command in the script. The above will
work—>but only if alice finishes first. If alice is still running when the script finishes,

214 | Chapter8: Process Handling

then it becomes an orphan, i.e., it enters one of the “funny states” we mentioned ear-
lier in this chapter. Never mind the details of orphanhood; just believe that you don’t
want this to happen, and if it does, you may need to use the “runaway process”
method of stopping it, discussed earlier in this chapter.

wait

There is a way of making sure the script doesn’t finish before alice does: the built-in
command wait. Without arguments, wait simply waits until all background jobs
have finished. So to make sure the above code behaves properly, we would add wait,

like this:

alice &

hatter

wait
Here, if hatter finishes first, the parent shell will wait for alice to finish before finish-
ing itself.

If your script has more than one background job and you need to wait for specific
ones to finish, you can give wait the process ID of the job.

However, you will probably find that wait without arguments suffices for all corou-
tines you will ever program. Situations in which you would need to wait for specific
background jobs are quite complex and beyond the scope of this book.

Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines that
don’t communicate with each other. For example, why not just run hatter after alice
in the usual way? What advantage is there in running the two jobs simultaneously?

Even if you are running on a computer with only one processor (CPU), then there
may be a performance advantage.

Roughly speaking, you can characterize a process in terms of how it uses system
resources in three ways: whether it is CPU-intensive (e.g., does lots of number
crunching), I/O-intensive (does a lot of reading or writing to the disk), or interactive
(requires user intervention).

We already know from Chapter 1 that it makes no sense to run an interactive job in
the background. But apart from that, the more two or more processes differ with
respect to these three criteria, the more advantage there is in running them simulta-
neously. For example, a number-crunching statistical calculation would do well
when running at the same time as a long, I/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be less
efficient to run them at the same time as it would be to run them sequentially. Why?

Coroutines | 215

Basically, because under such circumstances, the operating system often has to
“time-slice” the resource(s) in contention.

For example, if both processes are “disk hogs,” the operating system may enter a
mode where it constantly switches control of the disk back and forth between the
two competing processes; the system ends up spending at least as much time doing
the switching as it does on the processes themselves. This phenomenon is known as
thrashing; at its most severe, it can cause a system to come to a virtual standstill.
Thrashing is a common problem; system administrators and operating system
designers both spend lots of time trying to minimize it.

Parallelization

If you have a computer with multiple CPUs you should be less concerned about
thrashing. Furthermore, coroutines can provide dramatic increases in speed on this
type of machine, which is often called a parallel computer; analogously, breaking up
a process into coroutines is sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the com-
puter will assign it to the next available processor. This means that the two jobs are
actually—not just metaphorically—running at the same time.

In this case, the running time of the coroutines is essentially equal to that of the long-
est-running job plus a bit of overhead, instead of the sum of the runtimes of all pro-
cesses (although if the CPUs all share a common disk drive, the possibility of I/O-
related thrashing still exists). In the best case—all jobs having the same runtime and
no I/0 contention—you get a speedup factor equal to the number of CPUs.

Parallelizing a program is often not easy; there are several subtle issues involved and
there’s plenty of room for error. Nevertheless, it’s worthwhile to know how to paral-
lelize a shell script whether or not you have a parallel machine, especially since such
machines are becoming more and more common.

We'll show how to do this—and give you an idea of some problems involved—by
means of a simple task whose solution is amenable to parallelization.

Task 8-3

Write a utility that allows you to make multiple copies of a file at the same time.

We'll call this script mcp. The command mcp filename dest1 dest2 ... should copy
filename to all of the destinations given. The code for this should be fairly obvious:

file=$1
shift

216 | Chapter8: Process Handling

for dest in "$@"; do
cp $file $dest
done
Now let’s say we have a parallel computer and we want this command to run as fast
as possible. To parallelize this script, it’s a simple matter of firing off the ¢p com-
mands in the background and adding a wait at the end:
file=$1
shift
for dest in "$@"; do
cp $file $dest &
done
wait
Simple, right? Well, there is one little problem: what happens if the user specifies
duplicate destinations? If you’re lucky, the file just gets copied to the same place
twice. Otherwise, the identical ¢p commands will interfere with each other, possibly
resulting in a file that contains two interspersed copies of the original file. In con-
trast, if you give the regular cp command two arguments that point to the same file,
it will print an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for
duplicates. Although this isn’t too hard to do (see the exercises at the end of this
chapter), the time it takes that code to run might offset any gain in speed from paral-
lelization; furthermore, the code that does the checking detracts from the simple ele-
gance of the script.

As you can see, even a seemingly trivial parallelization task has problems resulting
from multiple processes that have concurrent access to a given system resource (a file
in this case). Such problems, known as concurrency control issues, become much
more difficult as the complexity of the application increases. Complex concurrent
programs often have much more code for handling the special cases than for the
actual job the program is supposed to do!

Therefore, it shouldn’t surprise you that much research has been and is being done
on parallelization, the ultimate goal being to devise a tool that parallelizes code auto-
matically. (Such tools do exist; they usually work in the confines of some narrow
subset of the problem.) Even if you don’t have access to a multiple-CPU machine,
parallelizing a shell script is an interesting exercise that should acquaint you with
some of the issues that surround coroutines.

Subshells

To conclude this chapter, we will look at a simple type of interprocess relationship:
that of a subshell with its parent shell. We saw in Chapter 3 that whenever you run a

Subshells | 217

shell script, you actually invoke another copy of the shell that is a subprocess of the
main, or parent, shell process. Now let’s look at subshells in more detail.

Subshell Inheritance

The most important things you need to know about subshells are what characteris-
tics they get, or inherit, from their parents. These are as follows:

* The current directory

* Environment variables

* Standard input, output, and error, plus any other open file descriptors

* Signals that are ignored
Just as important are the things that a subshell does not inherit from its parent:

* Shell variables, except environment variables and those defined in the environ-
ment file (usually .bashrc)

* Handling of signals that are not ignored

We covered some of this in Chapter 3, but these points are common sources of con-
fusion, so they bear repeating.

Nested Subshells

Subshells need not be in separate scripts; you can also start a subshell within the
same script (or function) as the parent. You do this in a manner very similar to the
command blocks we saw in the last chapter. Just surround some shell code with
parentheses (instead of curly brackets), and that code will run in a subshell. We’ll
call this a nested subshell.

For example, here is the calculator program from the last chapter, with a subshell
instead of a command block:

(while read line; do
echo "$(alg2rpn $line)
done
) | dc

The code inside the parentheses will run as a separate process. This is usually less
efficient than a command block. The differences in functionality between subshells
and command blocks are very few; they primarily pertain to issues of scope, i.e., the
domains in which definitions of things like shell variables and signal traps are
known. First, code inside a nested subshell obeys the above rules of subshell inherit-
ance, except that it knows about variables defined in the surrounding shell; in con-
trast, think of blocks as code units that inherit everything from the outer shell.
Second, variables and traps defined inside a command block are known to the shell
code after the block, whereas those defined in a subshell are not.

218 | Chapter8: Process Handling

For example, consider this code:

{
hatter=mad

trap "echo 'You hit CTRL-C!'" INT

while true; do
echo "\$hatter is $hatter"
sleep 60

done

If you run this code, you will see the message $hatter is mad every 60 seconds, and if
you hit CTRL-C, you will see the message, You hit CTRL-C!. You will need to hit
CTRL-Z to stop it (don’t forget to kill it with kill %+). Now let’s change it to a
nested subshell:

(

hatter=mad
trap "echo 'You hit CTRL-C!'" INT
)

while true; do
echo "\$hatter is $hatter"
sleep 60
done
If you run this, you will see the message $hatter is; the outer shell doesn’t know
about the subshell’s definition of hatter and therefore thinks it’s null. Furthermore,
the outer shell doesn’t know about the subshell’s trap of the INT signal, so if you hit
CTRL-C, the script will terminate.

If a language supports code nesting, then it’s considered desirable that definitions
inside a nested unit have a scope limited to that nested unit. In other words, nested
subshells give you better control than command blocks over the scope of variables
and signal traps. Therefore, we feel that you should use subshells instead of com-
mand blocks if they are to contain variable definitions or signal traps—unless effi-
ciency is a concern.

Process Substitution

A unique but rarely used feature of bash is process substitution. Let’s say that you had
two versions of a program that produced large quantities of output. You want to see
the differences between the output from each version. You could run the two pro-
grams, redirecting their output to files, and then use the cmp utility to see what the
differences were.

Another way would be to use process substitution. There are two forms of this sub-
stitution. One is for input to a process: >(list); the other is for output from a process:
<(list). list is a process that has its input or output connected to something via a

Process Substitution | 219

named pipe. A named pipe is simply a temporary file that acts like a pipe with a
name.

In our case, we could connect the outputs of the two programs to the input of cmp
via named pipes:

cmp <(progl) <(prog2)
progl and prog2 are run concurrently and connect their outputs to named pipes. cmp

reads from each of the pipes and compares the information, printing any differences
as it does so.

This chapter has covered a lot of territory. Here are some exercises that should help
you make sure you have a firm grasp on the material. Don’t worry if you have trou-
ble with the last one; it’s especially difficult.

1. Write a shell script called pinfo that combines the jobs and ps commands by
printing a list of jobs with their job numbers, corresponding process IDs, run-
ning times, and full commands.

2. Take a non-trivial shell script and “bullet-proof” it with signal traps.
3. Take a non-trivial shell script and parallelize it as much as possible.

4. Write the code that checks for duplicate arguments to the mcp script. Bear in
mind that different pathnames can point to the same file. (Hint: if $i is “1”, then
eval ‘echo \${$i}’ prints the first command-line argument. Make sure you
understand why.)

220 | Chapter8: Process Handling

CHAPTER 9
Debugging Shell Programs

We hope that we have convinced you that bash can be used as a serious UNIX pro-
gramming environment. It certainly has enough features, control structures, etc. But
another essential part of a programming environment is a set of powerful, integrated
support tools. For example, there is a wide assortment of screen editors, compilers,
debuggers, profilers, cross-referencers, etc., for languages like C and C++. If you pro-
gram in one of these languages, you probably take such tools for granted, and you
would undoubtedly cringe at the thought of having to develop code with, say, the ed
editor and the adb machine-language debugger.

But what about programming support tools for bash? Of course, you can use any edi-
tor you like, including vi and emacs. And because the shell is an interpreted lan-
guage, you don’t need a compiler.” But there are no other tools available.

This chapter looks at some useful features that you can use to debug shell programs.
We'll look at how you can utilize them in the first part of this chapter. We’ll then
look at some powerful new features of bash, not present in most Bourne shell worka-
likes, which will help in building a shell script debugging tool. At the end of the
chapter, we’ll show step by step how to build a debugger for bash. The debugger,
called bashdb, is a basic yet functional program that will not only serve as an
extended example of various shell programming techniques, but will also provide
you with a useful tool for examining the workings of your own shell scripts.

Basic Debugging Aids

What sort of functionality do you need to debug a program? At the most empirical
level, you need a way of determining what is causing your program to behave badly,
and where the problem is in the code. You usually start with an obvious what (such

* Actually, if you are really concerned about efficiency, there are shell code compilers on the market; they con-
vert shell scripts to C code that often runs quite a bit faster.

221

as an error message, inappropriate output, infinite loop, etc.), try to work back-
wards until you find a what that is closer to the actual problem (e.g., a variable with
a bad value, a bad option to a command), and eventually arrive at the exact where in
your program. Then you can worry about how to fix it.

Notice that these steps represent a process of starting with obvious information and
ending up with often obscure facts gleaned through deduction and intuition. Debug-
ging aids make it easier to deduce and intuit by providing relevant information easily
or even automatically, preferably without modifying your code.

The simplest debugging aid (for any language) is the output statement, echo, in the
shell’s case. Indeed, old-time programmers debugged their FORTRAN code by
inserting WRITE cards into their decks. You can debug by putting lots of echo state-
ments in your code (and removing them later), but you will have to spend lots of
time narrowing down not only what exact information you want but also where you
need to see it. You will also probably have to wade through lots and lots of output to
find the information you really want.

Set Options

Luckily, the shell has a few basic features that give you debugging functionality
beyond that of echo. The most basic of these are options to the set -o command (as
covered in Chapter 3). These options can also be used on the command line when
running a script, as Table 9-1 shows.

Table 9-1. Debugging options

set -0 option Command-line option Action

noexec -n Don’t run commands; check for syntax errors only
verbose -v Echo commands before running them

xtrace X Echo commands after command-line processing

The verbose option simply echoes (to standard error) whatever input the shell gets.
It is useful for finding the exact point at which a script is bombing. For example,
assume your script looks like this:

alice

hatter

march

teatime

treacle
well

None of these commands is a standard UNIX program, and each does its work
silently. Say the script crashes with a cryptic message like “segmentation violation.”

222 | Chapter9: Debugging Shell Programs

This tells you nothing about which command caused the error. If you type bash -v
scriptname, you might see this:

alice

hatter

march

segmentation violation

teatime

treacle
well

Now you know that march is the probable culprit—though it is also possible that

march bombed because of something it expected alice or hatter to do (e.g., create an
input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been
through parameter substitution, command substitution, and the other steps of com-
mand-line processing (as listed in Chapter 7). For example:

.ps 8

$ set -o xtrace$ alice=girl+ alice=girl

$ echo "$alice"+ echo girl

girl

$ 1s -1 $(type -path vi)++ type -path vi

+ 1s -F -1 /usr/bin/vi

lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$
As you can see, xtrace starts each line it prints with + (each + representing a level of
expansion). This is actually customizable: it’s the value of the built-in shell variable
PS4. So if you set PS4 to “xtrace—>" (e.g., in your .bash_profile or .bashrc), then
you’ll get xtrace listings that look like this:

.ps 8

$ 1s -1 $(type -path vi)xxtrace--> type -path vi

xtrace-> 1s -1 /usr/bin/vi

Irwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$
Notice that for multiple levels of expansion, only the first character of PS4 is printed.
This makes the output more readable.

An even better way of customizing PS4 is to use a built-in variable we haven’t seen
yet: LINENO, which holds the number of the currently running line in a shell script.”
Put this line in your .bash_profile or environment file:

PS4="1line $LINENO: '

* In versions of bash prior to 2.0, LINENO won'’t give you the current line in a function. LINENO, instead,
gives an approximation of the number of simple commands executed so far in the current function.

Basic Debugging Aids | 223

We use the same technique as we did with PS1 in Chapter 3: using single quotes to
postpone the evaluation of the string until each time the shell prints the prompt. This
will print messages of the form line N: in your trace output. You could even include
the name of the shell script you’re debugging in this prompt by using the positional
parameter $0:

PS4="$0 line $LINENO: '

As another example, say you are trying to track down a bug in a script called alice
that contains this code:

dbfmq=$1.fmq

fndrs=$(cut -f3 -d' ' $dfbmq)

You type alice teatime to run it in the normal way, and it hangs. Then you type bash
-x alice teatime, and you see this:

+ dbfmg=teatime.fmq

+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn’t have a filename argument,
which means that there must be something wrong with the variable dbfmgq. But it
has executed the assignment statement dbfmq=teatime.fmq properly... ah-hah! You
made a typo in the variable name inside the command substitution construct.” You
fix it, and the script works properly.

The last option is noexec, which reads in the shell script and checks for syntax
errors, but doesn’t execute anything. It’s worth using if your script is syntactically
complex (lots of loops, command blocks, string operators, etc.) and the bug has side
effects (like creating a large file or hanging up the system).

You can turn on these options with set -o option in your shell scripts, and, as
explained in Chapter 3, turn them off with set +0 option. For example, if you're
debugging a chunk of code, you can precede it with set -o xtrace to print out the exe-
cuted commands, and end the chunk with set +o xtrace.

Note, however, that once you have turned noexec on, you won’t be able to turn it
off; a set +0 noexec will never be executed.

Fake Signals

Fake signals are more sophisticated set of debugging aids. They can be used in trap
statements to get the shell to act under certain conditions. Recall from the previous

* We should admit that if you had turned on the nounset option at the top of this script, the shell would have
flagged this error.

224 | Chapter9: Debugging Shell Programs

chapter that trap allows you to install some code that runs when a particular signal is
sent to your script.

Fake signals work in the same way, but they are generated by the shell itself, as
opposed to the other signals which are generated externally. They represent runtime
events that are likely to be of interest to debuggers—both human ones and software
tools—and can be treated just like real signals within shell scripts. Table 9-2 lists the
four fake signals available in bash.

Table 9-2. Fake signals

Fake signal Sent when

EXIT The shell exits from script

ERR A command returning a non-zero exit status

DEBUG The shell has executed a statementa

RETURN A shell function or a script executed with the . or source builtins finishes executingb

a The DEBUG signal is not available in bash versions prior to 2.0.
b The RETURN signal is not available in bash versions prior to 3.0.

EXIT

The EXIT trap, when set, will run its code whenever the script within which it was
set exits.”

Here’s a simple example:

trap 'echo exiting from the script' EXIT
echo 'start of the script’

If you run this script, you will see this output:

start of the script

exiting from the script
In other words, the script starts by setting the trap for its own exit, then prints a mes-
sage. The script then exits, which causes the shell to generate the signal EXIT, which
in turn runs the code echo exiting from the script.

An EXIT trap occurs no matter how the script exits—whether normally (by finishing
the last statement), by an explicit exit or return statement, or by receiving a “real”
signal such as INT or TERM. Consider this inane number-guessing program:

trap 'echo Thank you for playing!' EXIT

magicnum=$(($RANDOM%10+1))
echo 'Guess a number between 1 and 10:'

* You can use this signal only for the exiting of a script. Functions don’t generate the EXIT signal, as they are
part of the current shell invocation.

Basic Debugging Aids | 225

while read -p 'Guess: ' guess ; do
sleep 4
if ["$guess” = $magicnum]; then
echo 'Right!"
exit
fi
echo 'Wrong!'
done
This program picks a number between 1 and 10 by getting a random number (the
built-in variable RANDOM), extracting the last digit (the remainder when divided by
10), and adding 1. Then it prompts you for a guess, and after 4 seconds, it will tell
you if you guessed right.

If you did, the program will exit with the message, “Thank you for playing!”, i.e., it
will run the EXIT trap code. If you were wrong, it will prompt you again and repeat the
process until you get it right. If you get bored with this little game and hit CTRL-C or
CTRL-D while waiting for it to tell you whether you were right, you will also see the
message.

The EXIT trap is especially useful when you want to print out the values of variables
at the point that your script exits. For example, by printing the value of loop counter
variables, you can find the most appropriate places in a complicated script, with
many nested for loops, to enable xtrace or place debug output.

ERR

The fake signal ERR enables you to run code whenever a command in the surround-
ing script or function exits with non-zero status. Trap code for ERR can take advan-
tage of the built-in variable ?, which holds the exit status of the previous command.
It survives the trap and is accessible at the beginning of the trap-handling code.

A simple but effective use of this is to put the following code into a script you want
to debug:

function errtrap {
es=$?
echo "ERROR: Command exited with status $es.”

}

trap errtrap ERR
The first line saves the nonzero exit status in the local variable es.

For example, if the shell can’t find a command, it returns status 127. If you put the
code in a script with a line of gibberish (like “nhbdeuje”), the shell responds with:

scriptname: line N: nhbdeuje: command not found
ERROR: command exited with status 127.

226 | Chapter9: Debugging Shell Programs

N is the number of the line in the script that contains the bad command. In this case,
the shell prints the line number as part of its own error-reporting mechanism, since
the error was a command that the shell could not find. But if the nonzero exit status
comes from another program, the shell doesn’t report the line number. For example:
function errtrap {
es=%$?
echo "ERROR: Command exited with status $es.”

}

trap errtrap ERR

function bad {
return 17

}

bad
This only prints ERROR: Command exited with status 17.

It would obviously be an improvement to include the line number in this error message.
The built-in variable LINENO exists, but if you use it inside a function, it evaluates to
the line number in the function, not in the overall file. In other words, if you used
$LINENO in the echo statement in the errtrap routine, it would always evaluate to 2.

To get around this problem, we simply pass $LINENO as an argument to the trap
handler, surrounding it in single quotes so that it doesn’t get evaluated until the fake
signal actually comes in:
function errtrap {
es=%$?
echo "ERROR line $1: Command exited with status $es.”

}
trap 'errtrap $LINENO' ERR

If you use this with the above example, the result is the message, ERROR line 12:
Command exited with status 17. This is much more useful. We’ll see a variation on
this technique shortly.

This simple code is actually not a bad all-purpose debugging mechanism. It takes into
account that a nonzero exit status does not necessarily indicate an undesirable condi-
tion or event: remember that every control construct with a conditional (if, while, etc.)
uses a nonzero exit status to mean “false.” Accordingly, the shell doesn’t generate ERR
traps when statements or expressions in the “condition” parts of control structures
produce nonzero exit statuses. Also, an ERR trap is not inherited by shell functions,
command substitutions, and commands executed in a subshell. However this inherit-
ance behaviour can be turned on by using set -o errtrace (or set-E)."

* Inheritance of the ERR trap is not available in versions of bash prior to 3.0.

Basic Debugging Aids | 227

One disadvantage is that exit statuses are not as uniform (or even as meaningful) as
they should be, as we explained in Chapter 5. A particular exit status need not say
anything about the nature of the error or even that there was an error.

DEBUG

Another fake signal, DEBUG, causes the trap code to be executed before every state-
ment in a function or script.” This has two main uses. First is the use for humans, as
a sort of “brute force” method of tracking a certain element of a program’s state that
you notice has gone awry.

For example, you notice the value of a particular variable is running amok. The naive
approach is to put in a lot of echo statements to check the variable’s value at several
points. The DEBUG trap makes this easier by letting you do this:

function dbgtrap
{

}

trap dbgtrap DEBUG
...section of code in which the problem occurs...
trap - DEBUG # turn off the DEBUG trap

echo "badvar is $badvar"

This code will print the value of the wayward variable before every statement
between the two traps.

One important point to remember when using DEBUG is that it is not inherited by
functions called from the shell in which it is set. In other words, if your shell sets a
DEBUG trap and then calls a function, the statements within the function will not
execute the trap. There are three ways around this. Firstly you can set a trap for
DEBUG explicitly within the function. Alternately you can declare the function with
the -t option which turns on debug inheritance in functions and allows a function to
inherit a DEBUG trap from the caller. Lastly you can use set -o functrace (or set -T)
which does the same thing as declare but applies to all functions.t

The second use of the DEBUG signal is as a primitive for implementing a bash
debugger. We’ll look at doing just that shortly.

RETURN

A RETURN trap is executed each time a shell function or a script executed with the .
or source commands finishes executing.

* Warning: the DEBUG trap was run after statements in versions of bash prior to 2.05b. The debugger in this
chapter has been written for the current version of bash where the trap is run before each statement.

T Inheritance of the DEBUG trap, declare -t, set -o functrace, and set -T are not available in bash prior to ver-
sion 3.0.

228 | Chapter9: Debugging Shell Programs

As with DEBUG, the RETURN trap is not inherited by functions. You again have the
options of setting the trap for RETURN within the function, declare the function
with the -t option so that that function inherits the trap, or use set -o functrace to
turn on the inheritance for all functions.

Here is a simple example of a RETURN trap:

function returntrap {
echo "A return occurred"

}
trap returntrap RETURN

function hello {
echo "hello world"

}

hello

When the script is executed it executes the hello function and then runs the trap:

$./returndemo
hello world
A return occurred

$

Notice that it didn’t trap when the script itself finished. The trap would only have
run at the end of the script if we’d sourced the script. Normally, to trap at the exit-
ing of the script we’d also need to define a trap for the EXIT signal that we looked at
earlier.

In addition to these fake signals, bash 3.0 added some other features to help with
writing a full-scale debugger for bash. The first of these is the extdebug option to the
shopt command, which switches on certain things that are useful for a debugger.
These include:

* The -F option to declare displays the source filename and line number corre-
sponding to each function name supplied as an argument.

* If the command that is run by the DEBUG trap returns a non-zero value, the
next command is skipped and not executed.

* If the command run by the DEBUG trap returns a value of 2, and the shell is exe-
cuting in a subroutine (a shell function or a shell script executed by the . or
source commands), a call to return is simulated.

The shell also has a new option, --debugger, which switches on both the extdebug
and functrace functionality.

Basic Debugging Aids | 229

Debugging Variables

Bash 3.0 added some useful environment variables to aid in writing a debugger.
These include BASH_SOURCE, which contains an array of filenames that corre-
spond to what is currently executing; BASH_LINENO, which is an array of line
numbers that correspond to function calls that have been made; BASH_ARGC and
BASH_ARGYV array variables, the first holding the number of parameters in each
frame and the second the parameters themselves.

We’ll now look at writing a debugger, although we’ll keep things simple and avoid
using these variables. This also means the debugger will work with earlier versions of
bash.

A bash Debugger

In this section we’ll develop a very basic debugger for bash.” Most debuggers have
numerous sophisticated features that help a programmer in dissecting a program, but
just about all of them include the ability to step through a running program, stop it
at selected places, and examine the values of variables. These simple features are
what we will concentrate on providing in our debugger. Specifically, we’ll provide
the ability to:

* Specify places in the program at which to stop execution. These are called
breakpoints.
* Execute a specified number of statements in the program. This is called stepping.

* Examine and change the state of the program during its execution. This includes
being able to print out the values of variables and change them when the pro-
gram is stopped at a breakpoint or after stepping.

* Print out the source code we are debugging along with indications of where
breakpoints are and what line in the program we are currently executing.

* Provide the debugging capability without having to change the original source
code of the program we wish to debug in any way.

As you will see, the capability to do all of these things (and more) is easily provided
by the constructs and methods we have seen in previous chapters.

* Unfortunately, the debugger will not work with versions of bash prior to 2.0, because they do not implement
the DEBUG signal.

230 | Chapter9: Debugging Shell Programs

Structure of the Debugger

The bashdb debugger works by taking a shell script and turning it into a debugger for
itself. It does this by concatenating debugger functionality and the target script,
which we’ll call the guinea pig script, and storing it in another file that then gets exe-
cuted. The process is transparent to users—they will be unaware that the code that is
executing is actually a modified copy of their script.

The bash debugger has three main sections: the driver, the preamble, and the debug-
ger functions.

The driver script

The driver script is responsible for setting everything up. It is a script called bashdb
and looks like this:

bashdb - a bash debugger
Driver Script: concatenates the preamble and the target script
and then executes the new script.

echo 'bash Debugger version 1.0'
_dbname=${0##*/}

if (($#t < 1)) ; then
echo "$_dbname: Usage: $_dbname filename" >&2
exit 1

fi

_guineapig=$1

if [! -r $1]; then
echo "$ _dbname: Cannot read file '$ guineapig'." >&2
exit 1

fi

shift

_tmpdir=/tmp

_libdir=.

_debugfile=$_tmpdir/bashdb.$$ # temporary file for script that is
being debugged

cat $_libdir/bashdb.pre $ guineapig > $ debugfile

exec bash $_debugfile $_guineapig $_tmpdir $_libdir "$@"

bashdb takes as the first argument the name of guinea pig file. Any subsequent argu-
ments are passed on to the guinea pig as its positional parameters.

If no arguments are given, bashdb prints out a usage line and exits with an error sta-
tus. Otherwise, it checks to see if the file exists. If it doesn’t, exist then bashdb prints

Abash Debugger | 231

a message and exits with an error status. If all is in order, bashdb constructs a tempo-
rary file in the way we saw in the last chapter. If you don’t have (or don’t have access
to) /tmp on your system, then you can substitute a different directory for _tmpdir."
The variable _libdir is the name of the directory that contains files needed by bashdb
(bashdb.pre and bashdb.fns). If you are installing bashdb on your system for everyone
to use, you might want to place them in /usr/lib.

The cat statement builds the modified copy of the guinea pig file: it contains the
script found in bashdb.pre (which we’ll look at shortly) followed by a copy of the
guinea pig.

exec

The last line runs the newly created script with exec, a statement we haven’t dis-
cussed yet. We’ve chosen to wait until now to introduce it because—as we think
you’ll agree—it can be dangerous. exec takes its arguments as a command line and
runs the command in place of the current program, in the same process. In other
words, a shell that runs exec will terminate immediately and be replaced by exec’s
arguments.t

In our script, exec just runs the newly constructed shell script, i.e., the guinea pig
with its debugger, in another shell. It passes the new script three arguments—the
name of the original guinea pig file ($_guineapig), the name of the temporary direc-
tory ($_tmpdir), and the name of the library directory ($_libdir)—followed by the
user’s positional parameters, if any.

The Preamble

Now we’ll look at the code that gets prepended to the guinea pig script; we call this
the preamble. It’s kept in the file bashdb.pre and looks like this:

bashdb preamble

This file gets prepended to the shell script being debugged.
Arguments:

$1 = the name of the original guinea pig script

$2 = the directory where temporary files are stored

$3 = the directory where bashdb.pre and bashdb.fns are stored

_debugfile=%0
_guineapig=$1

* All function names and variables (except those local to functions) in bashdb have names beginning with an
underscore (_), to minimize the possibility of clashes with names in the guinea pig script.

t exec can also be used with an I/O redirector only; this makes the redirector take effect for the remainder of
the script or login session. For example, the line exec 2>errlog at the top of a script directs standard error to
the file errlog for the rest of the script.

232 | Chapter9: Debugging Shell Programs

_tmpdir=$2
_libdir=$3

shift 3

source $ libdir/bashdb.fns
_linebp=

let trace=0

let i=1

while read; do
_lines[$_i]=$REPLY
let _i=$ i+1

done < $_guineapig

trap cleanup EXIT

let _steps=1

trap '_steptrap $(($LINENO -29))' DEBUG
The first few lines save the three fixed arguments in variables and shift them out of
the way, so that the positional parameters (if any) are those that the user supplied on
the command line as arguments to the guinea pig. Then, the preamble reads in
another file, bashdb.fns, which contains all of the functions necessary for the opera-
tion of the debugger itself. We put this code in a separate file to minimize the size of
the temporary file. We’ll examine bashdb.fns shortly.

Next, bashdb.pre initializes a breakpoint array to empty and execution tracing to off
(see the following discussion), then reads the original guinea pig script into an array
of lines. We need the source lines from the original script for two reasons: to allow
the debugger to print out the script showing where the breakpoints are, and to print
out the lines of code as they execute if tracing is turned on. You’ll notice that we
assign the script lines to _lines from the environment variable $REPLY rather than
reading them into the array directly. This is because $REPLY preserves any leading
whitespace in the lines, i.e., it preserves the indentation and layout of the original
script.

The last five lines of code set up the conditions necessary for the debugger to begin
working. The first trap command sets up a clean-up routine that runs when the fake
signal EXIT occurs. The clean-up routine, normally called when the debugger and
guinea pig script finish, just erases the temporary file. The next line sets the variable
_steps to 1 so that when the debugger is first entered, it will stop after the first line.

The next line sets up the routine _steptrap to run when the fake signal DEBUG
occurs.

The built-in variable LINENO, which we saw earlier in the chapter, is used to pro-
vide line numbers in the debugger. However, if we just used LINENO as is, we’d get
line numbers above 30 because LINENO would be including the lines in the

Abash Debugger | 233

preamble. To get around this, we can pass LINENO minus the number of lines in
the preamble to the trap.”

Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file
bashdb.fns. Here is _steptrap:

After each line of the test script is executed the shell traps to
this function.

function _steptrap

{

_curline=$1 # the number of the line that just ran
(($_trace)) & _msg "$PS4 line $ curline: ${ lines[$ curline]}"

if (($_steps >= 0)); then
let steps="$ steps - 1"
fi

First check to see if a line number breakpoint was reached.
If it was, then enter the debugger.
if _at_linenumbp ; then

_msg "Reached breakpoint at line $_curline"

_cmdloop

It wasn't, so check whether a break condition exists and is true.
If it is, then enter the debugger.
elif [-n "$_brcond"] && eval $ brcond; then
_msg "Break condition $_brcond true at line $_curline"
_cmdloop

It wasn't, so check if we are in step mode and the number of steps
is up. If it is then enter the debugger.
elif (($_steps == 0)); then
_msg "Stopped at line $_curline"
_cmdloop
fi
}
_steptrap starts by setting _curline to the number of the guinea pig line that just ran.
If execution tracing is on, it prints the PS4 execution trace prompt (like the shell’s
xtrace mode), line number, and line of code itself. It then decrements the number of
steps if the number of steps still left is greater than or equal to zero.

* If you are typing or scanning in the preamble code from this book, make sure that the last line in the file is
the call to set the trap, i.e., no blank lines should appear after the call to trap.

234 | Chapter9: Debugging Shell Programs

Then it does one of two things: it enters the debugger via _cmdloop, or it returns so
the shell can execute the next statement. It chooses the former if a breakpoint or
break condition has been reached, or if the user stepped into this statement.

Commands

We will explain shortly how _steptrap determines these things; now we will look at
_cmdloop. It’s a simple combination of the case statements we saw in Chapter 5,
and the calculator loop we saw in the previous chapter.

The Debugger Command Loop

function _cmdloop {
local cmd args
while read -e -p "bashdb> "
case $cmd in
\? | h) menu;;
bc) _setbc $args ;;
bp) _setbp $args ;;

cmd args; do

print command menu
set a break condition
set a breakpoint at the given
line
cb) _clearbp $args ;; # clear one or all breakpoints
ds) displayscript ;; # list the script and show the
breakpoints
"go": start/resume execution of
the script
quit

g) return ;;
q) exit ;;

s) let steps=${args:-1} # single step N times
(default = 1)
return ;;
) _xtrace ;; # toggle execution trace
1*) eval ${cmd#!} $args ;; # pass to the shell
*) _msg "Invalid command: '$cmd'" ;;

esac

done

}

At each iteration, _cmdloop prints a prompt, reads a command, and processes it. We
use read -e so that the user can take advantage of the readline command-line editing.
The commands are all one- or two-letter abbreviations; quick for typing, but terse in
the UNIX style.”

Table 9-3 summarizes the debugger commands.

* There is nothing to stop you from changing the commands to something you find easier to remember. There
is no “official” bash debugger, so feel free to change the debugger to suit your needs.

Abash Debugger | 235

Table 9-3. bashdb commands

Command Action

bpN Set breakpoint at line N

bp List breakpoints and break condition

bc string Set break condition to string

bc Clear break condition

cbN Clear breakpoint at line N

b (lear all breakpoints

ds Display the test script and breakpoints

g Start/resume execution

s[N] Execute N statements (default 1)
Toggle execution trace on/off

h? Print the help menu

Istring Pass string to a shell

q Quit

Before looking at the individual commands, it is important that you understand how
control passes through _steptrap, the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap on DEBUG
in the preamble. If a breakpoint has been reached or the user previously typed in a step
command(s), _steptrap calls the command loop. In doing so, it effectively “interrupts”
the shell that is running the guinea pig to hand control over to the user.

The user can invoke debugger commands as well as shell commands that run in the
same shell as the guinea pig. This means that you can use shell commands to check
values of variables, signal traps, and any other information local to the script being
debugged. The command loop continues to run, and the user stays in control, until
he types g, q, or s. We'll now look in detail at what happens in each of these cases.

Typing g has the effect of running the guinea pig uninterrupted until it finishes or
hits a breakpoint. It simply exits the command loop and returns to _steptrap, which
exits as well. The shell then regains control and runs the next statement in the guinea
pig script. Another DEBUG signal occurs and the shell traps to _steptrap again. If
there are no breakpoints then _steptrap will just exit. This process will repeat until a
breakpoint is reached or the guinea pig finishes.

The q command calls the function _cleanup, which erases the temporary file and
exits the program.

236 | Chapter9: Debugging Shell Programs

Stepping

When the user types s, the command loop code sets the variable _steps to the number
of steps the user wants to execute, i.e., to the argument given. Assume at first that the
user omits the argument, meaning that _steps is set to 1. Then the command loop exits
and returns control to _steptrap, which (as above) exits and hands control back to the
shell. The shell runs the next statement and returns to _steptrap, which then decre-
ments _steps to 0. Then the second elif conditional becomes true because _steps is 0
and prints a “stopped” message and then calls the command loop.

Now assume that the user supplies an argument to s, say 3. _steps is set to 3. Then
the following happens:

1. After the next statement runs, _steptrap is called again. It enters the first if
clause, since _steps is greater than 0. _steptrap decrements _steps to 2 and exits,
returning control to the shell.

2. This process repeats, another step in the guinea pig is run, and _steps becomes 1.

3. A third statement is run and we’re back in _steptrap. _steps is decremented to 0,
the second elif clause is run, and _steptrap breaks out to the command loop again.

The overall effect is that the three steps run and then the debugger takes over again.

All of the other debugger commands cause the shell to stay in the command loop,
meaning that the user prolongs the “interruption” of the shell.

Breakpoints

Now we’ll examine the breakpoint-related commands and the breakpoint mechanism
in general. The bp command calls the function _setbp, which can do two things,
depending on whether an argument is supplied or not. Here is the code for _setbp:

Set a breakpoint at the given line number or list breakpoints
function setbp

{

local i

if [-z "$1"]; then
_listbp
elif [$(echo $1 | grep '~[0-9]*') 1; then
if [-n "${ lines[$1]}"], then
_linebp=($(echo $((for i in ${ linebp[*]} $1; do
echo $i; done) | sort -n)))
_msg "Breakpoint set at line $1"
else
_msg "Breakpoints can only be set on non-blank lines"
fi
else
_msg "Please specify a numeric line number"
fi

Abash Debugger | 237

If no argument is supplied, _setbp calls _listbp, which prints the line numbers that
have breakpoints set. If anything other than a number is supplied as an argument, an
error message is printed and control returns to the command loop. Providing a num-
ber as the argument allows us to set a breakpoint; however, we have to do another
test before doing so.

What happens if the user decides to set a breakpoint at a nonsensical point: a blank
line, or at line 1,000 of a 10-line program? If the breakpoint is set well beyond the
end of the program, it will never be reached and will cause no problem. If, however,
a breakpoint is set at a blank line, it will cause problems. The reason is that the
DEBUG trap only occurs after each executed simple command in a script, not each
line. Blank lines never generate the DEBUG signal. The user could set a breakpoint
on a blank line, in which case continuing execution with the g command would
never break back out to the debugger.

We can fix both of these problems by making sure that breakpoints are set only on
lines with text.” After making the tests, we can add the breakpoint to the breakpoint
array, _linebp. This is a little more complex than it sounds. In order to make the
code in other sections of the debugger simpler, we should maintain a sorted array of
breakpoints. To do this, we echo all of the line numbers currently in the array, along
with the new number, in a subshell and pipe them into the UNIX sort command.
sort -n sorts a list into numerically ascending order. The result of this is a list of
ordered numbers which we then assign back to the _linebp array with a compound
assignment.

To complement the user’s ability to add breakpoints, we also allow the user to delete
them. The ¢b command allows the user to clear single breakpoints or all break-
points, depending on whether a line number argument is supplied or not. For exam-
ple, cb 12 clears a breakpoint at line 12 (if a breakpoint was set at that line). cb on its
own would clear all of the breakpoints that have been set. It is useful to look briefly
at how this works; here is the code for the function that is called with the ¢b com-
mand, _clearbp:

function clearbp

{

local i

if [-z "$1"]; then
unset _linebp[*]
_msg "All breakpoints have been cleared"
elif [$(echo $1 | grep '~[0-9]*') 1; then
_linebp=($(echo $(for i in ${ linebp[*]}; do
if (($1 !'= $i)); then echo $i; fi; done)))

* This isn’t a complete solution. Certain other lines (e.g., comments) will also be ignored by the DEBUG trap.
See the list of limitations and the exercises at the end of this chapter.

238 | Chapter9: Debugging Shell Programs

_msg "Breakpoint cleared at line $1"
else
_msg "Please specify a numeric line number"
fi
}
The structure of the code is similar to that used for setting the breakpoints. If no
argument was supplied to the command, the breakpoint array is unset, effectively
deleting all the breakpoints. If an argument was supplied and is not a number, we
print out an error message and exit.

A numeric argument to the ¢cb command means the code has to search the list of
breakpoints and delete the specified one. We can easily make the deletion by follow-
ing a procedure similar to the one we used when we added a breakpoint in _setbp.
We execute a loop in a subshell, printing out the line numbers in the breakpoints list
and ignoring any that match the provided argument. The echoed values once again
form a compound statement, which can then be assigned to an array variable.’

The function _at_linenumbp is called by _steptrap after every statement; it checks
whether the shell has arrived at a line number breakpoint. The code for the function is:

See if this line number has a breakpoint
function _at linenumbp

{

local i=0

if ["$_linebp"]; then
while (($i < ${# linebp[@]})); do
if ((${ linebp[$i]} == $ curline)); then
return 0
fi
let i=$i+1
done
fi
return 1

}
The function simply loops through the breakpoint array and checks the current line
number against each one. If a match is found, it returns true (i.e., returns 0). Other-
wise, it continues looping, looking for a match until the end of the array is reached.
It then returns false.

It is possible to find out exactly what line the debugger is up to and where the break-
points have been set in the guinea pig by using the ds command. We’'ll see an

* bash versions 2.01 and earlier have a bug in assigning arrays to themselves that prevents the code for setbp
and clearbp from working. In each case, you can get around this bug by assigning _linebp to a local variable
first, unsetting it, and then assigning the local variable back to it. Better yet, update to a more recent version
of bash.

Abash Debugger | 239

example of the output later, when we run a sample bashdb debugging session. The
code for this function is fairly straightforward:

Print out the shell script and mark the location of breakpoints

and the current line

function displayscript

{
local i=1 j=0 bp cl

(while (($i < ${# lines[@]})); do
if [${_linebp[$j]1} 1 8& ((${_linebp[$j]} == $i)); then
bp="*"
let j=$j+1
else
bp='

fi

if (($_curline == $i)); then
cl=">"

else
="

fi

echo "$i:$bp $c1 ${ lines[$i]}"
let i=$i+1
done
) | more
}

This function contains a subshell, the output of which is piped to the UNIX more
command. We have done this for user-friendly reasons; a long script would scroll up
the screen quickly and the users may not have displays that allow them to scroll back
to previous pages of screen output. more displays one screenful of output at a time.

The core of the subshell code loops through the lines of the guinea pig script. It first
tests to see if the line it is about to display is in the array of breakpoints. If it is, a
breakpoint character (*) is set and the local variable j is incremented. j was initialized
to 0 at the beginning of the function; it contains the current breakpoint that we are
up to. It should now be apparent why we went to the trouble of sorting the break-
points in _setbp: both the line numbers and the breakpoint numbers increment
sequentially, and once we pass a line number that has a breakpoint and find it in the
breakpoint array, we know that future breakpoints in the script must be further on in
the array. If the breakpoint array contained line numbers in a random order, we’d
have to search the entire array to find out if a line number was in the array or not.

The core of the subshell code then checks to see if the current line and the line it is
about to display are the same. If they are, a “current line” character (>) is set. The
current displayed line number (stored in i), breakpoint character, current line charac-
ter, and script line are then printed out.

240 | Chapter9: Debugging Shell Programs

We think you’ll agree that the added complexity in the handling of breakpoints is
well worth it. Being able to display the script and the location of breakpoints is an
important feature in any debugger.

Break conditions

bashdb provides another method of breaking out of the guinea pig script: the break
condition. This is a string that the user can specify that is evaluated as a command; if
it is true (i.e., returns exit status 0), the debugger enters the command loop.

Since the break condition can be any line of shell code, there’s a lot of flexibility in
what can be tested. For example, you can break when a variable reaches a certain
value—e.g., (($x < 0))—or when a particular piece of text has been written to a file
(grep string file). You will probably think of all kinds of uses for this feature.” To set a
break condition, type bc string. To remove it, type bc without arguments—this
installs the null string, which is ignored.

_steptrap evaluates the break condition $_brcond only if it’s not null. If the break
condition evaluates to 0, then the if clause is true and, once again, _steptrap calls the
command loop.

Execution tracing
The final feature of the debugger is execution tracing, available with the x command.

The function _xtrace “toggles” execution tracing simply by assigning to the variable
_trace the logical “not” of its current value, so that it alternates between 0 (off) and 1
(on). The preamble initializes it to 0.

Debugger limitations

We have kept bashdb reasonably simple so that you can see the fundamentals of
building a shell script debugger. Although it contains some useful features and is
designed to be a real tool, not just a scripting example, it has some important limita-
tions. Some are described in the list that follows.

1. Debuggers tend to run programs slower than if they were executed on their own.
bashdb is no exception. Depending upon the script you use it on, you’ll find the
debugger runs everything anywhere from 8 to 30 times more slowly. This isn’t so
much of a problem if you are stepping through a script in small increments, but
bear it in mind if you have, say, initialization code with large looping constructs.

* Bear in mind that if your break condition sends anything to standard output or standard error, you will see
it after every statement executed. Also, make sure your break condition doesn’t take a long time to run; oth-
erwise your script will run very, very slowly.

AbashDebugger | 241

2. The debugger will not “step down” into shell scripts that are called from the
guinea pig. To do this, you’d have to edit your guinea pig script and change a
call to scriptname to bashdb scriptname.

3. Similarly, nested subshells are treated as one gigantic statement; you cannot step
down into them at all.

4. The guinea pig itself should not trap on the fake signals DEBUG and EXIT; oth-
erwise the debugger won’t work.

5. Command error handling could be significantly improved.

Many of these are not insurmountable and you can experiment with solving them
yourself; see the exercises at the end of this chapter.

The debugger from an earlier version of this book helped inspire a more comprehen-
sive bash debugger maintained by Rocky Bernstein, which you can find at the Bash
Debugger Project, http://bashdb.sourceforge.net/.

A Sample bashdb Session

Now we’ll show a transcript of an actual session with bashdb, in which the guinea
pig is the solution to Task 6-1, the script ndu. Here is the transcript of the debugging
session:

[bash]$ bashdb ndu

bash Debugger version 1.0
Stopped at line 0

bashdb> ds

1: for dir in ${*:-.}; do

2: if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)
4: let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes”
7:

8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11: echo " ($((total/1024)) Kb)"
12: fi

13: fi

14: done

bashdb> s

Stopped at line 2

bashdb> bp 4

Breakpoint set at line 4
bashdb> bp 8

Breakpoint set at line 8
bashdb> bp 11

Breakpoint set at line 11
bashdb> ds

242 | Chapter9: Debugging Shell Programs

1 for dir in ${*:-.}; do

2 > if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)
4:% let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes”
7:

8k if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11:%* echo " ($((total/1024)) Kb)"
12: fi

13: fi

14: done

bashdb> g

Reached breakpoint at line 4
bashdb> 'echo $total

6840032

bashdb> cb 8

Breakpoint cleared at line 8

bashdb> ds

1: for dir in ${*:-.}; do

2: if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)
4:% > let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes”
7:

8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then

11:%* echo " ($((total/1024)) Kb)"
12: fi

13: fi

14: done

bashdb> bp

Breakpoints at lines: 4 11
Break on condition:

bashdb> !total=5600

bashdb> g

Total for . = 5600 bytes (5 Kb)

Reached breakpoint at line 11

bashdb> cb

All breakpoints have been cleared

bashdb> ds

1: for dir in ${*:-.}; do

if [-e $dir]; then
result=$(du -s $dir | cut -f 1)
let total=$result*1024

echo -n "Total for $dir = $total bytes"

~Nouv B~ wN

A bash Debugger

243

8: if [$total -ge 1048576]; then
: echo " ($((total/1048576)) Mb)"

10: elif [$total -ge 1024]; then

11: > echo " ($((total/1024)) Kb)"

12: fi

13: fi

14: done

bashdb> g

[bash]$
First, we display the script with ds and then perform a step, taking execution to line
2 of ndu. We then set breakpoints at lines 4, 8, and 11 and display the script again.
This time the breakpoints are clearly marked by asterisks (*). The right angle bracket
(>) indicates that line 2 was the most recent line executed.

Next, we continue execution of the script that breaks at line 4. We print out the
value of total now and decide to clear the breakpoint at line 8. Displaying the script
confirms that the breakpoint at line 8 is indeed gone. We can also use the bp com-
mand, and it too shows that the only breakpoints set are at lines 4 and 11.

At this stage we might decide that we want to check the logic of the if branch at line
11. This requires that $total be greater than or equal to 1,024, but less than
1,048,576. As we saw previously, $total is very large, so we set its value to 5,600 so
that it will execute the second part of the if and continue execution. The script enters
that section of the if correctly, prints out the value, and stops at the breakpoint.

To finish off, we clear the breakpoints, display the script again, and then continue
execution, which exits the script.

Exercises

We'll conclude this chapter with some suggested enhancements to our simple debug-
ger and a complete listing of the debugger command source code.
1. Improve command error handling in these ways:

a. Check that the arguments to s are valid numbers and print an appropriate
error message if they aren’t.

b. Check that a breakpoint actually exists before clearing it and warn the user if
the line doesn’t have a breakpoint.

c. Any other error handling that you can think of.
2. Add code to remove duplicate breakpoints (more than one breakpoint on one line).

3. Enhance the cb command so that the user can specify more than one breakpoint
to be cleared at a time.

4. Implement an option that causes a break into the debugger whenever a com-
mand exits with non-zero status:

244 | Chapter9: Debugging Shell Programs

a. Implement it as the command-line option -e.

b. Implement it as the debugger command e to toggle it on and off. (Hint: when
you enter _steptrap, $? is still the exit status of the last command that ran.)

5. Implement a command that prints out the status of the debugger: whether exe-

cution trace is on/off, error exit is on/off, and the number of the last line to be
executed. In addition, move the functionality for displaying the breakpoints
from bp to the new option.

. Add support for multiple break conditions, so that bashdb stops execution when-
ever one of them becomes true and prints a message indicating which one became
true. Do this by storing the break conditions in an array. Try to make this as effi-
cient as possible, since the checking will take place after every statement.

. Add the ability to watch variables.

a. Add a command aw that takes a variable name as an argument and adds it
to a list of variables to watch. Any watched variables are printed out when
execution trace is toggled on.

b. Add another command cw that, without an argument, removes all of the
variables from the watch list. With an argument, it removes the specified
variable.

. Although placing an underscore at the start of the debugger identifiers will avoid
name clashes in most cases, think of ways to automatically detect name clashes
with the guinea pig script and how to get around this problem. (Hint: you could
rename the clashing names in the guinea pig script at the point where it gets
combined with the preamble and placed in the temporary file.)

9. Add any other features you can think of.

Finally, here is a complete source listing of the debugger function file bashdb.fns:

After each line of the test script is executed the shell traps to
this function.

function steptrap

{

_curline=$1 # the number of the line that just ran
(($_trace)) 8& _msg "$PS4 line $ curline: ${ lines[$ curline]}"

if (($_steps >= 0)); then
let steps="$ steps - 1"
fi

First check to see if a line number breakpoint was reached.
If it was, then enter the debugger.
if _at linenumbp ; then

_msg "Reached breakpoint at line $ curline"

_cmdloop

Abash Debugger | 245

It wasn't, so check whether a break condition exists and is true.
If it is, then enter the debugger
elif [-n "$ _brcond"] && eval $ brcond; then
_msg "Break condition $_brcond true at line $_curline"
_cmdloop

It wasn't, so check if we are in step mode and the number of
steps is up. If it is, then enter the debugger.
elif (($_steps == 0)); then

_msg "Stopped at line $ curline"

_cmdloop

i
}

The Debugger Command Loop

function _cmdloop {
local cmd args

while read -e -p "bashdb> " cmd args; do
case $cmd in

\? [h) _menu ;; # print command menu

bc) _setbc $args ;; # set a break condition

bp) _setbp $args ;; # set a breakpoint at the given line

cb) _clearbp $args ;; # clear one or all breakpoints

ds) _displayscript ;; # list the script and show the
breakpoints

g) return ;; # "go": start/resume execution of
the script

q) exit ;; # quit

s) let steps=${args:-1} # single step N times (default = 1)

return ;;
x) _xtrace ;; # toggle execution trace

*) eval ${cmd#!} $args ;; # pass to the shell
*) _msg "Invalid command: '$cmd'" ;;

See if this line number has a breakpoint
function _at_linenumbp

{

local i=0

Loop through the breakpoints array and check to see if any of
them match the current line number. If they do return true (0)
otherwise return false.

if ["$_linebp"]; then
while (($i < ${# linebp[@]})); do

246 | Chapter9: Debugging Shell Programs

if ((${_linebp[$i]} == $ curline)); then
return 0
fi
let i=$i+1
done
fi
return 1

Set a breakpoint at the given line number or list breakpoints
function setbp

{
local i
If there are no arguments call the breakpoint list function.
Otherwise check to see if the argument was a positive number.
If it wasn't then print an error message. If it was then check
to see if the line number contains text. If it doesn't then
print an error message. If it does then echo the current
breakpoints and the new addition and pipe them to "sort" and
assign the result back to the list of breakpoints. This results
in keeping the breakpoints in numerical sorted order.
Note that we can remove duplicate breakpoints here by using
the -u option to sort which uniquifies the list.
if [-z "$1"]; then
_listbp
elif [$(echo $1 | grep '~[0-9]*') 1; then
if [-n "${ lines[$1]}"], then
_linebp=($(echo $((for i in ${ linebp[*]} $1; do
echo $i; done) | sort -n)))
_msg "Breakpoint set at line $1"
else
_msg "Breakpoints can only be set on non-blank lines"
fi
else
_msg "Please specify a numeric line number"
fi
}

List breakpoints and break conditions
function listbp
{
if [-n "$_linebp"]; then
_msg "Breakpoints at lines: ${ linebp[*]}"
else
_msg "No breakpoints have been set"
fi

Abash Debugger | 247

_msg "Break on condition:"
_msg "$_brcond"

}

Clear individual or all breakpoints
function clearbp

{
local i bps
If there are no arguments, then delete all the breakpoints.
Otherwise, check to see if the argument was a positive number.
If it wasn't, then print an error message. If it was, then
echo all of the current breakpoints except the passed one
and assign them to a local variable. (We need to do this because
assigning them back to linebp would keep the array at the same
size and just move the values "back" one place, resulting in a
duplicate value). Then destroy the old array and assign the
elements of the local array, so we effectively recreate it,
minus the passed breakpoint.
if [-z "$1"]; then
unset _linebp[*]
_msg "All breakpoints have been cleared"
elif [$(echo $1 | grep '~[0-9]*') 1; then
bps=($(echo $(for i in ${ linebp[*]}; do
if (($1 != $i)); then echo $i; fi; done)))
unset linebp[*]
_linebp=(${bps[*1})
_msg "Breakpoint cleared at line $1"
else
_msg "Please specify a numeric line number"
fi
}

Set or clear a break condition
function _setbc

{
if [-n "$*"]; then
_brcond=$args
_msg "Break when true: $ brcond"
else
_brcond=
_msg "Break condition cleared"
fi
}

Print out the shell script and mark the location of breakpoints
and the current line

function displayscript

{

248

| Chapter9: Debugging Shell Programs

local i=1 j=0 bp cl

(while (($i < ${# lines[@]})); do
if [${_linebp[$j]} 1 8& ((${_linebp[$j]} == $i)); then
bp="*"
let j=$j+1
else
bp=""
fi
if (($_curline == $i)); then
cl="5"
else
="
fi
echo "$i:$bp $c1 ${ lines[$i]}"
let i=$i+1
done
) | more

Toggle execution trace on/off
function xtrace

{
let trace="! $ trace"
_msg "Execution trace "
if (($_trace)); then
_msg "on"
else
_msg "off"
fi
}

Print the passed arguments to Standard Error
function msg

{
}

echo -e "$@" >&2

Print command menu
function _menu {
_msg 'bashdb commands:

bp N set breakpoint at line N

bp list breakpoints and break condition

bc string set break condition to string

bc clear break condition

cb N clear breakpoint at line N

cb clear all breakpoints

ds displays the test script and breakpoints
g start/resume execution

Abash Debugger | 249

s [N] execute N statements (default 1)

X toggle execution trace on/off
h, ? print this menu

I string passes string to a shell

q quit’

Erase the temporary file before exiting
function _cleanup

{
}

rm $_debugfile 2>/dev/null

250 | Chapter9: Debugging Shell Programs

CHAPTER 10
bash Administration

There are two areas in which system administrators use the shell as part of their job:
setting up a generic environment for users and for system security. In this chapter,
we’ll discuss bash’s features that relate to these tasks. We assume that you already
know the basics of UNIX system administration.”

Installing bash as the Standard Shell

As a prelude to system-wide customization, we want to emphasize that bash can be
installed as if it were the standard Bourne shell, /bin/sh. Indeed, some systems, such
as Linux, come with bash installed instead of the Bourne shell.

If you want to do this with your system, you can just save the original Bourne shell to
another filename (in case someone needs to use it) and either install bash as sh in the
/bin directory, or better yet install bash in the /bin directory and create a symbolic
link from /bin/sh to /bin/bash using the command In -s /bin/bash /bin/sh. The reason
we think that the second option is better is because bash changes its behavior slightly
if started as sh, as we will see shortly.

As detailed in Appendix A, bash is backward-compatible with the Bourne shell,
except that it doesn’t support ” as a synonym for the pipe character (]). Unless you
have an ancient UNIX system, or you have some very, very old shell scripts, you
needn’t worry about this.

But if you want to be absolutely sure, simply search through all shell scripts in all
directories in your PATH. An easy way to perform the search is to use the file com-
mand, which we saw in Chapter 5 and Chapter 9. file prints “executable shell script”

* A good source of information on system administration is Essential System Administration by Aleen Frisch
(O'Reilly).

251

when given the name of one.” Here is a script that looks for ~ in shell scripts in every
directory in your PATH:
IFS=:
for d in $PATH; do
echo checking $d:
cd $d
scripts=$(file * | grep 'shell script' | cut -d: -f1)
for f in $scripts; do
grep '*' $f /dev/null
done
done

The first line of this script makes it possible to use $PATH as an item list in the for
loop. For each directory, it cds there and finds all shell scripts by piping the file com-

mand into grep and then, to extract the filename only, into cut. Then for each shell
script, it searches for the A character.t

If you run this script, you will probably find several occurrences of A—but these car-
ets should be used within regular expressions in grep, sed, or awk commands, not as
pipe characters. As long as carets are never used as pipes, it is safe for you to install

bash as /bin/sh.

As we mentioned earlier, if bash is started as sh (because the executable file has been
renamed sh or there is a link from sh to bash) its startup behavior will change slightly
to mimic the Bourne shell as closely as possible. For login shells it only attempts to
read /etc/profile and ~/.profile, ignoring any other startup files like ~/.bash_profile.
For interactive shells it won’t read the initialization file ~/.bashrc.

POSIX Mode

Besides its native operating mode, bash can also be switched into POSIX mode. The
POSIX (Portable Operating System Interface) standard, described in detail in
Appendix A, defines guidelines for standardizing UNIX. One part of the POSIX stan-
dard covers shells.

bash is nearly 100% POSIX-compliant in its native mode. If you want strict POSIX
adherence, you can either start bash with the --posix option, or set it from within the
shell with set -o posix.

* The exact message varies from system to system; make sure that yours prints this message when given the
name of a shell script. If not, just substitute the message your file command prints for “shell script” in the
following code.

T The inclusion of /dev/null in the grep command is a kludge that forces grep to print the names of files that
contain a match, even if there is only one such file in a given directory.

1 bash also enters POSIX mode when started as sh. Versions of bash prior to 2.0 don’t—POSIX mode has to
be explicitly set with the --posix command-line option.

252 | Chapter10: bash Administration

Only in very rare circumstances would you ever have to use POSIX mode. The differ-
ences, outlined in Appendix A, are small and are mostly concerned with the com-
mand lookup order and how functions are handled. Most bash users should be able

to get through life without ever having to use this option.

Command-Line Options

bash has several command-line options that change the behavior of and pass infor-
mation to the shell. The options fall into two sets: single character options, like
we’ve seen in previous chapters of this book, and multicharacter options, which are a
relatively recent improvement to UNIX utilities.” Table 10-1 lists all of the options.t

Table 10-1. bash command-line options

*

Option
-cstring

-D

-l
-0 option
-0, +0 shopt-option

=S

-r

-V

--debugger

--dump-strings

--dump-po-strings

Meaning

Commands are read from string, if present. Any arguments after string are interpreted as
positional parameters, starting with $0.

Alist of all double-quoted strings preceded by $ is printed on the standard ouput. These are the
strings that are subject to language translation when the current locale is not C or POSIX. This
also turns on the -n option.

Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in effect, TTIN, TTOU,
and TSTP are also ignored.

Makes bash act as if invoked as a login shell.
Takes the same arguments as set -o.

shopt-option is one of the shell options accepted by the shopt builtin. If shopt-option
is present, -O sets the value of that option; +O unsets it. If shopt-option is not supplied,
the names and values of the shell options accepted by shopt are printed on the standard out-
put. If the invocation option is +O, the output is displayed in a format that may be reused as
input.

Reads commands from the standard input. If an argument is given to bash, this flag takes pre-
cedence (i.e., the argument won't be treated as a script name and standard input will be read).

Restricted shell. See the “Restricted Shell” section later in this chapter.
Prints shell input lines as they're read.

Signals the end of options and disables further option processing. Any options after this are
treated as filenames and arguments. -- is synonymous with -.

Arranges for the debugger profile to be executed before the shell starts. Turns on extended
debugging mode and shell function tracing.2

Does the same as -D.
Does the same as -D but the output is in the GNU gettext po (portable object) file format.

Multicharacter options are far more readable and easier to remember than the old, and usually cryptic, single
character options. All of the GNU utilities have multicharacter options, but many applications and utilities
(certainly those on old UNIX systems) allow only single-character options.

T See Appendix B for a list of options for versions of bash prior to 2.0.

Installing bash as the Standard Shell | 253

Table 10-1. bash command-line options (continued)

Option Meaning

--help Displays a usage message and exits.

--login Makes bash act as if invoked as a login shell. Same as -I.

--noediting Does not use the GNU readline library to read command lines if interactive.

--noprofile Does not read the startup file /etc/profile or any of the personal initialization files.

--norc Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by default if

the shell is invoked as sh.

--posix Changes the behavior of bash to follow the POSIX guidelines more closely where the default
operation of bash is different.

--quiet Shows no information on shell startup. This is the default.

--rcfile file, --init-file file Executes commands read from file instead of from the initialization file ~/.bashrc if the
shell is interactive.

--verbose Equivalent to -v.
--version Shows the version number of this instance of bash and then exits.

a Only available in bash version 3.0 and later.

The multicharacter options have to appear on the command line before the single-
character options. In addition to these, any set option can be used on the command
line. Like shell built-ins, using a + instead of - turns an option off.

Of these options, the most useful are -i (interactive), -r (restricted), -s (read from
standard input), -p (privileged), and -m (enable job control). Login shells are usually
run with the -i, -s, and -m flags. We’ll look at restricted and privileged modes later in
this chapter.

Environment Customization

Like the Bourne shell, bash uses the file /etc/profile for system-wide customization.
When a user logs in, the shell reads and runs /etc/profile before running the user’s
.bash_profile.

We won’t cover all the possible commands you might want to put in /etc/profile. But
bash has a few unique features that are particularly relevant to system-wide customi-
zation; we’ll discuss them here.

We'll start with two built-in commands that you can use in /etc/profile to tailor your
users’ environments and constrain their use of system resources. Users can also use
these commands in their .bash_profile, or at any other time, to override the default
settings.

254 | Chapter10: bash Administration

umask

umask, like the same command in most other shells, lets you specify the default per-
missions that files have when users create them. It takes the same types of argu-
ments that the chmod command does, i.e., absolute (octal numbers) or symbolic
permission values.

The umask contains the permissions that are turned off by default whenever a pro-
cess creates a file, regardless of what permission the process specifies.”

We’ll use octal notation to show how this works. As you probably know, the digits
in a permission number stand (left to right) for the permissions of the owner,
owner’s group, and all other users, respectively. Each digit, in turn, consists of three
bits, which specify read, write, and execute permissions from left to right. (If a file is
a directory, the “execute” permission becomes “search” permission, i.e., permission
to cd to it, list its files, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If a file
has this permission, then its owner can read and write it; users in the owner’s group
can only read it; everyone else has no permission on it. A file with permission 755
gives its owner the right to read, write, and execute it and everyone else the right to
read and execute (but not write).

022 is a common umask value. This implies that when a file is created, the “most”
permission it could possibly have is 755—which is the usual permission of an exe-
cutable that a compiler might create. A text editor, on the other hand, might create a
file with 666 permission (read and write for everyone), but the umask forces it to be
644 instead.

ulimit
The ulimit command was originally used to specify the limit on file creation size. But

bash’s version has options that let you put limits on several different system
resources. Table 10-2 lists the options.

Table 10-2. ulimit resource options

Option Resource limited

-a All'limits (for printing values only)
-C Core file size (1 Kb blocks)

-d Process data segment (Kb)

-f File size (1 Kb blocks)

*

If you are comfortable with Boolean logic, think of the umask as a number that the operating system logically
ANDs with the permission given by the creating process.

Environment Customization | 255

Table 10-2. ulimit resource options (continued)

Option Resource limited

-l Maximum size of a process that can be locked in memory (Kb)2

-m Maximum resident set size

-n File descriptors

-p Pipe size (512 byte blocks)

=S Process stack segment (Kb)

-t Process CPU time (seconds)

-u Maximum number of processes available to a user
-V Virtual memory (Kb)

a Not available in versions of bash prior to 2.0.

Each takes a numerical argument that specifies the limit in units shown in the table.
You can also give the argument “unlimited” (which may actually mean some physi-
cal limit), “hard” and “soft”, which refer to the current hard and soft limits (see
below), or you can omit the argument, in which case it will print the current limit.
ulimit -a prints limits (or “unlimited”) of all types.” You can specify only one type of
resource at a time. If you don’t specify any option, -f is assumed.

Some of these options depend on operating system capabilities that don’t exist in
older UNIX versions. In particular, some older versions have a fixed limit of 20 file
descriptors per process (making -n irrelevant), and some don’t support virtual mem-
ory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation, i.e., memory for
which a process asks the operating system at runtime. It’s not necessary for casual
users to limit these, though software developers may want to do so to prevent buggy
programs from trying to allocate endless amounts of memory due to infinite loops.

The -v and -m options are similar; -v puts a limit on all uses of memory, and -m lim-
its the amount of physical memory that a process is allowed to use. You don’t need
these unless your system has severe memory constraints or you want to limit process
size to avoid thrashing.

The -u option is another option which is useful if you have system memory con-
straints or you wish just wish to stop individual users from hogging the system
resources.

You may want to specify limits on file size (-f and -c) if you have constraints on disk
space. Sometimes users actually mean to create huge files, but more often than not, a
huge file is the result of a buggy program that goes into an infinite loop. Software

* The “hard” and “soft” arguments are not available in bash prior to version 2.05a.

256 | Chapter10: bash Administration

developers who use debuggers like sdb, dbx, and gdb should not limit core file size,
because core dumps are necessary for debugging.

The -t option is another possible guard against infinite loops. However, a program
that is in an infinite loop but isn’t allocating memory or writing files is not particu-
larly dangerous; it’s better to leave this unlimited and just let the user kill the offend-
ing program.

In addition to the types of resources you can limit, ulimit lets you specify hard or soft
limits. Hard limits can be lowered by any user but only raised by the super user
(root); users can lower soft limits and raise them—>but only as high as the hard limit
for that resource.

If you give -H along with one (or more) of the options above, ulimit will set hard lim-
its; -S sets soft limits. Without either of these, ulimit sets the hard and soft limit. For
example, the following commands set the soft limit on file descriptors to 64 and the
hard limit to unlimited:

ulimit -Sn 64
ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits unless you specify -H.

Types of Global Customization

The best possible approach to globally available customization would be a system-
wide environment file that is separate from each user’s environment file—just like
letc/profile is separate from each user’s .bash_profile. Unfortunately, bash doesn’t
have this feature.

Nevertheless, the shell gives you a few ways to set up customizations that are avail-
able to all users at all times. Environment variables are the most obvious; your /etc/
profile file will undoubtedly contain definitions for several of them, including PATH
and TERM.

The variable TMOUT is useful when your system supports dialup lines. Set it to a
number N, and if a user doesn’t enter a command within N seconds after the shell
last issued a prompt, the shell will terminate. This feature is helpful in preventing
people from “hogging” the dialup lines.

You may want to include some more complex customizations involving environ-
ment variables, such as the prompt string PS1 containing the current directory (as
seen in Chapter 4).

You can also turn on options, such as emacs or vi editing modes, or noclobber to
protect against inadvertent file overwriting. Any shell scripts you have written for
general use also contribute to customization.

Environment Customization | 257

Unfortunately, it’s not possible to create a global alias. You can define aliases in /etc/
profile, but there is no way to make them part of the environment so that their defini-
tions will propagate to subshells. (In contrast, users can define global aliases by put-
ting their definitions in ~/.bashrc.)

However, you can set up global functions. These are an excellent way to customize
your system’s environment, because functions are part of the shell, not separate
processes.

System Security Features

UNIX security is a problem of legendary notoriety. Just about every aspect of a UNIX
system has some security issue associated with it, and it’s usually the system admin-
istrator’s job to worry about this issue.

bash has two features that help solve this problem: the restricted shell, which is inten-
tionally “brain damaged,” and privileged mode, which is used with shell scripts that
run as if the user were root.

Restricted Shell

The restricted shell is designed to put the user into an environment where her ability
to move around and write files is severely limited. It’s usually used for “guest”
accounts.” You can make a user’s login shell restricted by putting rbash in the user’s
letc/passwd entry.t

The specific constraints imposed by the restricted shell disallow the user from doing
the following;:

* Changing working directories: cd is inoperative. If you try to use it, you will get
the error message bash: cd: restricted.
* Redirecting output to a file: the redirectors >, >|, <>, and >> are not allowed.

* Assigning a new value to the environment variables ENV, BASH_ENV, SHELL,
or PATH.

* Specifying any commands with slashes (/) in them. The shell will treat files out-
side of the current directory as “not found.”

* Using the exec built-in.
* Specifying a filename containing a / as an argument to the . built-in command.

* Importing function definitions from the shell environment at startup.

* This feature is not documented in the manual pages for old versions of bash.
1 If this option has been included when the shell was compiled. See Chapter 11 for details on configuring bash.

258 | Chapter10: bash Administration

* Adding or deleting built-in commands with the -f and -d options to the enable
built-in command.

* Specifying the -p option to the builtin command.

* Turning off restricted mode with set +r.

These restrictions go into effect after the user’s .bash_profile and environment files
are run. In addition, it is wise to change the owner of the users’ .bash_profile and
.bashrc to root, and make these files read-only. The users’ home directory should
also be made read-only.

This means that the restricted shell user’s entire environment is set up in /etc/profile
and .bash_profile. Since the user can’t access /etc/profile and can’t overwrite .bash_
profile, this lets the system administrator configure the environment as he sees fit.

Two common ways of setting up such environments are to set up a directory of
“safe” commands and have that directory be the only one in PATH, and to set up a
command menu from which the user can’t escape without exiting the shell.

A System Break-In Scenario

Before we explain the other security features, here is some background information
on system security that should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file attribute called the suid
(set user ID) bit. This is like a permission bit (see umask earlier in this chapter):
when an executable file has it turned on, the file runs with an effective user ID equal
to the owner of the file, which is usually root. The effective user ID is distinct from
the real user ID of the process.

This feature lets administrators write scripts that do certain things that require root
privilege (e.g., configure printers) in a controlled way. To set a file’s suid bit, the
superuser can type chmod 4755 filename; the 4 is the suid bit.

Modern system administration wisdom says that creating suid shell scripts is a very,
very bad idea.” This has been especially true under the C shell, because its .cshrc envi-
ronment file introduces numerous opportunities for break-ins. bash’s environment
file feature creates similar security holes, although the security feature we’ll see
shortly make this problem less severe.

We’ll show why it’s dangerous to set a script’s suid bit. Recall that in Chapter 3, we
mentioned that it’s not a good idea to put your personal bin directory at the front of
your PATH. Here is a scenario that shows how this placement combines with suid
shell scripts to form a security hole: a variation of the infamous “Trojan horse”
scheme. First, the computer cracker has to find a user on the system with an suid

* In fact, most versions of UNIX intentionally disable the suid feature for shell scripts.

System Security Features | 259

shell script. In addition, the user must have a PATH with her personal bin directory
listed before the public bin directories, and the cracker must have write permission
on the user’s personal bin directory.

Once the cracker finds a user with these requirements, he follows these steps:

* Looks at the suid script and finds a common utility that it calls. Let’s say it’s
grep.
* Creates the Trojan horse, which is this case is a shell script called grep in the
user’s personal bin directory. The script looks like this:
cp /bin/bash filename
chown root filename
chmod 4755 filename
/bin/grep "$@
1m ~/bin/grep
filename should be some unremarkable filename in a directory with public read
and execute permission, such as /bin or /usr/bin. The file, when created, will be
that most heinous of security holes: an suid interactive shell.

* Sits back and waits for the user to run the suid shell script—which calls the Tro-
jan horse, which in turn creates the suid shell and then self-destructs.

¢ Runs the suid shell and creates havoc.

Privileged Mode

The one way to protect against Trojan horses is privileged mode. This is a set -0
option (set -o privileged or set -p).

In privileged mode, when an suid bash shell script is invoked, the shell does not run
the user’s environment file—i.e., it doesn’t expand the user’s BASH_ENV environ-
ment variable.

Since privileged mode is an option, it is possible to turn it off with the command set
+o privileged (or set +p). But this doesn’t help the potential system cracker: the shell
automatically changes its effective user ID to be the same as the real user ID—i.e., if
you turn off privileged mode, you also turn off suid.

Privileged mode is an excellent security feature; it solves a problem that originated
when the environment file idea first appeared in the C shell.

Nevertheless, we still strongly recommend against creating suid shell scripts. We
have shown how bash protects against break-ins in one particular situation, but that
certainly does not imply that bash is “safe” in any absolute sense. If you really must
have suid scripts, you should carefully consider all relevant security issues.

Finally, if you would like to learn more about UNIX security, we recommend Practi-
cal UNIX and Internet Security, by Gene Spafford and Simson Garfinkel (O’Reilly).

260 | Chapter10: bash Administration

CHAPTER 11
Shell Scripting

For the majority of this book, we’ve looked at the various elements that make up
bash and how you can use them in writing shell scripts. If you’ve used other pro-
gramming languages you will know that there is a difference between writing a piece
of code that gets a job done and writing a piece of code that does the job but is also
maintainable and conforms to what we could call “good practice.”

This chapter will give a brief introduction to some aspects of good practice and writ-
ing maintainable shell scripts along with helpful tips and tricks that you can use to
make writing scripts easier.

What’s That Do?

Six months ago you coded up a 100 line shell script. It made perfect sense then, but
now you look at it and wonder, “Just what does that do?” This is a common pitfall
among programmers—especially those writing in a shell language. Unfortunately,
shells have developed with more than their fair share of obscure punctuation. This is
a blessing for keeping typing to a minimum but doesn’t help readability. It’s impor-
tant to make your code as readable as possible.

Comments

The first rule of shell scripting is to comment your code. You should do this right
from the start, even if the script is only a couple of lines long. Shell scripts have a
habit of growing from a couple of lines to many hundreds of lines as more features
are added, so it’s best to get into the habit of commenting your code right at the
beginning.

To start with, consider having a main header or banner for your scripts. The infor-
mation in the header should, at a minimum, say what the script does. Here is an
example of a script header:

261

#!/bin/bash
FHEEHHHHE
Name: graphconv.sh

Converts graphics files from one format to another.
Usage: graphconv.sh <input-file> <output-file>
Author: C. Newham

Date: 2004/12/02
HHHHHHHHHHHHH B

#
#
#
#
#
#
#
#

This main header gives the name of the script, a brief summary of what it does, usage
information, the name of the author, and when the script was written.

If you are using a source control system (e.g., CVS), you can dispense with the
author and date as these will be stored when the script is archived. If you aren’t using
such a system, we strongly advise that you not only include the above information
but also place in the header additional data such as modification dates and authors.

Whatever system you use, make sure that you make the format of the banner a stan-
dard across all of your scripts.

Every function should also have a header. If it is a standalone function, it should
have a main header, as given above. If it is a function used locally in a script, it
should have a simpler banner stating what it does, what parameters it expects, and
what it returns, e.g.:

Changes the filename extension

#

param: $infile - the original filename

#

returns: the modified name with new extension.
#

function change filename()

Comments should also be used frequently in your code to say what the code is
doing. While we aren’t about to dictate style, comments within the flow of the code
are generally better on a line by themselves, while variable declaration comments are
better on the same line as the variable:

startup_dir=/home/startup/ # directory with startup files
file limit=50 # maximum number of files to process

if [-d "$startup dir"]

then
the startup directory exists so read any initialisation file.
echo "initialising file processing..."

262 | Chapter11: Shell Scripting

Variables and Constants

Headers and comments are just one way to document your code. Another is by the
use of descriptive variable names. Good variable names should give an indication of
what the variable represents. Names like “x”, “resn” or “procd” will only have mean-
ing at the time that you write the script. Six months down the track and they will be

a mystery.
Good names should be short but descriptive. The three examples above might have
been more meaningfully written as “file_limit”, “resolution”, and “was_processed”.

Don’t make the names too long; the name “horizontal_resolution_of_the_picture” just
clutters a script and takes away any advantage in making the name so descriptive.

Constants should be in uppercase and should normally be declared as read-only:
declare -r CAPITAL OF ENGLAND="London"

You should always avoid “magic numbers” sprinkled throughout the code by using
constants. For example:

if [[$process result == 68]]

should be replaced with:
declare -ir STAGE 3 FAILURE=68

if [[$process_result == $STAGE_3_FAILURE]]

Not only does this make the code more readable but it makes changing the value eas-
ier, especially if it is used numerous times in the script.

Starting Up

In Chapter 6 we talked about using getopts to obtain options and arguments passed
in to a shell script. This command makes it easy for the script programmer to pro-
cess what the user has provided, but what about the other half of the deal? The pro-
grammer must make an effort to make life as easy for the user as possible. Nothing
makes a user more irate than a script that doesn’t take standard arguments, doesn’t
provide a usage message, doesn’t process the arguments in the expected way, and
forces the user into a way of thinking that the programmer thinks is the right way.
Having to examine the source code for a script to find out what is an acceptable
argument or option is usually the last straw!

The Free Software Foundation has published a set of guidelines for writing GNU
software that suggests standard ways in which UNIX utilities should operate.” When

* The document is available at http://www.gnu.org/prep/standards/.

StartingUp | 263

writing your own shell scripts, it is worthwhile to follow the guidelines because your
script will then look familiar to users who have used other command-line programs.

At a minimum your script should provide single letter options (such as -h) and long
options with the double dash (such as --help). It should also provide two options: --
help and --version. From the GNU manual:

--version
This option should direct the program to print information about its name, ver-
sion, origin, and legal status, all on standard output, and then exit successtully.
Other options and arguments should be ignored once this is seen, and the pro-
gram should not perform its normal function.

—-help
This option should output brief documentation for how to invoke the program,
on standard output, then exit successfully. Other options and arguments should
be ignored once this is seen, and the program should not perform its normal
function.

Near the end of the --help option’s output there should be a line that says where
to mail bug reports. It should have this format:

Report bugs to mailing-address.

Table 11-1 lists a few of the common single-letter and long options that you may
consider using for your own scripts. This list is by no means exhaustive and is
intended merely for guidance.

Table 11-1. Possible options

Long option Option Examples where used
--all -a du, Is, nm, stty, uname, unexpand
--append -a etags, tee, time
--binary -b cpio, diff

--blocks -b head, tail

--date -d touch

--directory -d Cpio

--exclude-from X tar

-file f fgrep

--help -h man

--long - Is

--line -l we

--links -L cpio, Is

--output -0 C, sort

--quiet -q who

--recursive -r m

264 | Chapter11: Shell Scripting

Table 11-1. Possible options (continued)

Long option Option Examples where used
--recursive -R Is

--silent -s Synonym for -quiet
--unique -u sort

--verbose -v Cpio, tar

--width -w pr, sdiff

For commands that take one or more input files and produce an output file it is con-
sidered good practice to make only the input files normal arguments (i.e., command
filename) and have the output file specified by an option (i.e., command -o filename).

Another thing to watch out for is assuming that a particular environment variable
needed by your script has been set in the users’ environment. If your script is relying
on the user to have set an environment variable, it is probably better to redesign your
script to allow the value to be passed in as an argument.

Potential Problems

Here are some useful things to watch out for when writing shell scripts. Being aware
of them will not only save you time in tracking down bugs but will also make your
scripts more robust, more readable, and above all, more maintainable.

* Don’t create massive scripts or functions that try to do everything. Split func-
tionality up into smaller units and place them in functions. This not only makes
the code easier to read but makes it easier to debug.

* Always place the shell execution directive (e.g., #!/bin/bash) at the top of your
scripts to ensure they will be run by bash.

* Don’t use reserved words for variable names. This can become very confusing:

let let="echo"
let echo="hello"
echo "$echo world"

* Be careful with whitespace. Attempting the following assignment will not give
the expected result:

cat = 5
¢ Don’t use the same names for variables and functions:

function letter

{
}

letter=letter
letter letter

echo $1letter

Potential Problems | 265

This causes more confusion that it’s worth. While this example is contrived, be
on your guard for more subtle examples. To guard against this, try and name
your functions using verbs, e.g., function print_letter.

* Be careful when using the test operator [...]. The following two if statements are
not the same, although they look very similar:
if ["$var" = 42]
if ["$var" -eq 42 |
The first is a string comparison, the second an integer comparison. We suggest
using ((...)) for arithmetic comparisons in if statements.

Don’t Use bash

Sometimes you might start writing a script and after several hours of work find that
you’ve created a monster with many hundreds of lines of complicated code. This is
not always a bad thing, but it is a good idea to always be thinking about whether the
job could be done in a better way.

Usually the choice of programming language should take place at the design stage. If
you are starting from scratch on a Unix system you will have many options, includ-
ing C and C++, perl, python, and a host of others. They all have their advantages and
disadvantages, and no one language will be the best solution for every problem.

If you find that your script has a huge amount of processing to do quickly or if the
script requires mathematical capabilities beyond simple integer arithmetic, it might
be worthwhile considering C or C++ for the job. If you are looking for better porta-
bility across systems, python or perl might be a better match to the task.

However, even if bash is not suitable in the final solution to a problem, you might
find it makes an excellent language for mocking up your solution and trying out vari-
ous options.

266 | Chapter11: Shell Scripting

CHAPTER 12
bash for Your System

The first 10 chapters of this book looked at nearly all aspects of bash, from navigat-
ing the filesystem and editing the command-line to writing shell scripts and func-
tions using lesser-known features of the shell. This is all very well and good, but
what if you have an old version of bash and want the new features shown in this
book (or worse yet, you don’t have bash at all)?

In this chapter we’ll show you how to get the latest version of bash and install it on
your system, and we’ll discuss potential problems you might encounter along the
way. We'll also look briefly at the examples that come with bash and how you can
report bugs to the bash maintainer.

Obtaining bash

If you have a direct connection to the Internet, you should have no trouble obtaining
bash; otherwise, you’ll have to do a little more work.

The bash home page is located at http://www.gnu.org/software/bash/bash.html and
you can find the very latest details of the current distribution and where to obtain it
from there.

You can also get bash on CD-ROM by ordering it directly from the Free Software
Foundation, either via the web ordering page at http://order.fsf.org or from:

The Free Software Foundation (FSF)
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA

Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: order@fsf.org

267

Unpacking the Archive

Having obtained the archive file by one of the above methods, you need to unpack it
and install it on your system. Unpacking can be done anywhere—we’ll assume
you’re unpacking it in your home directory. Installing it on the system requires you
to have root privileges. If you aren’t a system administrator with root access, you can
still compile and use bash; you just can’t install it as a system-wide utility. The first
thing to do is uncompress the archive file by typing gunzip bash-3.0.tar.gz.” Then
you need to “untar” the archive by typing tar -xf bash-3.0.tar. The -xf means
“extract the archived material from the specified file.” This will create a directory
called bash-3.0 in your home directory.

The archive contains all of the source code needed to compile bash and a large
amount of documentation and examples. We’ll look at these things and how you go
about making a bash executable in the rest of this chapter.

What’s in the Archive

The bash archive contains a main directory (bash-3.0 for the current version) and a
set of files and subdirectories. Among the first files you should examine are:

MANIFEST

A list of all the files and directories in the archive
COPYING

The GNU Copyleft for bash

NEWS
A list of bug fixes and new features since the last version

README
A short introduction and instructions for compiling bash

You should also be aware of two directories:

doc
Information related to bash in various formats

examples
Examples of startup files, scripts, and functions

The other files and directories in the archive are mostly things that are needed dur-
ing the build. Unless you are going to go hacking into the internal workings of the
shell, they shouldn’t concern you.

* gunzip is the GNU decompression utility. gunzip is popular but relatively new and some systems don’t have
it. If your system doesn’t, you can obtain it by the same methods as you obtained bash. gunzip is available
from the FSF. gzip -d does the same thing as gunzip.

268 | Chapter12: bash for Your System

Documentation

The doc directory contains a few articles that are worth reading. Indeed, it would be
well worth printing out the manual entry for bash so you can use it in conjunction
with this book. The README file gives a short summary of the files.

The document you’ll most often use is the manual page entry (bash.1). The file is in
troff format—that used by the manual pages. You can read it by processing it with
the text-formatter nroff and piping the output to a pager utility: nroff -man bash.1 |
more should do the trick. You can also print it off by piping it to the lineprinter (Ip).
This summarizes all of the facilities your version of bash has and is the most up-to-
date reference you can get. This document is also available through the man facility
once you've installed the package, but sometimes it’s nice to have a hard copy so you
can write notes all over it.

Of the other documents, FAQ is a Frequently Asked Questions document with
answers, readline.3 is the manual entry for the readline facility, and article.ms is an
article about the shell that appeared in Linux Journal, by the current bash main-
tainer, Chet Ramey.

Configuring and Building bash

To compile bash “straight out of the box” is easy;" you just type configure and then
make! The bash configure script attempts to work out if you have various utilities
and C library functions, and whereabouts they reside on your system. It then stores
the relevant information in the file config.h. It also creates a file called config.status
that is a script you can run to recreate the current configuration information. While
the configure is running, it prints out information on what it is searching for and
where it finds it.

The configure script also sets the location that bash will be installed; the default is the
fusr/local area (/usr/local/bin for the executable, /usr/local/man for the manual entries
etc.). If you don’t have root privileges and want it in your own home directory, or
you wish to install bash in some other location, you’ll need to specify a path to con-
figure. You can do this with the --exec-prefix option. For example:

$ configure —exec-prefix=/usr

specifies that the bash files will be placed under the /usr directory. Note that config-
ure prefers option arguments be given with an equals sign (=).

* This configuration information pertains to bash version 3.0 and later. The configuration and installation for
earlier versions is fairly easy, although it differs in certain details. For further information, refer to the
INSTALL instructions that came with your version of bash.

What'sin the Archive | 269

After the configuration finishes and you type make, the bash executable is built. A
script called bashbug is also generated, which allows you to report bugs in the for-
mat the bash maintainers want. We’ll look at how you use it later in this chapter.

Once the build finishes, you can see if the bash executable works by typing ./bash. If
it doesn’t, turn to the “Potential Problems” section in Chapter 11.

To install bash, type make install. This will create all of the necessary directories
(bin, info, man and its subdirectories) and copy the files to them.

If you’ve installed bash in your home directory, be sure to add your own bin path to
your PATH and your own man path to MANPATH.

bash comes preconfigured with nearly all of its features enabled, but it is possible to
customize your version by specifying what you want with the --enable-feature and
--disable-feature command-line options to configure.

Table 12-1 is a list of the configurable features and a short description of what those
features do.

Table 12-1. Configurable features

Feature Description

alias Support for aliases.

arith-for-command Support for the alternate form of the “for’ command that behaves like the C language for state-
ment.

array-variables Support for one dimensional arrays.

bang-history C-shell-like history expansion and editing.

brace-expansion Brace expansion.

command-timing Support for the time command.

cond-command Support for the [[conditional command.

cond-regexp Support for matching POSIX regular expressions using the =~ binary operator in the [[condi-
tional command.

directory-stack Support for the pushd, popd, and dirs directory manipulation commands.

disabled-builtins Whether a built-in can be run with the builtin command, even if it has been disabled with
enable -n.

dparen-arithmetic Support for ((...)).

help-builtin Support for the help built-in.

history History via the fc and history commands.

job-control Job control via fg, bg, and jobs if supported by the operating system.

multibyte Support for multibyte characters if the operating system provides the necessary support.

net-redirections Special handling of filenames of the form /dev/tcp/HOST/PORT and /dev/udp/HOST/PORT when

used in redirections.
process-substitution Whether process substitution occurs, if supported by the operating system.
prompt-string-decoding ~ Whether backslash escaped characters in PS1, PS2, PS3, and PS4 are allowed.

270 | Chapter12: bash for Your System

Table 12-1. Configurable features (continued)

Feature Description

progcomp Programmable completion facilities. If readline is not enabled, this option has no effect.

readline readline editing and history capabilities.

restricted Support for the restricted shell, the -r option to the shell, and rbash.

select The select construct.

usg-echo-default Make echo expand backslash-escaped characters by default, without requiring the -e option. This
xpg-echo-default sets the default value of the xpg_echo shell option to on, which makes the bash echo behave

more like the version specified in the Single Unix Specification, Version 2.

The options disabled-builtins and xpg-echo-default are disabled by default. The
others are enabled.

Many other shell features can be turned on or off by modifying the file config-.top.h.
For further details on this file and configuring bash in general, see INSTALL.

Finally, to clean up the source directory and remove all of the object files and execut-
ables, type make clean. Make sure you run make install first, otherwise you’ll have
to rerun the installation from scratch.

Testing bash

There are a series of tests that can be run on your newly built version of bash to see if
it is running correctly. The tests are scripts that are derived from problems reported
in earlier versions of the shell. Running these tests on the latest version of bash
shouldn’t cause any errors.

To run the tests just type make tests in the main bash directory. The name of each
test is displayed, along with some warning messages, and then it is run. Successful
tests produce no output (unless otherwise noted in the warning messages).

If any of the tests fail, you’ll see a list of things that represent differences between
what is expected and what happened. If this occurs you should file a bug report with
the bash maintainer. See the “Reporting Bugs” section later in this chapter for infor-
mation on how to do this.

Potential Problems

Although bash has been installed on a large number of different machines and oper-
ating systems, there are occasionally problems. Usually the problems aren’t serious
and a bit of investigation can result in a quick solution.

If bash didn’t compile, the first thing to do is check that configure guessed your
machine and operating system correctly. Then check the file NOTES, which con-
tains some information on specific UNIX systems. Also look in INSTALL for addi-
tional information on how to give configure specific compilation instructions.

What'sin the Archive | 271

Installing bash as a Login Shell

Having installed bash and made sure it is working correctly, the next thing to do is to
make it your login shell. This can be accomplished in two ways.

Individual users can use the chsh (change shell) command after they log in to their
accounts. chsh asks for their password and displays a list of shells to choose from.
Once a shell is chosen, chsh changes the appropriate entry in /etc/passwd. For secu-
rity reasons, chsh will only allow you to change to a shell if it exists in the file /etc/
shells (if /etc/shells doesn’t exist, chsh asks for the pathname of the shell).

Another way to change the login shell is to edit the password file directly. On most
systems, /etc/passwd will have lines of the form:

cam: pK1Z9BCIbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
cc:kfDKDjfkeDIKIySFgIFWErTElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash

As root you can just edit the last field of the lines in the password file to the path-
name of whatever shell you choose.

If you don’t have root access and chsh doesn’t work, you can still make bash your
login shell. The trick is to replace your current shell with bash by using exec from
within one of the startup files for your current shell.

If your current shell is similar to sh (e.g., ksh), you have to add the line:
[-f /pathname/bash] 8& exec /pathname/bash —login
to your .profile, where pathname is the path to your bash executable.

You will also have to create an empty file called .bash_profile. The existence of this
file prevents bash from reading your .profile and re-executing the exec—thus enter-
ing an infinite loop. Any initialization code that you need for bash can just be placed
in .bash_profile.

If your current shell is similar to csh (e.g., tcsh) things are slightly easier. You just
have to add the line:

if (-f /pathname/bash) exec /pathname/bash —login

to your .login, where pathname is the path to your bash executable.

Examples

The bash archive also includes an examples directory. This directory contains some
subdirectories for scripts, functions, and examples of startup files.

The startup files in the startup-files directory provide many examples of what you
can put in your own startup files. In particular, bash_aliases gives many useful
aliases. Bear in mind that if you copy these files wholesale, you’ll have to edit them
for your system because many of the paths will be different. Refer to Chapter 3 for
further information on changing these files to suit your needs.

272 | Chapter12: bash for Your System

The functions directory contains about 50 files with function definitions that you
might find useful. Among them are:

basename
The basename utility, missing from some systems

dirfuncs
Directory manipulation facilities
dirname
The dirname utility, missing from some systems

whatis
An implementation of the Tenth Edition Bourne shell whatis builtin

whence
An almost exact clone of the Korn shell whence builtin

Especially helpful, if you come from a Korn shell background, is kshenv. This con-
tains function definitions for some common Korn facilities such as whence, print,
and the two-parameter cd builtins.

The scripts directory contains over 20 examples of bash scripts. The two largest
scripts are examples of the complex things you can do with shell scripts. The first is a
(rather amusing) adventure game interpreter and the second is a C shell interpreter.
The other scripts include examples of precedence rules, a scrolling text display, a
“spinning wheel” progress display, and how to prompt the user for a particular type
of answer.

Not only are the script and function examples useful for including in your environ-
ment, they also provide many alternative examples that you can learn from when
reading this book. We encourage you to experiment with them.

Who Do | Turn to?

No matter how good something is or how much documentation comes with it, you’ll
eventually come across something that you don’t understand or that doesn’t work.
In such cases it can’t be stressed enough to carefully read the documentation (in com-
puter parlance: RTFM).” In many cases this will answer your question or point out
what you’re doing wrong.

Sometimes you’ll find this only adds to your confusion or confirms that there is
something wrong with the software. The next thing to do is to talk to a local bash
guru to sort out the problem. If that fails, or there is no guru, you’ll have to turn to
other means (currently only via the Internet).

* RTFM stands for “Read The F(laming) Manual.”

WhoDolTurnto? | 273

Asking Questions

If you have any questions about bash, there are currently two ways to go about get-
ting them answered. You can email questions to bash-maintainers@gnu.org or you
can post your question to the USENET newsgroups gnu.bash.bug or comp.unix.shell.

In both cases either the bash maintainer or some knowledgeable person on USENET
will give you advice. When asking a question, try to give a meaningful summary of
your question in the subject line.

Reporting Bugs

Bug reports should be sent to bug-bash@gnu.org, and include the version of bash and
the operating system it is running on, the compiler used to compile bash, a description
of the problem, a description of how the problem was produced, and, if possible, a fix
for the problem. The best way to do this is with the bashbug script, installed with bash.

Before you run bashbug, make sure you’ve set your EDITOR environment variable to
your favorite editor and have exported it (bashbug defaults to emacs, which may not
be installed on your system). When you execute bashbug it will enter the editor with
a partially blank report form. Some of the information (bash version, operating sys-
tem version, etc.) will have been filled in automatically. We’ll take a brief look at the
form, but most of it is self-explanatory.

The From: field should be filled out with your email address. For example:
From: confused@wonderland.oreilly.com

Next comes the Subject: field; make an effort to fill it out, as this makes it easier for
the maintainers when they need to look up your submission. Just replace the line
surrounded by square brackets with a meaningful summary of the problem.

The next few lines are a description of the system and should not be touched. Next
comes the Description: field. You should provide a detailed description of the prob-
lem and how it differs from what is expected. Try to be as specific and concise as
possible when describing the problem.

The Repeat-By: field is where you describe how you generated the problem; if neces-
sary, list the exact keystrokes you used. Sometimes you won’t be able to reproduce
the problem yourself, but you should still fill out this field with the events leading up
to the problem. Attempt to reduce the problem to the smallest possible form. For
example, if it was a large shell script, try to isolate the section that produced the
problem and include only that in your report.

Lastly, the Fix: field is where you can provide the necessary patch to fix the problem
if you’ve investigated it and found out what was going wrong. If you have no idea
what caused the problem, just leave the field blank.

Once you’ve finished filling in the form, save it and exit your editor. The form will
automatically be sent to the maintainers.

274 | Chapter12: bash for Your System

APPENDIX A
Related Shells

The fragmentation of the UNIX marketplace has had its advantages and disadvan-
tages. The advantages came mostly in the early days: lack of standardization and pro-
liferation among technically knowledgeable academics and professionals contributed
to a healthy “free market” for UNIX software, in which several programs of the same
type (e.g., shells, text editors, system administration tools) would often compete for
popularity. The best programs would usually become the most widespread, while
inferior software tended to fade away.

But often there was no single “best” program in a given category, so several would
prevail. This led to the current situation, where multiplicity of similar software has
led to confusion, lack of compatibility, and—most unfortunate of all—the inability
of UNIX to capture as big a share of the market as other operating platforms (MS-
DOS, Microsoft Windows, Novell NetWare, etc.).

The “shell” category has probably suffered in this way more than any other type of
software. As we said in the , Preface and in Chapter 1, several shells are currently
available; the differences between them are often not all that great.

Therefore we felt it necessary to include information on shells similar to bash. This
appendix summarizes the differences between bash and the following:

* The standard Bourne shell, as a kind of “baseline”

e The IEEE POSIX 1003.2 shell Standard, to which bash adheres and other shells
will adhere in the future

* The Korn shell (ksh), a popular commercial shell provided with many UNIX
systems

* pdksh, a widely used public domain Korn shell

* zsh, a popular alternative to bash and the Korn shell

275

The Bourne Shell

bash is almost completely backward-compatible with the Bourne shell. The only
significant feature of the latter that bash doesn’t support is » (caret) as a synonym for
the pipe (]) character. This is an archaic feature that the Bourne shell includes for its
own backward compatibility with earlier shells. No modern UNIX version has any
shell code that uses * as a pipe.

To describe the differences between the Bourne shell and bash, we’ll go through each
chapter of this book and enumerate the features discussed in the chapter that the
Bourne shell does not support. Although some versions of the Bourne shell exist that
include a few bash features,” we refer to the standard Bourne shell that has been
around for many years.

Chapter 1
The cd - form of the cd command; tilde (~) expansion; the jobs command; the
help built-in.

Chapter 2
All. (That is, the Bourne shell doesn’t support any of the readline, history, and
editing features discussed in this chapter.)

Chapter 3
Aliases; prompt string customization; set options. The Bourne shell supports
only the following: -e, -k, -n, -t, -u, -v, -x, and -. It doesn’t support option names
(-0). The shopt built-in. Environment files aren’t supported. The following built-
in variables aren’t supported:

All variables beginning with BASH_
All variables beginning with COMP

(DPATH DIRSTACK
FCEDIT FUNCNAME
GROUPS HISTCMD
HISTCONTROL HISTFILE
HISTIGNORE HISTSIZE
HISTFILESIZE HOSTFILE
HOSTNAME HOSTTYPE
IGNOREEOF INPUTRC
LANG LC_ALL
LC_COLLATE LC_MESSAGES
LINENO MACHTYPE
MAILCHECK OLDPWD

* For example, the Bourne shell distributed with System V supports functions and a few other shell features
common to bash and the Korn shell.

276 | AppendixA: Related Shells

OPTARG OPTERR

OPTIND OSTYPE

PIPESTATUS

PS3 PS4

POSIXLY_CORRECT PROMPT_COMMAND

PWD RANDOM

REPLY SECONDS

SHELLOPTS SHLVL

TIMEFORMAT TMOUT

auto_resume histchars
Chapter 4

Functions; the type command; the local command; the ${#parameter} opera-
tor; pattern-matching variable operators (%, %%, #, ##). Extended pattern
matching. Command-substitution syntax is different: use the older “command’
instead of $(command). The built-in pushd and popd commands.

Chapter 5
The ! keyword; the select construct isn’t supported. The Bourne shell return
doesn’t exit a script when it is sourced with . (dot).

Chapter 6
Use the external command getopt instead of getopts, but note that it doesn’t
really do the same thing. Integer arithmetic isn’t supported: use the external
command expr instead of the $((arithmetic-exp)) syntax. The arithmetic condi-
tional ((arithmetic-exp)) isn’t supported; use the old condition test syntax and
the relational operators -It, -eq, etc. Array variables are not supported. declare
and let aren’t supported.

Chapter 7
The command, builtin, and enable built-ins. The -e and -E options to echo are
not supported. The /O redirectors >| and <> are not supported. None of the
options to read is supported. printf is usually available as an external command.

Chapter 8
Job control—specifically, the jobs, fg, and bg commands. Job number notation
with %, i.e., the kill and wait commands only accept process IDs. The - option
to trap (reset trap to the default for that signal). trap only accepts signal num-
bers, not logical names. The disown built-in.

Chapter 9
The DEBUG, ERR, and RETURN fake signals are not supported. The EXIT fake
signal is supported as signal 0.

Chapter 10
The ulimit command and privileged mode aren’t supported. The -S option to
umask is not supported. The Bourne shell’s restrictive counterpart, rsh, only
inhibits assignment to PATH.

The Bourne Shell | 277

The IEEE 1003.2 POSIX Shell Standard

There have been many attempts to standardize UNIX. Hardware companies’ mono-
lithic attempts at market domination, fragile industry coalitions, marketing failures,
and other such efforts are the stuff of history—and the stuff of frustration.

Only one standardization effort has not been tied to commercial interests: the Porta-
ble Operating System Interface, known as POSIX. This effort started in 1981 with the
fusr/group (now UniForum) Standards Committee, which produced the /usr/group
Standard three years later. The list of contributors grew to include the Institute of
Electrical and Electronic Engineers (IEEE) and the International Organization for
Standardization (ISO).

The first POSIX standard was published in 1988. This one, called IEEE P1003.1, covers
low-level issues at the system-call level. IEEE P1003.2, covering the shell, utility pro-
grams, and user interface issues, was ratified in September 1992 after a six-year effort. In
September 2001, a joint revision of both standards was approved. The new standard,

covering all the material in the two earlier separate documents, became known as IEEE
Standard 1003.1-2001. The latest version of the standard is 1003.1-2004.

The POSIX standards were never meant to be rigid and absolute. The committee
members certainly weren’t about to put guns to the heads of operating system imple-
menters and force them to adhere. Instead, the standards are designed to be flexible
enough to allow for both coexistence of similar available software, so that existing
code isn’t in danger of obsolescence, and the addition of new features, so that ven-
dors have the incentive to innovate. In other words, they are supposed to be the kind
of third-party standards that vendors might actually be interested in following.

As a result, most UNIX vendors currently comply with both standards. bash is no
exception; it is almost 100% POSIX-compliant.

The shell part of the standard describes utilities that must be present on all systems,
and others that are optional, depending upon the nature of the system. One such
option is the User Portability Utilities option, which defines standards for interactive
shell use and interactive utilities like the vi editor. The standard—on the order of
2,000 pages—is available through the IEEE; for information, contact the IEEE:

IEEE Customer Service

445 Hoes Lane, PO Box 1331

Piscataway, NJ 08855-1331

(800) 678-IEEE (United States and Canada)
(732) 981-0060 (international/local)
(732) 981-9667 (fax)

customer.service@ieee.org
http://www.standards.ieee.org/catalog/ordering. html

The committee members had two motivating factors to weigh when they designed
the shell standard. On the one hand, the design had to accommodate, as much as

278 | AppendixA: Related Shells

possible, existing shell code written under various Bourne-derived shells (the Ver-
sion 7, System V, BSD, and Korn shells). These shells are different in several
extremely subtle ways, most of which have to do with the ways certain syntactic ele-
ments interact with each other.

It must have been quite difficult and tedious to spell out these differences, let alone
to reach compromises among them. Throw in biases of some committee members
towards particular shells, and you might understand why it took six years to ratify
the first 1003.2 standard and further years to merge the standards.

On the other hand, the shell design had to serve as a standard on which to base
future shell implementations. This implied goals of simplicity, clarity, and preci-
sion—objectives that seem especially elusive in the context of the above problems.

The designers found one way of ameliorating this dilemma: they decided that the
standard should include not only the features included in the shell, but also those
explicitly omitted and those included but with unspecified functionality. The latter
category allows some of the existing shells’ innovations to “sneak through” without
becoming part of the standard, while listing omitted features helps programmers
determine which features in existing shell scripts won’t be portable to future shells.

The POSIX standard is primarily based on the System V Bourne shell, which is a
superset of the Version 7 shell discussed earlier in this appendix. Therefore you
should assume that bash features that aren’t present in the Bourne shell also aren’t
included in the POSIX standard.

The following bash features are left “unspecified” in the standard, meaning that their
syntax is acceptable but their functionality is not standardized:

* The other syntax for functions shown in Chapter 4 is supported; see the follow-
ing discussion.

* The [[...]] syntax for conditional tests. The external test or [...] utility should be
used instead.

¢ The select control structure.

* Code blocks ({...}) are supported, but for maximum portability, the curly brack-
ets should be quoted (for reasons too complicated to go into here).

* Signal numbers are only allowed if the numbers for certain key signals (INT,
TERM, and a few others) are the same as on the most important historical ver-
sions of UNIX. In general, shell scripts should use symbolic names for signals.

The POSIX standard supports functions, but the semantics are weaker: it is not pos-
sible to define local variables, and functions can’t be exported.

The command lookup order has been changed to allow certain built-in commands to
be overridden by functions. Built-in commands are divided into two sets by their
positions in the command lookup order: some are processed before functions, some
after. Specifically, the built-in commands break, : (do nothing), continue, .(source),

The IEEE 1003.2 POSIX Shell Standard | 279

eval, exec, exit, export, readonly, return, set, shift, trap, and unset take priority
over functions.

Finally, because the POSIX standard is meant to promote shell script portability, it
avoids mentioning certain fundamental implementation issues: in particular, there is
no requirement that multitasking be used for background jobs, subshells, etc. This
was done to allow portability to non-multitasking systems like MS-DOS, so that
shells on these systems can be POSIX-compliant.

The Korn Shell

One of the first major alternatives to the “traditional” shells, Bourne and C, was the
Korn shell, publicly released in 1986 as part of AT&T’s “Experimental Toolchest.”
The Korn shell was written by David Korn at AT&T. The first version was unsup-
ported, but eventually UNIX System Laboratories (USL) decided to give it support
when they released it with their version of UNIX (System V Release 4) in 1989. The
November 1988 Korn shell is the most widely used version of this shell.

The 1988 release is not fully POSIX-compliant—Iess so than bash. The latest release
(1993) has brought the Korn shell into better compliance as well as providing more
features and streamlining existing features.

The 1993 Korn shell and bash share many features, but there are some important dif-
ferences in the Korn shell:

* Functions are more like separate entities than part of the invoking shell (traps
and options are not shared with the invoking shell).

* Associative arrays are supported.

* Floating-point numbers and expressions are supported.

* Coroutines are supported. Two processes can communicate with one another by
using the print and read commands.

* The command print replaces echo. print can have a file descriptor specified and
can be used to communicate with coroutines.

* Function autoloading is supported. Functions are read into memory only when
they are called.

* One-dimensional arrays are supported, although they are limited in size (4,096
elements in early versions of ksh93, 64K elements in later releases).

* The history list is kept in a file rather than in memory. This allows concurrent
instantiations of the shell to access the same history list, a possible advantage in
certain circumstances.

* There is no default startup file. If the environment variable ENV is not defined,
nothing is read.

* The type command is replaced with the more restrictive whence.

280 | AppendixA: Related Shells

* The primary prompt string (PS1) doesn’t allow escaped commands.

* There is no built-in equivalent to enable.

* There is no provision for key bindings and no direct equivalent to readline.

* There are no built-in equivalents to pushd, popd, and dirs. They have to be
defined as functions if you want them.

* The history substitution mechanism is not supported.

* Prompt strings don’t allow backslash-escaped special characters.

* Many of the bash environment variables don’t exist.

In addition, the startup and environment files for Korn are different, consisting of
.profile and the file specified by the ENV variable. The default environment file can
be overridden by using the variable ENV. There is no logout file.

For a more detailed list of the differences between bash and the Korn shell see the
FAQ file in the doc directory of the bash archive.

The Korn shell is a good alternative to bash. Its only major drawback is that it is
upgraded only every few years.

pdksh

pdksh (Public Domain Korn shell) is a version of the Korn shell that is a free alternative
to bash. pdksh is available as source code in various places on the Internet, including
the USENET newsgroup comp.sources.unix, and the pdksh home page http://www.cs.
mun.ca/~michael/pdksh/ of the current maintainer, Michael Rendell.

pdksh was originally written by Eric Gisin, who based it on Charles Forsyth’s public
domain Version 7 Bourne shell. It has all Bourne shell features plus some of the
POSIX extensions and a few features of its own.

pdksh’s additional features include user-definable tilde notation, in which you can set
up ~ as an abbreviation for anything, not just usernames.

Otherwise, pdksh lacks a few features of the official Korn version and bash. In partic-
ular, it lacks the following bash features:

¢ The built-in variable PS4
¢ The advanced 1/O redirectors >| and <>

* The options errexit, noclobber, and privileged

One important advantage that pdksh has over bash is that the executable is only
about a third the size and it runs considerably faster. Weighed against this is that it is
less POSIX-compliant, has had numerous people add code to it (so it hasn’t been as
strongly controlled as bash), and isn’t as polished a product as bash (for example, the
documentation isn’t anywhere near as detailed or complete).

pdksh | 281

However, pdksh is a worthwhile alternative for those who want something other than
bash and can’t obtain the Korn shell.

zsh

zsh is a powerful interactive shell and scripting language with many features found in
bash, ksh, and tcsh, as well as several unique features.

zsh was originally written by Paul Falsted in the early 1990s and is now maintained
by various people.

It is freely available and should compile and run on just about any modern version
of Unix. Ports for other operating systems are also available. The zsh home page is
http://www.zsh.org. The current version is 4.2.1.

Some of the main differences between bash and zsh are:

* Extended globbing capabilities
* A slightly more advanced textual completion system
* A powerful multi-line command line editor

* Various visual bells and whistles, such as command prompt color and placement

zsh is a good alternative to bash, especially for “power users.”

Shell Clones and Unix-like Platforms

The proliferation of shells has not stopped at the boundaries of UNIX-dom. Many
programmers who got their initial experience on UNIX systems and subsequently
crossed over into the PC world wished for a nice UNIX-like environment. It’s not
surprising then that several UNIX shell-style interfaces to small-computer operating
systems have appeared, Bourne shell emulations among them.

In the past several years, not only shell clones have appeared, but entire Unix “envi-
ronments.” Two of them use shells that we’ve already discussed. Two others pro-
vide their own shell reimplementations. Providing lists of major and minor
differences is counterproductive. Instead, this section describes each environment in
turn (in alphabetical order), along with contact and Internet download information.

Cygwin

Cygnus Consulting (now part of Red Hat) created the cygwin environment. First cre-
ating cgywin.dll, a shared library that provides Unix system call emulation, they
ported a large number of GNU utilities to various versions of Microsoft Windows.
The greatest functionality comes under Windows/NT, Windows 2000, and

282 | AppendixA: Related Shells

Windows XP, although the environment can and does work under Windows 95/98/
ME, as well.

The cygwin environment uses bash for its shell, GCC for its C compiler, and the rest
of the GNU utilities for its Unix toolset. A sophisticated mount command provides a
mapping of the Windows C:\path notation to Unix filenames.

The cygwin project can be found at http://www.cygwin.com.

DJGPP

The DJGPP suite provides 32-bit GNU tools for the MS-DOS environment. To quote
the web page:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher)
PCs running MS-DOS. It includes ports of many GNU development utilities. The
development tools require a 80386 or newer computer to run, as do the programs they
produce. In most cases, the programs it produces can be sold commercially without
license or royalties.

The name comes from the initials of D.J. Delorie, who ported the GNU C++ compiler,
g++ to MS-DOS, and the text initials of g++, GPP. It grew into essentially a full Unix
environment on top of MS-DOS, with all the GNU tools and bash as its shell. Unlike
cygwin or UWIN (see later in this Appendix), you don’t need a version of Windows, just
a full 32-bit processor and MS-DOS. (Although, of course, you can use DJGPP from
within a Windows MS-DOS window.) The web site is http://www.delorie.com/djgpp!/.

MKS Toolkit

Perhaps the most established Unix environment for the PC world is the MKS Tool-
kit from Mortice Kern Systems:

MKS Canada - Corporate Headquarters

410 Albert Street

Waterloo, ON N2L 3V3

Canada

+1 519 884-2251

+1 519 884-8861 (fax)

+1 800 265-2797 (sales)

http://www.mks.com

The MKS Toolkit comes in various versions depending upon the development envi-
ronment and the number of developers who will be using it. It includes a shell that is
POSIX-compliant, along with just about all the features of the 1988 Korn shell, as
well as over 300 utilities, such as awk, perl, vi, make, etc. Their library supports over
1,500 Unix APIs, making it extremely complete and easy to port to the Windows

environment. More information is available at hitp://www.mkssoftware.com/products/
tk/ds_tkdev.asp.

Shell Clones and Unix-like Platforms | 283

AT&T UWIN

The UWIN package is a project by David Korn and his colleagues to make a Unix
environment available under Microsoft Windows. It is similar in structure to cygwin,
discussed earlier. A shared library, posix.dll, provides emulation of the Unix system
call APIs. The system call emulation is quite complete. An interesting twist is that the
Windows registry can be accessed as a filesystem under /reg. On top of the Unix API
emulation, ksh93 and over 200 Unix utilities (or rather, re-implementations) have
been compiled and run. The UWIN environment relies on the native Microsoft
Visual C/C++ compiler, although the GNU development tools are available for
download and use with UWIN.

The project can be found at http://www.research.att.com/sw/tools/uwin/. The web site
describes what is available, with links for downloading binaries, as well as informa-
tion on commercial licensing of the UWIN package. Also included are links to vari-
ous papers on UWIN, additional useful software, and links to other, similar
packages.

284 | AppendixA: Related Shells

APPENDIX B

Invocation

Reference Lists

Table B-1 and Table B-2 list the options you can use when invoking current versions
of bash and the older 1.x version, respectively.” The multicharacter options must
appear on the command line before the single-character options. In addition to
these, any set option can be used on the command line; see Table B-7. Login shells
are usually invoked with the options -i (interactive), -s (read from standard input),
and -m (enable job control).

Table B-1. Command-line options

Option
-Cstring

-D

-
-0 option
-0, +0 shopt-option

Meaning

Commands are read from string, if present. Any arguments after string are interpreted as positional
parameters, starting with $0.

Alist of all double-quoted strings preceded by $ is printed on the standard ouput. These are the
strings that are subject to language translation when the current locale is not C or POSIX. This also
turns on the -n option.

Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in effect, TTIN, TTOU, and TSTP
are also ignored.

Makes bash act as if invoked as a login shell.
Takes the same arguments as set -o.

shopt-aption is one of the shell options accepted by the shopt builtin. If shopt-option is present, -0
sets the value of that option; +0 unsets it. If shopt-option is not supplied, the names and values of the
shell options accepted by shopt are printed on the standard output. If the invocation option is +0, the
output is displayed in a format that may be reused as input.

Reads commands from the standard input. If an argument is given to bash, this flag takes precedence
(i.e., the argument won't be treated as a script name and standard input will be read).

* At the time of writing, the old 1.x versions of bash are still used. We strongly recommend that you upgrade
to the latest version. We have included a table of old options (Table B-2) just in case you encounter an old

version of the shell.

285

Table B-1. Command-line options (continued)

Option
-r
-v

--debugger

--dump-strings
--dump-po-strings
--help

~-login
--noediting
--noprofile

--nor¢
--posix

--quiet

--rcfile file, --init-file file

--verbose

--version

Meaning
Restricted shell. See Chapter 10.
Prints shell input lines as they're read.

Signals the end of options and disables further option processing. Any options after this are treated as
filenames and arguments. -- is synonymous with -.

Arranges for the debugger profile to be executed before the shell starts. Turns on extended debugging
mode and shell function tracing.2

Does the same as -D.

Does the same as —D but the output is in the GNU gettext po (portable object) file format.
Displays a usage message and exits.

Makes bash act as if invoked as a login shell. Same as —I.

Does not use the GNU readiline library to read command lines if interactive.

Does not read the startup file /etc/profile or any of the personal initialization files.

Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by default if the shell
is invoked as sh.

Changes the behavior of bash to follow the POSIX guidelines more closely where the default operation
of bash is different.

Shows no information on shell startup. This is the default.
Executes commands read from file instead of the initialization file ~/.bashrc, if the shell is interactive.
Equivalent to -v.

Shows the version number of this instance of bash and then exits.

a Only available in bash version 3.0 and later.

Table B-2. Old command-line options

Option
-cstring

=S

-norc

-noprofile
~rcfile file

-version

Meaning

Commands are read from string, if present. Any arguments after string are interpreted as positional
parameters, starting with $0.

Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in effect, TTIN, TTOU, and
TSTP are also ignored.

Reads commands from the standard input. If an argument is given to bash, this flag takes prece-
dence (i.e., the argument won't be treated as a script name and standard input will be read).

Restricted shell. See Chapter 10.

Signals the end of options and disables further option processing. Any options after this are treated
as filenames and arguments. -- is synonymous with -.

Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by default if the
shell is invoked as sh.

Does not read the startup file /etc/profile or any of the personal initialization files.

Executes commands read from file instead of the initialization file ~/.bashrc, if the shell is
interactive.

Shows the version number of this instance of bash when starting.

286 | AppendixB: Reference Lists

Table B-2. Old command-line options (continued)

Option Meaning

-quiet Shows no information on shell startup. This is the default.

-login Makes bash act as if invoked as a login shell.

-nobraceexpansion Does not perform curly brace expansion.

-nolineediting Does not use the GNU readline library to read command lines if interactive.

-posix Changes the behavior of bash to follow the POSIX guidelines more closely where the default opera-

tion of bash is different.

Prompt String Customizations

Table B-3 shows a summary of the prompt customizations that are available. The
customizations \[and \] are not available in bash versions prior to 1.14. \a, \e, \H, \T,
\@, \v, and \V are not available in versions prior to 2.0. \A, \D, \j, \l, and \r are only
available in later versions of bash 2.0 and in bash 3.0.

Table B-3. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM format

\d The date in “Weekday Month Day” format

\D {format} The format is passed to strftime(3) and the result is inserted into the prompt string; an empty format
results in a locale-specific time representation; the braces are required

\e The ASCIl escape character (033)

\H The hostname

\h The hostname up to the first “.”

\j The number of jobs currently managed by the shell

\l The basename of the shell’s terminal device name

\n A carriage return and line feed

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m. format

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash; the version and patchlevel (e.g., 3.00.0)

\w The current working directory

\W The basename of the current working directory

Prompt String Customizations | 287

Table B-3. Prompt string customizations (continued)

Command Meaning

\# The command number of the current command

\! The history number of the current command

\S If the effective UID is 0, print a #, otherwise printa $

\nnn Character code in octal

\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences
\] End a sequence of non-printing characters

Built-In Commands and Reserved Words

Table B-4 shows a summary of all built-in commands and reserved words. The let-
ters in the Type column of the table have the following meanings: R = reserved
word, blank = Builtin.

Table B-4. Commands and reserved words

Command Chapter Type Summary
! 5 R Logical NOT of a command exit status.

7 Do nothing (just do expansions of any arguments).

4 Read file and execute its contents in current shell.
alias 3 Set up shorthand for command or command line.
bg 8 Put job in background.
bind 2 Bind a key sequence to a readline function or macro.
break 5 Exit from surrounding for, select, while, or until loop.
builtin 5 Execute the specified shell built-in.
case 5 R Reserved word. Multi-way conditional construct.
o 1 Change working directory.
command 7 Run a command bypassing shell function lookup.
compgen D Generate possible completion matches.
complete D Specify how completion should be performed.
continue Skip to next iteration of for, select, while, or until loop.
declare 6 Declare variables and give them attributes.
dirs 6 Display the list of currently remembered directories.
disown 8 Remove a job from the job table.
do 5 R Part of a for, select, while, or until looping construct.
done 5 R Part of a for, select, while, or until looping construct.
echo 4 Expand and print any arguments.
elif 5 R Part of an if construct.

288 | AppendixB: Reference Lists

Table B-4. Commands and reserved words (continued)

Command
else
enable
esac
eval
exec
exit
export
fc

fg

fi

for
function
getopts
hash
help
history
if

in

jobs

kill

let
local
logout
popd
pushd
pwd
read
readonly
return
select
set
shift
suspend
test
then

Chapter

W o B U1 U1 0N WU O N Uy »n

—_ .

~ B - B o0 = U1,

—_

[N O S Y N - |

Type

R

Summary

Part of an if construct.

Enable and disable built-in shell commands.
Part of a case construct.

Run the given arguments through command-line processing.
Replace the shell with the given program.

Exit from the shell.

(reate environment variables.

Fix command (edit history file).

Put background job in foreground.

Part of an if construct.

Looping construct.

Define a function.

Process command-line options.

Full pathnames are determined and remembered.
Display helpful information on built-in commands.
Display command history.

Conditional construct.

Part of a case construct.

List any background jobs.

Send a signal to a process.

Arithmetic variable assignment.

(reate alocal variable.

Exits a login shell

Removes a directory from the directory stack.
Adds a directory to the directory stack.

Print the working directory.

Read a line from standard input.

Make variables read-only (unassignable).
Return from the surrounding function or script.
Menu-generation construct.

Set options.

Shift command-line arguments.

Suspend execution of a shell.

Evaluates a conditional expression.

Part of an if construct.

Built-In Commands and Reserved Words

289

Table B-4. Commands and reserved words (continued)

Command Chapter Type Summary

time R Run command pipeline and print execution times. The format of the output
can be controlled with TIMEFORMAT.

times Print the accumulated user and system times for processes run from the
shell.

trap 8 Set up a signal-catching routine.

type 3 Identify the source of a command.

typeset 6 Declare variables and give them attributes. Same as declare.

ulimit 10 Set/show process resource limits.

umask 10 Set/show file permission mask.

unalias 3 Remove alias definitions.

unset 3 Remove definitions of variables or functions.

until 5 R Looping construct.

wait 8 Wait for background job(s) to finish.

while 5 R Looping construct.

Built-In Shell Variables

Table B-5 shows a complete list of environment variables available in bash 3.0. The let-
ters in the Type column of the table have the following meanings: A = Array, L = colon
separated list, R = read-only, U = unsetting it causes it to lose its special meaning.

Note that the variables beginning BASH_, beginning COMP, DIRSTACK, FUNC-
NAME, GLOBIGNORE, GROUPS, HISTIGNORE, HOSTNAME, HISTTIMEFOR-
MAT, LANG, LC_ALL, LC_COLLATE, LC_MESSAGE, MACHTYPE, PIPESTATUS,
SHELLOPTS, and TIMEFORMAT are not available in versions prior to 2.0.
BASH_ENV replaces ENV found in earlier versions.

Table B-5. Environment variables

Variable Chapter Type Description
* 4 R The positional parameters given to the current script or function.
@ 4 R The positional parameters given to the current script or function.
4 R The number of arguments given to the current script or function.
- R Options given to the shell on invocation.
? 5 R Exit status of the previous command.

R Last argument to the previous command.
$ 8 R Process ID of the shell process.
! 8 R Process ID of the last background command.
0 4 R Name of the shell or shell script.

290 | AppendixB: Reference Lists

Table B-5. Environment variables (continued)

Variable
BASH
BASH_ARGC

BASH_ARGV

BASH_COMMAND

BASH_EXECUTION_STRING
BASH_ENV

BASH_LINENO

BASH_REMATCH

BASH_SOURCE

BASH_SUBSHELL

BASH_VERSION
BASH_VERSINFO

(DPATH
COMP_CWORD

COMP_LINE

COMP_POINT

Chapter Type
3

9 A

9 A

9

3

9 A
AR

9 A

3

3,6 AR

3 L

Description
The full pathname used to invoke this instance of bash.

An array of values which are the number of parameters in each
frame of the current bash execution call stack. The number of
parameters to the current subroutine (shell function or script exe-
cuted with . or source) is at the top of the stack.

All of the parameters in the current bash execution call stack. The
final parameter of the last subroutine call is at the top of the stack;
the first parameter of the initial call is at the bottom.

The command currently being executed or about to be executed,
unless the shell is executing a command as the result of a trap, in
which case it is the command executing at the time of the trap.

The command argument to the -c invocation option.

The name of a file to run as the environment file when the shell is
invoked.

An array whose members are the line numbers in source files
corresponding to each member of @var{FUNCNAME}.
${BASH_LINENO[Si]} is the line number in the source file where
S{FUNCNAME[Si + 11} was called. The corresponding source file
name is ${BASH_SOURCE[Si + 1]}.

An array whose members are assigned by the =~ binary operator
to the [[conditional command. The element with index 0 is the
portion of the string matching the entire reqular expression. The
element with index n is the portion of the string matching the nth
parenthesized subexpression.

An array containing the source filenames corresponding to the ele-
ments in the FUNCNAME array variable.

Incremented by one each time a subshell or subshell environment
is spawned. The initial value is 0.

The version number of this instance of bash.

Version information for this instance of bash. Each element of the
array holds parts of the version number.

Alist of directories for the cd command to search.

Anindex into ${COMP_WORDS} of the word containing the cur-
rent cursor position. This variable is available only in shell functions
invoked by the programmable completion facilities.

The current command line. This variable is available only in shell
functions and external commands invoked by the programmable
completion facilities.

The index of the current cursor position relative to the beginning of
the current command. If the current cursor position is at the end of
the current command, the value of this variable is equal to
${#COMP_LINE}. This variable is available only in shell functions
and external commands invoked by the programmable completion
facilities.

Built-In Shell Variables | 291

Table B-5. Environment variables (continued)

Variable

(OMP_WORDBREAKS

COMP_WORDS

COMPREPLY

DIRSTACK
EUID
FUNCNAME

FCEDIT
FIGNORE
GLOBIGNORE

GROUPS

IFS

HISTCMD
HISTCONTROL

HISTFILE
HISTIGNORE

HISTSIZE
HISTFILESIZE
HISTTIMEFORMAT

HOME
HOSTFILE

Chapter

4,6

Type
U

ARU

ARU

AR

Description

The set of characters that the Readline library treats as word sepa-
rators when performing word completion. If COMP_WORD-
BREAKS is unset, it loses its special properties, even if it is
subsequently reset.

An array of the individual words in the current command line. This
variable is available only in shell functions invoked by the pro-
grammable completion facilities.

The possible completions generated by a shell function invoked by
the programmable completion facility.

The current contents of the directory stack.
The effective user ID of the current user.

An array containing the names of all shell functions currently in the
execution call stack. The element with index 0 is the name of any
currently-executing shell function. The bottom-most element is
“main”. This variable exists only when a shell function is executing.

The default editor for the fc command.
Alist of names to ignore when doing filename completion.

Alist of patterns defining filenames to ignore during pathname
expansion.

An array containing a list of groups of which the current useris a
member.

The Internal Field Separator: a list of characters that act as word
separators. Normally set to SPACE, TAB, and NEWLINE.

The history number of the current command.

Alist of patterns, separated by colons (:), which can have the fol-
lowing values. ignorespace: lines beginning with a space are not
entered into the history list. ignoredups: lines matching the last
history line are not entered. erasedups: all previous lines matching
the current line to are removed from the history list before the line
is saved. ignoreboth: enables both ignorespace and ignoredups.

The name of the command history file.

Alist of patterns to decide what should be retained in the history
list.

The number of lines kept in the command history.
The maximum number of lines kept in the history file.

If set and not null, its value is used as a format string for strftime(3)
to print the time stamp associated with each history entry dis-
played by the history builtin. If this variable is set, time stamps are
written to the history file so they may be preserved across shell
sessions.

The home (login) directory.
The file to be used for hostname completion.

292 | AppendixB: Reference Lists

Table B-5. Environment variables (continued)

Variable Chapter Type Description

HOSTNAME The name of the current host.

HOSTTYPE 3 The type of machine bash is running on.

IGNOREEOF 3 The number of EOF characters received before exiting an interac-
tive shell.

INPUTRC 2 The readline startup file.

LANG Used to determine the locale category for any category not specifi-
cally selected with a variable starting with LC_.

LC_ALL Overrides the value of LANG and any other LC_ variable specifying
a locale category.

LC_COLLATE Determines the collation order used when sorting the results of
pathname expansion.

LC_CTYPE Determines the interpretation of characters and the behavior of
character classes within pathname expansion and pattern
matching.

LC_MESSAGES This variable determines the locale used to translate double-
quoted strings preceded by a $.

LC_NUMERIC Determines the locale category used for number formatting.

LINENO 9 U The number of the line that just ran in a script or function.

MACHTYPE A string describing the system on which bash is executing.

MAIL 3 The name of the file to check for new mail.

MAILCHECK 3 How often (in seconds) to check for new mail.

MAILPATH 3 L Alist of file names to check for new mail, if MAIL is not set.

OLDPWD 3 The previous working directory.

OPTARG 6 The value of the last option argument processed by getopts.

OPTERR 6 If set to 1, display error messages from getopts.

OPTIND 6 The number of the first argument after options.

OSTYPE The operating system on which bash is executing.

PATH 3 L The search path for commands.

PIPESTATUS 6 A An array variable containing a list of exit status values from the
processes in the most recently executed foreground pipeline.

POSIXLY_CORRECT Ifin the environment when bash starts, the shell enters posix mode
before reading the startup files, as if the --posix invocation option
had been supplied. If it is set while the shell is running, bash
enables posix mode, as if the command set -o posix had been
executed.

PROMPT_COMMAND The value is executed as a command before the primary prompt is
issued.

PS1 3 The primary command prompt string.

PS2 3 The prompt string for line continuations.

PS3 5 The prompt string for the select command.

Built-In Shell Variables | 293

Table B-5. Environment variables (continued)

Variable Chapter Type Description

PS4 9 The prompt string for the xtrace option.

PPID 8 R The process ID of the parent process.

PWD 3 The current working directory.

RANDOM 9 U A random number between 0 and 32767 (215-1).

REPLY 5,7 The user’s response to the select command; result of the read
command if no variable names are given.

SECONDS 3 U The number of seconds since the shell was invoked.

SHELL 3 The full pathname of the shell.

SHELLOPTS LR Alist of enabled shell options.

SHLVL Incremented by one each time an instance of bash is invoked.

TIMEFORMAT Specifies the format for the output from using the time reserved
word on a command pipeline.

TMOUT 10 If set to a positive integer, the number of seconds after which the
shell automatically terminates if no input is received.

uib R The user ID of the current user.

auto_resume Controls how job control works.

histchars Specifies what to use as the history control characters. Normally

set to the string "IA#',

Test Operators

Table B-6 lists the operators that are used with test and the [...] and [[...]] con-
structs. They can be logically combined with -a (“and”) and -0 (“or”) and grouped
with escaped parenthesis (\(... \)). The string comparisons < and > and the [[...]]
construct are not available in versions of bash prior to 2.0.

Table B-6. Test operators

Operator Trueif...

-afile file exists

-b file file exists and is a block device file
-cfile file exists and is a character device file
-d file file exists and is a directory

-e file file exists; same as —a

-ffile file exists and is a regular file

-g file file exists and has its setgid bit set

-G file file exists and is owned by the effective group ID
-h file file exists and is a symbolic link

-k file file exists and has its sticky bit set

294 | AppendixB: Reference Lists

Table B-6. Test operators (continued)

Operator

-Lfile

-n string

-N file

-0 file

-p file

-t file

-s file

-S file

tN

-u file

-w file

-x file

-z string

fileA —nt fileB
fileA —ot fileB
fileA —ef fileB
stringA = stringB
stringA == stringB
stringA \= stringB
stringA =~ regexp
stringA < stringB
stringA > stringB
exprA —eq exprB
exprA —ne exprB
exprA —It exprB
exprA —gt exprB
exprA —le exprB
exprA —ge exprB
exprA —a exprB
exprA —o exprB

Trueif...

file exists and is a symbolic link

string is non-null

file was modified since it was last read

file exists and is owned by the effective user ID

file exists and is a pipe or named pipe (FIFO file)

file exists and is readable

file exists and is not empty

file exists and is a socket

File descriptor N points to a terminal

file exists and has its setuid bit set

file exists and is writeable

file exists and is executable, or file is a directory that can be searched
string has a length of zero

fileA modification time is newer than fileB

fileA modification time is older than fileB

fileA and fileB point to the same file

stringA equals stringB (POSIX version)

stringA equals stringB

stringA does not match stringB

stringA matches the extended regular expression regexp?
stringA sorts before stringB lexicographically

stringA sorts after stringB lexicographically
Arithmetic expressions exprA and exprB are equal
Arithmetic expressions exprA and exprB are not equal
exprA is less than exprB

exprA is greater than exprB

exprA is less than or equal to exprB

exprA is greater than or equal to exprB

exprA is true and exprB is true

exprA is true or exprB is true

a Only available in bash version 3.0 and later. May only be used inside [[...]].

set Options

Table B-7 lists the options that can be turned on with the set -arg command. All are
initially off except where noted. Full Names, where listed, are arguments to set that

setOptions | 295

can be used with set -0. The Full Names braceexpand, histexpand, history, key-
word, and onecmd are not available in versions of bash prior to 2.0. Also, in those
versions, hashing is switched with -d.

Table B-7. Options to set

Option Full name Meaning

-a allexport Export all subsequently defined or modified variables.

-B braceexpand The shell performs brace expansion. This is on by default.

-b notify Report the status of terminating background jobs immediately.

-C noclobber Don't allow redirection to overwrite existing files.

-E errtrace Any trap on ERR s inherited by shell functions, command substitutions, and commands

executed in a subshell environment.

-e errexit Exit the shell when a simple command exits with non-zero status. A simple command is
a command not part of a while, until, or if; or part of a && or || list; or acommand
whose return value is inverted by !.

emacs Use emacs-style command-line editing.
-f noglob Disable pathname expansion.
-H histexpand Enable ! style history substitution. On by default in an interactive shell.
history Enable command history. On by default in interactive shells.
-h hashall Disable the hashing of commands.
ignoreeof Disallow CTRL-D to exit the shell.
-k keyword Place keyword arguments in the environment for a command.
-m monitor Enable job control (on by default in interactive shells).
-n noexec Read commands and check syntax but do not execute them. Ignored for interactive
shells.
-P physical Do not follow symbolic links on commands that change the current directory. Use the
physical directory.
-p privileged Script is running in suid mode.
pipefail The return value of a pipeline is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commands in the pipeline exit successfully. This option is
disabled by default.
posix Change the default behavior to that of POSIX 1003.2 where it differs from the standard.
-T functrace Any trap on DEBUG is inherited by shell functions, command substitutions, and com-
mands executed in a subshell environment.
-t onecmd Exit after reading and executing one command.
-u nounset Treat undefined variables as errors, not as null.
-v verbose Print shell input lines before running them.
vi Use vi-style command-line editing.
-X xtrace Print commands (after expansions) before running them.

296 | AppendixB: Reference Lists

Table B-7. Options to set (continued)

Option Full name

Meaning

Signals the end of options. All remaining arguments are assigned to the positional
parameters. -x and -v are turned off. If there are no remaining arguments to set, the
positional arguments remain unchanged.

With no arguments following, unset the positional parameters. Otherwise, the posi-
tional parameters are set to the following arguments (even if they begin with -).

shopt Options

The shopt options are set with shopt -sarg and unset with shopt -uarg. See Table B-8
for options to shopt. Versions of bash prior to 2.0 had environment variables to per-
form some of these settings. Setting them equated to shopt -s.

The variables (and corresponding shopt options) were: allow_null_glob_expansion
(nullglob), cdable_vars (cdable_vars), command_oriented_history (cmdhist), glob_
dot_filenames (dotglob), no_exit_on_failed_exec (execfail). These variables no

longer exist.

The options extdebug, failglob, force_fignore, and gnu_errfmt are not available in
versions of bash prior to 3.0.

Table B-8. Options to shopt

Option
cdable_vars

cdspell

checkhash
checkwinsize

cmdhist
dotglob

execfail

expand_aliases

extdebug

extglob

Meaning if set

An argument to cd that is not a directory is assumed to be the name of a variable whose value is
the directory to change to.

Minor errors in the spelling of a directory supplied to the cd command will be corrected if there
is a suitable match. This correction includes missing letters, incorrect letters, and letter transpo-
sition. It works for interactive shells only.

Commands found in the hash table are checked for existence before being executed and non-
existence forces a PATH search.

Checks the window size after each command and, if it has changed, updates the variables
LINES and COLUMNS accordingly.

Attempt to save all lines of a multiline command in a single history entry.
Filenames beginning with a . are included in pathname expansion.

A non-interactive shell will not exit if it cannot execute the argument to an exec. Interactive
shells do not exit if exec fails.

Aliases are expanded.

Behavior intended for use by debuggers is enabled. This includes: the -F option of declare dis-
plays the source filename and line number corresponding to each function name supplied as an
argument; if the command run by the DEBUG trap returns a non-zero value, the next command
is skipped and not executed; and if the command run by the DEBUG trap returns a value of 2,
and the shell is executing in a subroutine, a call to return is simulated.

Extended pattern matching features are enabled.

shopt Options | 297

Table B-8. Options to shopt (continued)

Option
failglob

force_fignore

gnu_errfmt
histappend

histreedit
histverify

hostcomplete

huponexit

interactive_comments
lithist

login_shell
mailwarn

no_empty_cmd_completion

nocaseglob
nullglob
progcomp
promptvars
restricted_shell
shift_verbose
sourcepath

Xpg_echo

Meaning if set

Patterns which fail to match filenames during pathname expansion result in an expansion
error.

The suffixes specified by the FIGNORE shell variable cause words to be ignored when perform-
ing word completion even if the ignored words are the only possible completions.

Shell error messages are written in the standard GNU error message format.

The history list is appended to the file named by the value of the variable HISTFILE when the
shell exits, rather than overwriting the file.

If readline is being used, the opportunity is given for re-editing a failed history substitution.

If readline is being used, the results of history substitution are not immediately passed to the
shell parser. Instead, the resulting line is loaded into the readline editing buffer, allowing fur-
ther modification.

If readline is being used, an attempt will be made to perform hostname completion when a
word beginning with @ is being completed.

bash will send SIGHUP to all jobs when an interactive login shell exits.

Allows a word beginning with # and all subsequent characters on the line to be ignored in an
interactive shell.

If the cmdhist option is enabled, multiline commands are saved to the history with embedded
newlines rather than using semicolon separators where possible.

If bash is started as a login shell. This is a read-only value.

If the file being checked for mail has been accessed since the last time it was checked, the mes-
sage “The mail in mailfile has been read” is displayed.

If readline is being used, no attempt will be made to search the PATH for possible completions
when completion is attempted on an empty line.

bash matches filenames in a case-insensitive fashion when performing pathname expansion.
Allows patterns which match no files to expand to null strings rather than to themselves.
Programmable completion facilities are enabled. Default is on.

Prompt strings undergo variable and parameter expansion after being expanded.

Set if the shell is started in restricted mode. The value cannot be changed.

The shift built-in prints an error if it has shifted past the last positional parameter.

The source built-in uses the value of PATH to find the directory containing the file supplied as
an argument.

echo expands backslash-escape sequences by default.

1/0 Redirection

Table B-9 shows a complete list of I/O redirectors. (This table is also included earlier
as Table 7-1.) Note that there are two formats for specifying standard output and

298 | AppendixB: Reference Lists

error redirection: &>file and >&file. The second of these, and the one used through-
out this book, is the preferred way.

Table B-9 . I/O redirectors

Redirector
and1 | cmd2
> file

< file

>> file
>|file
n>|file
<> file
n<> file
<< label
n> file
n< file
>> file
n>&
n<&
n>&m
n<&m
&>file
<&-

>&-
n>&-
n<&-
n>&word

n<&word

n>&digit-

n<&digit-

Function

Pipe; take standard output of cmd7 as standard input to cmd2
Direct standard output to file

Take standard input from file

Direct standard output to file; append to file if it already exists
Force standard output to file even if noclobber is set

Force output to file from file descriptor n even if noclobber set
Use file as both standard input and standard output

Use file as both input and output for file descriptor n
Here-document

Direct file descriptor n to file

Take file descriptor n from file

Direct file descriptor n to file; append to file if it already exists
Duplicate standard output to file descriptor n

Duplicate standard input from file descriptor n

File descriptor n is made to be a copy of the output file descriptor
File descriptor n is made to be a copy of the input file descriptor
Directs standard output and standard error to file

Close the standard input

Close the standard output

Close the output from file descriptor n

Close the input from file descriptor n

If nis not specified, the standard output (file descriptor 1) is used; if the digits in word do not spec-
ify a file descriptor open for output, a redirection error occurs; as a special case, if n is omitted, and
word does not expand to one or more digits, the standard output and standard error are redirected
as described previously

If word expands to one or more digits, the file descriptor denoted by n is made to be a copy of that
file descriptor; if the digits in word do not specify a file descriptor open for input, a redirection error
occurs; if word evaluates to -, file descriptor n is closed; if n is not specified, the standard input (file
descriptor 0) is used

Moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1) if nis
not specified

Moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0) if n is not
specified; digit is closed after being duplicated to n

1/0 Redirection | 299

emacs Mode Commands

Table B-10 shows a complete list of emacs editing mode commands.

Table B-10. emacs mode commands

Command
CTRL-A
(TRL-B
(TRL-D
CTRL-E
CTRL-F
(TRL-G
CTRL-J
CTRL-K
CTRL-L
CTRL-M
CTRL-N
(TRL-0
CTRL-P
(TRL-R
(TRL-S
CTRL-T
(TRL-U
CTRL-V
(TRL-VTAB
CTRL-W
CTRL-X/
CTRL-X ~
CTRL-X$
(TRL-X @
CTRL-X!
CTRL-X (
CTRL-X)
(TRL-Xe
CTRL-X CTRL-R
CTRL-X CTRL-V
CTRL-Y
DEL
CTRL-[

Meaning

Move to beginning of line

Move backward one character

Delete one character forward

Move to end of line

Move forward one character

Abort the current editing command and ring the terminal bell
Same as RETURN

Delete (kill) forward to end of line

Clear screen and redisplay the line

Same as RETURN

Next line in command history

Same as RETURN, then display next line in history file
Previous line in command history

Search backward

Search forward

Transpose two characters

Kill backward from point to the beginning of line

Make the next character typed verbatim

Inserta TAB

Kill the word behind the cursor, using whitespace as the boundary
List the possible filename completions of the current word
List the possible username completions of the current word
List the possible shell variable completions of the current word
List the possible hostname completions of the current word
List the possible command name completions of the current word
Begin saving characters into the current keyboard macro
Stop saving characters into the current keyboard macro
Re-execute the last keyboard macro defined

Read in the contents of the readline initialization file

Display version information on this instance of bash

Retrieve (yank) last item killed

Delete one character backward

Same as ESC (most keyboards)

300 | AppendixB: Reference Lists

Table B-10. emacs mode commands (continued)

Command
ESC-B
ESC-C
ESC-D
ESC-F
ESC-L
ESC-N
ESC-P
ESC-R
ESC-T
ESC-U
ESC-CTRL-E
ESC-CTRL-H
ESC-CTRL-Y
ESC-DEL
ESC-A
ESC-<
ESC->
ESC-.
ESC-_

TAB

ESC-?
ESC-/
ESC-~
ESC-$
ESC-@
ESC-!
ESC-TAB
ESC-~
ESC-\
ESC-*
ESC-=
ESC-{

Meaning

Move one word backward

Change word after point to all capital letters

Delete one word forward

Move one word forward

Change word after point to all lowercase letters
Non-incremental forward search

Non-incremental reverse search

Undo all the changes made to this line

Transpose two words

Change word after point to all uppercase letters
Perform shell alias, history, and word expansion on the line
Delete one word backward

Insert the first argument to the previous command (usually the second word) at point
Delete one word backward

Perform history expansion on the line

Move to first line of history file

Move to last line of history file

Insert last word in previous command line after point
Same as above

Attempt filename completion on current word

List the possible completions of the text before point
Attempt filename completion on current word
Attempt username completion on current word
Attempt variable completion on current word
Attempt hostname completion on current word
Attempt command name completion on current word
Attempt completion from text in the command history
Attempt tilde expansion on the current word

Delete all the spaces and TABs around point

Insert all of the completions that would be generated by ESC-= before point
List the possible completions before point

Attempt filename completion and return the list to the shell enclosed within braces

emacs Mode Commands

301

vi Control Mode Commands

Table B-11 shows a complete list of all vi control mode commands.

Table B-11. vi control mode commands

Command Meaning
h Move left one character
| Move right one character
w Move right one word
b Move left one word
w Move to beginning of next non-blank word
B Move to beginning of preceding non-blank word
e Move to end of current word
E Move to end of current non-blank word
0 Move to beginning of line

Repeat the last a insertion.
A Move to first non-blank character in line
S Move to end of line
i Insert text before current character
a Insert text after current character
| Insert text at beginning of line
A Insert text at end of line

Overwrite existing text
dh Delete one character backward
dl Delete one character forward
db Delete one word backward
dw Delete one word forward
dB Delete one non-blank word backward
dw Delete one non-blank word forward
d$ Delete to end of line
do Delete to beginning of line
D Equivalent to d$ (delete to end of line)
dd Equivalent to 0d$ (delete entire line)
C Equivalent to ¢$ (delete to end of line, enter input mode)
« Equivalent to 0c$ (delete entire line, enter input mode)
X Equivalent to dl (delete character forwards)
X Equivalent to dh (delete character backwards)
kor- Move backward one line
jor+ Move forward one line

302 | AppendixB: Reference Lists

Table B-11. vi control mode commands (continued)

Command Meaning

G Move to line given by repeat count

[string Search forward for string

Istring Search backward for string

n Repeat search forward

N Repeat search backward

fx Move right to next occurrence of x

Fx Move left to previous occurrence of x

tx Move right to next occurrence of x, then back one space
Tx Move left to previous occurrence of x, then forward one space
; Redo last character finding command

, Redo last character finding command in opposite direction
\ Do filename completion

* Do wildcard expansion (onto command line)

\= Do wildcard expansion (as printed list)

~ Invert (twiddle) case of current character(s)

_ Append last word of previous command, enter input mode
(TRL-L Start a new line and redraw the current line on it
Prepend # (comment character) to the line and send it to history

vi Control Mode Commands | 303

APPENDIX C
Loadable Built-Ins

bash 2.0 introduced a new feature that increased the flexibility of the shell: dynami-
cally loadable built-ins. On systems that support dynamic loading, you can write
your own built-ins in C, compile them into shared objects, and load them at any time
from within the shell with the enable built-in (see Chapter 7 for details on all of the
enable options).

This appendix will discuss briefly how to go about writing a built-in and loading it in
bash. The discussion assumes that you have experience with writing, compiling, and
linking C programs.

The bash archive contains a number of pre-written built-ins in the directory exam-
ples/loadables/. You can build them by uncommenting the lines in the file Makefile
that are relevent to your system, and typing make. We’ll take one of these built-ins,
tty, and use it as a “case study” for built-ins in general.

tty will mimic the standard UNIX command tty. It will print the name of the termi-
nal that is connected to standard input. The built-in will, like the command, return
true if the device is a TTY and false if it isn’t. In addition, it will take an option, -s,
which specifies that it should work silently, i.e., print nothing and just return a
result.

The C code for a built-in can be divided into three distinct sections: the code that
implements the functionality of the built-in, a help text message definition, and a
structure describing the built-in so that bash can access it.

The description structure is quite straightforward and takes the form:

struct builtin structname = {
"builtin_name",
function_name,
BUILTIN_ENABLED,
help array,
"usage",
0

|5

304

builtin_name is the name of the built-in as it appears in bash. The next field, function-
name, is the name of the C function that implements the built-in. We’ll look at this
in a moment. BUILTIN_ENABLED is the initial state of the built-in, whether it is
enabled or not. This field should always be set to BUILTIN_ENABLED. help_array
is an array of strings which are printed when help is used on the built-in. usage is the
shorter form of help; the command and its options. The last field in the structure
should be set to 0.

In our example we’ll call the built-in tty, the C function tty_builtin, and the help
array tty_doc. The usage string will be tty [-s]. The resulting structure looks like this:

struct builtin tty struct = {
"tty",
tty builtin,
BUILTIN_ENABLED,
tty doc,
"tty [-s]",
0

b

The next section is the code that does the work. It looks like this:

tty builtin (list)
WORD_LIST *list;
{

int opt, sflag;
char *t;

reset_internal getopt ();
sflag = 0;
while ((opt = internal getopt (list, "s")) != -1)

switch (opt)

case 's':
sflag = 1;
break;
default:
builtin usage ();
return (EX_USAGE);
}

}
list = loptend;

t = ttyname (0);
if (sflag == 0)
puts (t 2 t : "not a tty");
return (t ? EXECUTION SUCCESS : EXECUTION FAILURE);
}

Built-in functions are always given a pointer to a list of type WORD_LIST. If the
built-in doesn’t actually take any options, you must call no_options(list) and check its

Loadable Built-Ins | 305

return value before any further processing. If the return value is non-zero, your func-
tion should immediately return with the value EX_USAGE.

You must always use internal_getopt rather than the standard C library getopt to pro-
cess the built-in options. Also, you must reset the option processing first by calling
reset_internal_getopt.

Option processing is performed in the standard way, except if the options are incor-
rect, in which case you should return EX_USAGE. Any arguments left after option
processing are pointed to by loptend. Once the function is finished, it should return
the value EXECUTION_SUCCESS or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the standard C library routine
ttyname, and if the -s option wasn’t given, print out the name of the tty (or “not a
tty” if the device wasn’t). The function then returns success or failure, depending
upon the result from the call to ttyname.

The last major section is the help definition. This is simply an array of strings, the
last element of the array being NULL. Each string is printed to standard output when
help is run on the built-in. You should, therefore, keep the strings to 76 characters or
less (an 80-character standard display minus a 4-character margin). In the case of tty,
our help text looks like this:
char *tty doc[] = {
"tty writes the name of the terminal that is opened for standard”,
"input to standard output. If the "-s' option is supplied, nothing",
"is written; the exit status determines whether or not the standard",
"input is connected to a tty.",
(char *)NULL
1
The last things to add to our code are the necessary C header files. These are stdio.h
and the bash header files config.h, builtins.h, shell.h, and bashgetopt.h.

Here is the C program in its entirety:

#include "config.h"
#include <stdio.h>
#include "builtins.h"
#include "shell.h"
#include "bashgetopt.h”

extern char *ttyname ();

tty builtin (1list)
WORD_LIST *list;
{

int opt, sflag;
char *t;

reset_internal getopt ();

306 | AppendixC: Loadable Built-Ins

sflag = 0;
while ((opt = internal getopt (list, "s")) != -1)

switch (opt)

case 's':
sflag = 1;
break;
default:
builtin usage ();
return (EX_USAGE);
}
}
list = loptend;

t = ttyname (0);
if (sflag == 0)
puts (t 2 t : "not a tty");
return (t ? EXECUTION SUCCESS : EXECUTION FAILURE);
}

char *tty doc[] = {
"tty writes the name of the terminal that is opened for standard",
"input to standard output. If the “-s' option is supplied, nothing",
"is written; the exit status determines whether or not the standard",
"input is connected to a tty.",
(char *)NULL
1
struct builtin tty struct = {
"ty",
tty builtin,
BUILTIN_ENABLED,
tty doc,
"tty [-s]",
0
1
We now need to compile and link this as a dynamic shared object. Unfortunately,
different systems have different ways to specify how to compile dynamic shared
objects. Table C-1 lists some common systems and the commands needed to com-
pile and link tty.c. Replace archive with the path of the top level of the bash archive.

Table C-1. Shared object compilation

System Commands

Sun0S 4 cc-pic-larchive -larchive/builtins -larchive/lib -c tty.c
Id -assert pure-text -o tty tty.o

Sun0S 5 cc-K pic-larchive -larchive/builtins -larchive/lib -c tty.c
cc-dy -z text -G -i-h tty -o tty tty.o

SVR4, SVR4.2, Irix cc-K PIC-larchive -larchive/builtins -larchive/lib -c tty.c

Loadable Built-Ins | 307

Table C-1. Shared object compilation (continued)

System Commands
Id -dy -z text -G -h tty -o tty tty.o
AIX cc-K -larchive -larchive/builtins -larchive/lib -c tty.c

Id -bdynamic -bnoentry -bexpall -G -o tty tty.o

Linux cc-fPIC -larchive -larchive/builtins -larchive/lib -c tty.c
|d -shared -o tty tty.o

NetBSD, FreeBSD cc -fpic -larchive -larchive/builtins -larchive/lib -c tty.c
Id -x -Bshareable -o tty tty.o

After you have compiled and linked the program, you should have a shared object
called tty. To load this into bash, just type enable -f path/tty tty, where path is the
full pathname of the shared object. You can remove a loaded built-in at any time
with the -d option, e.g., enable -d tty.

You can put as many built-ins as you like into one shared object; all you need are the
three main sections that we saw above for each built-in in the same C file. It is best,
however, to keep the number of built-ins per shared object small. You will also prob-
ably find it best to keep similar built-ins, or built-ins that work together (e.g., pushd,
popd, dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a
shared object that has twenty built-ins, it will load all 20 (but only one will be
enabled). For this reason, keep the number of built-ins small to save loading mem-
ory with unnecessary things, and group similar built-ins so that if the user enables
one of them, all of them will be loaded and ready in memory for enabling.

308 | AppendixC: Loadable Built-Ins

APPENDIX D
Programmable Completion

Programmable completion is a feature that was introduced in bash 2.0." It extends
the built-in textual completion that is discussed in Chapter 2 by providing hooks
into the completion mechanism. This means that it is possible to write virtually any
form of completion desired. For instance, if you were typing the man command,
wouldn’t it be nice to be able to hit TAB and have the manual sections listed for you.
Programmable completion allows you to do this and much more.

This Appendix will only look at the basics of programmable completion. While com-
pletion is a feature you are very likely to use in everyday shell operation, you are
unlikely to need to delve into the inner depths and actually write your own comple-
tion code. Fortunately the feature has been around for some time and there are
already several libraries of completion commands developed by other people. We’ll
just outline the basic commands and procedures needed to use the completion mech-
anism should you ever need to work on it yourself.

In order to be able to do textual completion in a particular way you first have to tell
the shell how to do it when you press the TAB key. This is done via the complete
command.

The main argument of complete is a name that can be the name of a command or
anything else that you want textual completion to work with. As an example we will
look at the gunzip command that allows compressed archives of various types to be
uncompressed. Normally, if you were to type:t

$ gunzip [TAB][TAB]

you would get a list of filenames from which to complete. This list will include all
kinds of things that are unsuitable for the gunzip command. What we really would

* Technically it was added in bash Version 2.04.
t For the rest of this Appendix we will denote typing a TAB character as [TAB].

309

like is the subset of those files that are suitable for the command to work on. We can
set this up by using complete:”

complete -A file -X 'I*.@(Z|gz|tgz)"' gunzip

Here we are telling completion mechanism that when the gunzip command is typed
in we want it to do something special. The -A flag is an action and takes a variety of
arguments. In this case we provide file as the argument, which asks the mechanism
to provide a list of files as possible completions. The next step is to cut this down by
selecting only the files that we know will work with gunzip. We’ve done this with the
-X option, which takes as its argument a filter pattern. When applied to the comple-
tion list the filter removes anything matching the pattern, i.e., the result is everything
that doesn’t match the pattern. gunzip can uncompress a number of file types includ-
ing those with the extensions .Z, .gz, and .tgz. We want to match all filenames with
extensions that have one of these three patterns. We then have to negate this with a !
(remember, the filter removes the patterns that match).

We can actually try this out first and see what completions would be returned with-
out having to install the completion with complete. We can do this via the compgen
command:

compgen -A file -X '1*.@(Z|gz|tgz)"

This produces a list of completion strings (assuming you have some files in the cur-
rent directory with these extensions). compgen is useful for trying out filters to see
what completion strings are produced. It is also needed when more complex comple-
tion is required. We’ll see an example of this later in the Appendix.

Once we install the complete command above, either by sourcing a script with it in
or executing it on the command line, we can use the augmented completion mecha-
nism with the gunzip command:

$gunzip [TAB][TAB]

archive.tgz archivel.tgz file.Z

$gunzip
You can probably see that there are other things we could do. What about providing
a list of possible arguments for specific options to a command? For instance, the kill
command can takes a process ID but can optionally take a signal name preceded by a
dash (-) or a signal name following the option -n. We should be able to complete
with PIDs but, if there is a dash or a -n, with signal names.

This is slightly more complex than the one-line example above. Here we will need some
code to distinguish what has already been typed in. We’ll also need to get the PIDs and
the signal names. We’ll put the code in a function and call the function via the comple-
tion mechanism. Here’s the code to call our function, which we’ll name _kill:

complete -F _kill kill

* In order for @(...) to work you will need extended pattern matching switched on (shopt —s extglob).

310 | AppendixD: Programmable Completion

The -F option to complete tells it to call the function named _kill when it is perform-
ing textual completion for the kill command. The next step is to code the function:
kill()
{

local cur
local sign

COMPREPLY=()
cur=${COMP_WORDS[COMP_CWORD]}

if (($COMP_CWORD == 2)) && [[${COMP _WORDS[1]} == -n]]; then
return list of available signals

_signals
elif (($COMP_CWORD == 1)) && [["$cur" == -*]]; then
return list of available signals
sign="-"
_signals
else

return list of available PIDs
COMPREPLY=($(compgen -W '$(command ps axo pid | sed 1d)' $cur))
fi
}
The code is fairly standard apart from the use of some special environment variables
and a call to a function called _signals, which we’ll come to shortly.

The variable COMPREPLY is used to hold the result that is returned back to the
completion mechanism. It is an array that holds a set of completion strings. Initially
this is set to an empty array.

The local variable cur is a convenience variable to make the code more readable because
the value is used in several places. Its value is derived from an element in the array
COMP_WORDS. This array holds the individual words on the current command line.
COMP_CWORD is an index into the array; it gives the word containing the current
cursor position. The value of cur is the word currently containing the cursor.

The first if statement tests for the condition where the kill command is followed by
the -n option. If the first word was -n and we are on the second word, then we need
to provide a list of signal names for the completion mechanism.

The second if statement is similar, except this time we are looking to complete on the
current word, which starts with a dash and is followed by anything else. The body of
this if again calls _signals but this time it sets the sign variable to a dash. The reason
for this will become obvious when we look at the _signals function.

The remaining part in the else block returns a list of process IDs. This uses the comp-
gen command to help in creating the array of completion strings. First it runs the ps
command to obtain a list of PIDs and then pipes the result through sed to remove the
first line (which is the heading “PID”)." This is then given as an argument to the -W

* On AIX and Solaris you will have to use the command ps —efo pid.

Programmable Completion | 311

option of compgen, which takes a word list. compgen then returns all completion
strings that match the value of the variable cur and the resulting array is assigned to
COMPREPLY.

compgen is important here because we can’t just return the complete list of PIDs
provided by ps. The user may have already typed part of a PID and then attempted
completion. As the partial PID will be in the variable cur, compgen restricts the
results to those that match or partially match that value. For example if cur had the
value 5 then compgen would return only values beginning with a “5”, such as 5, 59
or 562.

The last piece of the puzzle is the _signals function:

_signals()

{
local i
COMPREPLY=($(compgen -A signal SIG${cur#-}))
for ((i=0; i < ${#COMPREPLY[@]}; i++)); do

COMPREPLY[i]=$sign${COMPREPLY[1]#SIG}

done

}

While we can get a list of signal names by using complete -A signal, the names are
unfortunately not in a form that is very usable and so we can’t use this to directly
generate the array of names. The names generated begin with the letters “SIG” while
the names needed by the kill command don’t. The _signal function should assign to
COMPREPLY an array of signal names, optionally preceded by a dash.

First we generate the list of signal names with compgen. Each name starts with the
letters “SIG”. In order to get complete to provide the correct subset if the user has
begun to type a name, we add “SIG” to the beginning of the value in cur. We also
take the opportunity to remove any preceding dash that the value has so it will
match.

We then loop on the array removing the letters “SIG” and adding a dash if needed
(the value of the variable sign) to each entry.

Both complete and compgen have many other options and actions; far more than we
can cover in a few simple exercises. If you are interested in taking programmable
completion further, we recommend looking in the bash manual and downloading
some of the many examples that are available on the Internet or in the bash archive
under bash-3.0\examples\complete.

As you can see, textual completion can get quite involved and creating the necessary
code can be time-consuming. Fortunately there are already completion libraries
available for bash. One of these is the bash Completion Project, which can be found
at http://freshmeat.net/projects/bashcompletion/.

312 | AppendixD: Programmable Completion

Symbols

& (ampersand)
&& (logical and operator), 112,118, 149
&> (output and error redirection), 163
bitwise and operator, 147
running commands in background, 18,

199

* (asterisk)
** (exponentiation operator), 147
environment variable, 86, 90, 290
extended pattern-matching operator, 99
multiplication operator, 147
pattern-matching operator, 96
special array index, 158
textual completion, vi, 44
wildcard, 11
word designator, 48

@ (at sign)
environment variable, 86, 90, 290
extended pattern-matching operator, 99
hostname completion, 34
special array index, 158

\ (backslash)
backslash-escaping, 22
continuation character, 23,179
escape character, echo, 169
escape character, prompt strings, 270
textual completion, vi, 44

{} (braces)
brace expansion wildcards, 13
command blocks in, 176
in shell variable syntax, 90

Index

[] (brackets)
[...] (condition test), 113, 266, 294-295
[[...]] (condition test), 113,270, 294-295
wildcard, 11
caret)
bitwise exclusive or operator, 148
event designator, 48
pipe character, 251,276
representing CTRL key, 202
vi command, 37
word designator, 48
: (colon)
:+ (string operator), 92,95
:- (string operator), 91
:= (string operator), 91, 94
:? (string operator), 91, 106
command, 288
string operator, 92
, (comma)
sequential evaluation operator, 148
vi command, 43
$ (dollar sign)
$((...)) (arithmetic expressions), 146
$((...)) (arithmetic test), 149
$$ (shell variable), 210
environment variable, 290
variable substitution, 34, 63, 182
vi command, 37, 38
word designator, 48
. (dot)
.. (parent directory), 10
command, 288
current directory, 10

"

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

313

. (dot) (continued) subtraction operator, 147

preceding filenames, 10, 62 vi command, 41
synonym to source command, 56 < (less than sign)
vi command, 41 << (bit-shift left operator), 147
" (double quotes) << (here-document), 163, 164-167
arithmetic expressions in, 146 <& (input redirection), 163
around shell variables, 63 <&- (input redirection), 163
around special characters, 22 <> (input/output redirection), 163
backslash preceding, 23 <= (less than or equal to operator), 148
command line processing of, 183 input redirection, 162
= (equal sign) less than operator, 148
== (equal to operator), 148 redirecting input, 16
string comparison operator, 114 string comparison operator, 114
textual completion, vi, 44 (0 (parentheses)
! (exclamation point) ((...)) (arithmetic test), 150, 266,270
!= (not equal to operator), 149 command substitution, 100
I= (string comparison operator), 114 grouping conditional operators, 118
conditional not operator, 112 in arithmetic expressions, 148
debugger command, 236 nested subshells, 218
environment variable, 290 % (percent sign)
event designators, 47 %? (job containing string), 200
extended pattern-matching operator, 99 %% (job most recently put in
logical not operator, 148 background), 200
negation operator, 118 %+ (job most recently put in
negation wildcard, 12 background), 200
process ID shell variable, 210 %- (job second-most recently put in
> (greater than sign) background), 200
>> (bit-shift right operator), 147 %% (pattern-matching operator), 96, 106
>= (greater than or equal to job numbers, 199
operator), 148 modulus operator, 147
>& (output redirection), 163, 167 pattern-matching operator, 96
>&- (output redirection), 163 printf format specifiers, 171, 173
>> (output redirection), 162 word designator, 48
>| (output redirection), 163, 164 + (plus sign)
greater than operator, 148 ++ (increment operator), 147
output redirection, 16, 162 addition operator, 147
string comparison operator, 114 extended pattern-matching operator, 99
(hash mark) printf flag, 172
(pattern-matching operator), 96 vi command, 41
array element length operator, 158 xtrace output, 223
comments, 93 ? (question mark)
environment variable, 87,290 debugger command, 236
length operator, 99 environment variable, 111,290
pattern-matching operator, 96, 106 extended pattern-matching operator, 99
prepend comment, vi, 45 vi command, 41
printf flag, 172 wildcard, 11
- (hyphen) ; (semicolon)
-- (decrement operator), 147 statement separator, 115
append word, vi, 45 vi command, 43
environment variable, 290 ’ (single quotes)
preceding options, 7 around special characters, 21
printf flag, 172 command line processing of, 183

314 | Index

enclosing RETURN, 23
in alias definition, 59
when to use, 147
/ (slash)
// (pattern-matching and replacement
operator), 96
division operator, 147
in restricted shell, 258
pattern-matching and replacement
operator, 96
vi command, 41
~ (tilde)
bitwise not operator, 148
home directory, 182
in pathnames, 9, 276
invert case, vi, 45
username completion, 34
| (vertical bar)
|| (logical or operator), 112, 118, 149
bitwise or operator, 147
extended pattern matching, 99
in case statement, 129
pipe, 16,162, 180
vi command, 44

Numbers

$0 positional parameter, 86

0 (zero) environment variable, 290
0 (zero) printf flag, 172

0 (zero) word designator, 48

$1 positional parameter, 86

$2 positional parameter, 86

$3 positional parameter, 86

A

A command, vi, 39

a command, vi, 39

-a (file attribute operator), 117

-a (logical operator), 118

absolute pathname (see full pathname)

album example, 92, 101

alias command, 58, 288

aliases, 57-60, 270
Bourne shell not supporting, 276
examples in archive for, 272
global (not possible), 258
order of precedence for, 84
processing on command line, 182
recursive, 182
wildcards in, 59

ampersand (&)
&& (logical and operator), 112, 118, 149
&> (output and error redirection), 163
bitwise and operator, 147
running commands in background, 18,
199
angle brackets (see greater than sign; less
than sign)
archive file for bash, 268
arguments, 6
for command-line options, 140
in for statement list, 122, 123
positional parameters for, 86—88
arithmetic conditionals, 149
arithmetic expressions, 146
associativity in, 147
evaluation of, 182
precedence in, 147
syntax for, 146
arithmetic for statement, 155, 159-161
arithmetic (integer) variables
assignment, 150-155
declaring, 145, 146
arithmetic operators, 121, 147
arrays, 157-161
assigning to themselves (bug), 239
assigning values to, 157
associative, Korn, 280
declaring, 158
declaring variables as, 145
deleting, 159
deleting elements of, 159
element length operator for, 158
one-dimensional, 270, 280
reading values into, 179
special indices for, 158
arrow keys, emacs, 29, 32
assignment of arithmetic variables, 150-155
associative arrays, Korn, 280
asterisk (*)
** (exponentiation operator), 147
environment variable, 86, 90, 290
extended pattern-matching operator, 99
multiplication operator, 147
pattern-matching operator, 96
special array index, 158
textual completion, vi, 44
wildcard, 11
word designator, 48
at sign (@)
environment variable, 86, 90, 290
extended pattern-matching operator, 99

Index | 315

at sign (@) (continued)

hostname completion, 34

special array index, 158
AT&T UWIN package, 284
auto_resume environment variable, 294
awk command, 101

B

B command, vi, 37, 38
b command, vi, 37, 38
background 1/0, 19
background jobs, 17-20
bringing to foreground, 199
job number for, 198
priority of, 20
process ID for, 210
saving standard output and error to one
file, 167, 188
sending foreground jobs to, 200
sending job to background, 201
starting, 18, 199
waiting until finished, 215
backslash (\)
backslash-escaping, 22
continuation character, 23,179
escape character, echo, 169
escape character, prompt strings, 270
textual completion, vi, 44
BACKSPACE command, 25
bash, 2
archive file for, 268
bugs in, reporting, 274
building, 269
configuring, 269-271
customizing environment for, 254-258
documentation for, 268, 269
environment, 55
examples in archive for, 268, 272
features of, x, 4
global customization of, 257
help for, 273
history of, 4
installing, 270
installing as login shell, 5,272
installing as standard shell, 251
interactive use of, 6
location of, determining, 6
newsgroups for, 274
obtaining, 5,267
online help for, 26
options, 60-62, 285-287
pathname of, 74

POSIX mode, 252,254
privileged mode, 260
programming featuers of, 81
restricted shell, 253,258,271
security, 258-260
shell variables, 62-64, 86
support for, 274
testing, 271
troubleshooting installation of, 271
unpacking archive file, 268
version of, determining, 74, 254
versions of, ix, 4
when not to use, 266
bash command, 5
- option, 253, 286
- option (old), 286
-c option, 253,285
-c option (old), 286
-D option, 253, 285
--debugger option, 229, 286
debugging

enabling, 253
--dump-po-strings option, 253, 286
--dump-strings option, 253, 286
~help option, 253, 264, 286
-i option, 253, 285
-i option (old), 286
--init-file option, 254, 286
-l option, 253, 285
--login option, 254, 286
-login option (old), 287
-n option, 222,224
-nobraceexpansion option (old), 287
--noediting option, 254, 286
-nolineediting option (old), 287
--noprofile option, 254, 286
-noprofile option (old), 286
--norc option, 254, 286
-norc option (old), 286
-0, +O options, 253, 285
-o option, 253, 285
options for, list of, 253, 285-287
--posix option, 252,254, 286
-posix option (old), 287
--quiet option, 254, 286
-quiet option (old), 287
-r option, 253,271, 286
-r option (old), 286
--rcfile option, 254, 286
-rcfile option (old), 286
-s option, 253, 285
-s option (old), 286

316 | Index

-T option, 228
-v option, 222,253,286
--verbose option, 254, 286
--version option, 254, 264, 286
-version option (old), 286
-x option, 222,223
bash Completion Project, 312
Bash Debugger Project, 242
BASH environment variable, 74, 78,291
BASH_ARGC environment variable, 230,
291
BASH_ARGYV environment variable, 230,
291
bashbug script, 274
BASH_COMMAND environment
variable, 291
bashdb debugger, 221, 230-234
break conditions, 241
breakpoints feature, 230, 236, 237
commands for, 235-236
driver script for, 231
execution tracing, 241
exercises for, 244
functions file for, 233
functions for, 234-242
limitations of, 241
preamble file for, 232
sample session of, 242-244
source code for, 245
stepping feature, 230, 236, 237
BASH_ENYV environment variable, 258, 260,
291
BASH_EXECUTION_STRING environment
variable, 291
.bash_history file, 28
BASH_LINENO environment variable, 230,
291
.bash_login file, 57
.bash_logout file, 57
.bash_profile file, 56,79
environment file and, 79
environment variables in, 76
restricted, 259
.bashrc file, 57,79
ignoring, 254
restricted, 259
BASH_REMATCH environment
variable, 291
BASH_SOURCE environment variable, 230,
291
BASH_SUBSHELL environment
variable, 291

BASH_VERSINFO environment
variable, 74,291
BASH_VERSION environment variable, ix,
74,291
bc command, debugger, 236, 241
bell-style variable, readline, 51
bg command, 201, 270, 288
biff command, 67
bind command, 52, 288
books
Learning the UNIX Operating System
(Peek, Todino, Strang), x
Practical UNIX and Internet Security
(Spafford, Garfinkel), 260
Bourne Again shell (see bash)
Bourne shell (see sh)
Bourne, Steven, 3
bp command, debugger, 236, 237
brace expansion, 13,182,270
braces ({})
brace expansion wildcards, 13
command blocks in, 176
in shell variable syntax, 90
brackets ([])
[...] (condition test), 113, 266, 294-295
[[...]] (condition test), 113,270, 294-295
wildcard, 11
break command, 288
break conditions, 241
break statement, 133
breakpoints, 230, 236, 237
BSD-derived systems, ps command on, 207
bugs, reporting, 274
builtin command, 84, 110, 185, 270, 288
Bourne shell not supporting, 277
-p option, 259
built-in functions
in bash archive, 304
loadable, 304-308

C

C command, vi, 40

C shell (see csh)

caret (™)
bitwise exclusive or operator, 148
event designator, 48
pipe character, 251, 276
representing CTRL key, 202
vi command, 37
word designator, 48

case sensitivity, 36

case statement, 128-131

Index | 317

cat command, 15
cb command, debugger, 236, 238
cc command, vi, 40
cd command, 9, 288
- option, 10, 104
Bourne shell support, 276
CDPATH variable and, 73
in restricted shell, 258
variables in, 62
cdable_vars shell option, 62, 74
CDPATH environment variable, 73,291
character-based user interfaces, 2
checkhash shell option, 62
chmod command, 82
chsh command, 6, 272
circumflex (see caret)
cmdhist shell option, 62
cmp command, 219
code examples (see examples)
colon (:)
:+ (string operator), 92, 95
:- (string operator), 91
:= (string operator), 91, 94
:? (string operator), 91, 106
command, 288
string operator, 92
COLUMNS environment variable, 76, 79
comma (,)
sequential evaluation operator, 148
vi command, 43
command aliases, 58
command blocks, 176,279
command command, 84, 126, 184, 288
- option, 185
Bourne shell not supporting, 277
-p option, 185
-V option, 185
-v option, 185
command history, 27, 28
appending to, 62
displaying, 289
emacs editing mode, 31
expansion commands, 47
fc command, 28, 45-47
multiple-line commands in, 62
size of, 65
time stamp for, 66
vi editing mode, 41-42
command line processing, 180-183
builtin command affecting, 185
command command affecting, 184
enable command affecting, 185

quoting affecting, 183
repeating, 186-196
command substitution, 99-103, 277
command-line editing, 5
command history with fc
command, 45-47
emacs editing mode, 29-36
history expansion, 47
readline editing interface, 49-53
selecting editing mode, 28
shell variables for, 64-67
vi editing mode, 36-45
which editing mode to use, 53
command-line options, 7
for bash, list of, 285-287
for bash, setting, 60—62
guidelines for, 263-265
handling with positional
parameters, 137-145
with arguments, 140
commands, 6
: (colon), 288
. (dot), 288
alias command, 58, 288
arguments for, 6
arguments for, in for statement list, 122,
123
arguments for, positional parameters
for, 86-88
awk command, 101
bash command, 57
bash command (see bash command)
bg command, 201, 270, 288
biff command, 67
bind command, 52, 288
break command, 288
builtin command, 84, 110, 185, 259, 270,
288
built-in, list of, 288-290
cat command, 15
cd command, 9, 10, 62, 73, 104, 258, 288
chmod command, 82
chsh command, 6,272
cmp command, 219
command command, 84, 126, 184, 288
compgen command, 288, 310-312
complete command, 288, 309-312
continue command, 288
continuing beyond a single line, 23, 179
countargs command, 90
cut command, 15, 100
date command, 147

318 | Index

dc command, 177

declare command, 84, 145, 158, 229, 288

determining source of, 85

diff command, 19, 109

dirs command, 155,270, 281, 288

disown command, 212, 288

du command, 151

echo command, 63, 95, 120, 127, 168,
222,288

editing on command line (see
command-line editing)

enable command, 84, 185, 259, 270, 289,
304

eval command, 186-196, 289

exec command, 62,258, 289

exit command, 6,211,289

exit status of, 108-113

export command, 75,76, 289

fc command, 28, 45-47, 270, 289

fg command, 199, 270, 289

file command, 251

find command, 22

for bashdb debugger, 235

getopts command, 140, 289

grep command, 15, 100

hash command, 72, 289

hashing, 72

help command, 26, 270, 276, 289

history command, 270, 289

in hash table, 62

jobs command, 18, 199, 204, 270, 289

kill command, 202, 203, 208, 289

let command, 150, 289

local command, 88,277,289

logout command, 6, 289

Is command, 10, 58, 125

make command, 269

more command, 16

multiple, I/O redirection and, 175

nice command, 20

nohup command, 212

number of, determining, 65

order of precedence for, 84

popd command, 152, 155, 270, 289

precedence of, overriding, 184

precedence of, POSIX, 279

printf command, 170-173

ps command, 204-207

pushd command, 152, 155, 270, 289

pwd command, 9,289

read command, 173-180, 289

readonly command, 146, 289

renaming (see aliases)

return command, 289

running in background, 17-20

sed command, 15

set command, 60

set command (see set command)

shell variables in, 63

shift command, 138-140, 289

shopt command, 61, 229, 297-298

sort command, 15,92, 238

source command, 56, 81

stty command, 24, 202

suspend command, 289

tee command, 168

test command, 113,289

time command, 270

times command, 290

tr command, 15

trap command, 207-214, 224-229, 290

true command, 208

type command, 72, 85,290

typeset command, 145, 290

ulimit command, 255-257, 277, 290

umask command, 255, 277, 290

unalias command, 60, 290

unset command, 63, 84, 159, 290

wait command, 215, 290

who command, 102
comment-begin variable, readline, 51
comments, 93

guidelines for, 261

in input files, handling, 177

prepending, vi, 45
COMP_CWORD environment variable, 291
compgen command, 288, 310-312
COMPGEN variable, 311
complete command, 288, 309-312
completion, textual

emacs editing mode, 33-35

programmable, 271, 309-312

vi editing mode, 44
completion-query-items variable,

readline, 51
COMP_LINE environment variable, 291
COMP_POINT environment variable, 291
COMPREPLY environment variable, 292
COMP_WORDBREAKS environment
variable, 292

rbash command, 271 COMP_WORDS environment variable, 292

Index | 319

concurrency control, 217
conditional construct, 108

case statement, 128-131

select statement, 131-134
conditionals, readline editing interface, 51
conditions, 108

arithmetic operators for, 149

exit status determining, 108-113

file attribute checking, 117-121

integer comparisons, 121

logical operators for, 112

string comparisons, 113-117

testing, 113-122
configure script, 269

--disable option, 270

--enable option, 270
constants, naming, 263
contact information, xiv
continuation character (\), 23, 179
continue command, 288
continuing lines, 23
control keys, 24

conflicting with editing mode

commands, 28

emacs commands, 29, 31, 34, 35

vi commands, 36, 45
control mode, vi editing mode, 36, 37
control-key signals, 202
conventions used in this book, xiii
convert-meta variable, readline, 51
copy file example, 135
COPYING file, bash archive, 268
Copyleft for bash, 268
copylefted software, 4
coroutines, 214-217, 280
countargs command, 90
CPU-intensive processes, 215
csh (C shell), 3

fc command, 28

features from, included in bash, x
CTRL-? command, 24
CTRL-\ command, 24, 25, 202
CTRL-[command, emacs, 35
CTRL keys (see control keys)
CTRL-A command, emacs, 31
CTRL-B command, emacs, 29
CTRL-C command, 24, 25, 201, 202, 208
CTRL-D command, 6, 24, 25, 61, 133
CTRL-D command, emacs, 29
CTRL-E command, emacs, 31
CTRL-F command, emacs, 29
CTRL-H command, 25

CTRL-J command, emacs, 35, 36
CTRL-K command, emacs, 31
CTRL-L command, emacs, 35
CTRL-L command, vi, 45
CTRL-M command, 24
CTRL-M command, emacs, 35, 36
CTRL-N command, emacs, 32
CTRL-O command, emacs, 35
CTRL-P command, emacs, 32
CTRL-Q command, 24, 25
CTRL-R command, emacs, 32
CTRL-S command, 24, 25
CTRL-T command, emacs, 35
CTRL-U command, 24
CTRL-U command, emacs, 35
CTRL-V command, emacs, 35, 36
CTRL-V command, vi, 36
CTRL-W command, emacs, 35
CTRL-W command, vi, 36
CTRL-X ! command, emacs, 35
CTRL-X $ command, emacs, 34
CTRL-X / command, emacs, 34
CTRL-X @ command, emacs, 34
CTRL-Y command, 201
CTRL-Y command, emacs, 30, 31
CTRL-Z command, 24, 201, 202
current directory (see working directory)
cut command, 15,100, 101
cygwin environment (Cygnus
Consulting), 282

D

D command, vi, 40
d$ command, vi, 40
-d (file attribute operator), 117
d0 command, vi, 40
data filtering utilities, 15
date command, 147
dB command, vi, 40
db command, vi, 40
dc command, 177
dd command, vi, 40
DEBUG signal, 225, 228,238
debugging, 221
bashdb debugger, 221, 230-234
commands for, 235-236
functions for, 234-242
sample session of, 242-244
source code for, 245
bugs in bash, reporting, 274
echo command, 222
environment variables for, 230

320 | Index

fake signals, 224-229
set command, 222-224
declare command, 145, 288
-a option, 145, 158
-F option, 145,229
-f option, 84, 145
-1 option, 145, 146
-r option, 145, 146, 158
DEL command, 24, 25
DEL command, emacs, 29, 30
DEL command, vi, 36
dh command, vi, 40
diff command, 19, 109
directories, 7
home, 74
navigating, 9
tilde (~) notation, 9
working, 8, 74
directory listing example, 98, 123, 125, 135
directory name, alias for, 59
dirs command, 155,270, 281, 288
DIR_STACK environment variable, 105,
114, 152,292
disable-completion variable, readline, 51
disk space usage example, 151-152
disown command, 212, 288
DJGPP suite, GNU tools for MS-DOS, 283
dl command, vi, 40
doc directory, bash archive, 268,269
documentation directory, bash, 269
dollar sign ($)
$((...)) (arithmetic expressions), 146
$((...)) (arithmetic test), 149
$$ (shell variable), 210
environment variable, 290
variable substitution, 34, 63, 182
vi command, 37, 38
word designator, 48
dot (.)
.. (parent directory), 10
command, 288
current directory, 10
preceding filenames, 10, 62
synonym to source command, 56
vi command, 41
dot (point) in emacs, 29
dotglob shell option, 62
double quotes (")
arithmetic expressions in, 146
around shell variables, 63
around special characters, 22
backslash preceding, 23
command line processing of, 183

command substitution, 100
when to use, 100
ds command, debugger, 236, 239
du command, 151
dW command, vi, 40
dw command, vi, 40

E

E command, vi, 37, 38
e command, vi, 37,38
-e (file attribute operator), 117
echo command, 63, 168,222, 288
Bourne shell support, 277
-E option, 169
-e option, 95,127, 169
escape sequences for, 169
Korn not supporting, 280
-n option, 95, 120, 169
ed text editor, 164
editing modes (see emacs editing mode; vi
editing mode)
editing (see command-line editing)
editing-mode variable, readline, 51
EDITOR environment variable, 46, 75, 76,
78
electronic mail example, 210
elements of arrays, 157
elif clause, if statement, 108
else clause, if statement, 108
$else directive, readline, 51
emacs editing mode, 29-36
commands conflicting with terminal
interface control keys, 28
commands for, list of, 300
history commands, 31
line commands, 31
list of most-used commands, 54
pointin, 29
selecting, 28, 61
textual completion, 33-35
when to use, 53
word commands, 30
emacs shell option, 61
enable command, 84, 185, 289, 304
-a option, 186
Bourne shell not supporting, 277
-d option, 185, 259
-f option, 185,259
Korn not supporting, 281
-n option, 186,270
-p option, 186
-s option, 186

Index | 321

enable-keypad variable, readline, 51
$endif directive, readline, 51

ENV environment variable, 258, 280, 281
environment, 55

customizing, 79, 254-258

files containing settings for, 56
shell variables, 62-64
subprocesses awareness of, 75-79

environment file, 56,79, 276
environment variables, 75-79, 86

* (asterisk), 86,90, 290

@ (at sign), 86, 90, 290

$ (dollar sign), 290

! (exclamation point), 290

(hash mark), 87, 290

- (hyphen), 290

? (question mark), 111,290

0 (zero), 290

auto_resume, 294

BASH, 74,78, 291
BASH_ARGC, 230, 291
BASH_ARGV, 230, 291
BASH_COMMAND, 291
BASH_ENYV, 258, 260, 291
BASH_EXECUTION_STRING, 291
BASH_LINENO, 230, 291
BASH_REMATCH, 291
BASH_SOURCE, 230, 291
BASH_SUBSHELL, 291
BASH_VERSINFO, 74,291
BASH_VERSION, ix, 74, 291
Bourne shell not supporting, list of, 276
built-in, list of, 290-294
CDPATH, 73,291

COLUMNS, 76,79
COMP_CWORD, 291
COMP_LINE, 291
COMP_POINT, 291
COMPREPLY, 292
COMP_WORDBREAKS, 292
COMP_WORDS, 292

declaring shell variables as, 145, 146
defining for subprocess only, 76
determining whether shell variable is, 76
DIR_STACK, 105, 114, 152, 292
EDITOR, 46,75,76,78

ENV, 258, 280, 281

EUID, 292

exported, 75

FCEDIT, 46, 65,292
FIGNORE, 292

FUNCNAME, 292

GLOBIGNORE, 292
GROUPS, 292

histchars, 294

HISTCMD, 64, 65, 292
HISTCONTROL, 64, 65,292
HISTFILE, 28, 64, 292
HISTFILESIZE, 64, 65,292
HISTIGNORE, 64, 65, 292
HISTSIZE, 64, 65, 292
HISTTIMEFORMAT, 65, 66, 292
HOME, 74,75,292
HOSTFILE, 292
HOSTNAME, 293
HOSTTYPE, 293

IFS, 86, 90, 123, 292
IGNOREEOF, 293

in .bash_profile file, 76

in subshells, 83
INPUTRC, 50,293
LANG, 293

LC_ALL, 293
LC_COLLATE, 293
LC_CTYPE, 293
LC_MESSAGES, 293
LC_NUMERIC, 293
LINENO, 223,233,293
LINES, 76,79
MACHTYPE, 293

MAIL, 68, 75,293
MAILCHECK, 68, 293
MAILPATH, 68,293
OLDPWD, 74, 293
OPTARG, 142,293
OPTERR, 293

OPTIND, 142,293
OSTYPE, 293

PATH, 71,75, 258,293
PIPESTATUS, 293
POSIXLY_CORRECT, 293
PPID, 294
PROMPT_COMMAND, 293
PS1, 69, 257,270,293
PS2, 69,270,293

PS3, 69,270,293

PS4, 69,270, 281, 294
PWD, 74,75,294
RANDOM, 226,294
REPLY, 173,233,294
scripts relying on, 265
SECOND, 74

SECONDS, 294

SHELL, 5,76, 78, 258, 294

322

| Index

SHELLOPTS, 294

SHLVL, 294

substitution, emacs editing mode, 34

TERM, 75,76,77,174

TIMEFORMAT, 294

TMOUT, 257,294

UID, 294

VISUAL, 75
-eq (equal to test operator), 149
-eq (integer comparison operator), 121
equal sign (=)

== (equal to operator), 148

string comparison operator, 114

textual completion, vi, 44
ERR signal, 225, 226
error, standard, 14, 167, 178
ESC-! command, emacs, 35
ESC-$ command, emacs, 34
ESC-. command, emacs, 35, 36
ESC-/ command, emacs, 34
ESC-< command, emacs, 31
ESC-> command, emacs, 31
ESC-? command, emacs, 34
ESC-@ command, emacs, 34
ESC-_ command, emacs, 35, 36
ESC-~ command, emacs, 34
ESC command, vi, 36
ESC-B command, emacs, 30
ESC-C command, emacs, 35
ESC-CTRL-H command, emacs, 30
ESC-D command, emacs, 30
ESC-DEL command, emacs, 30
ESC-F command, emacs, 30
ESC-L command, emacs, 35, 36
ESC-TAB command, emacs, 35
ESC-U command, emacs, 35
EUID environment variable, 292
eval command, 186-196, 289
event designators, 47
examples, xi

in bash archive, 268, 272

(see album example)

(see copy file example)

(see directory listing example)

(see disk space usage example)

(see electronic mail example)

(see graphics utility example)

(see killalljobs example)

(see Korn cd example)

(see Is by dates example)

(see Is example)

(see mail example)

(see mail header lines, deleting, example)

(see make utility example)
(see multiple copies example)
(see popd function example)
(see printer file filter example)

(see pushd directory stack example)

(see pushd function example)

(see selection sort example)

(see standard error and output file
example)

examples directory, bash archive, 268

exclamation point (1)
!= (not equal to operator), 149

!= (string comparison operator), 114

conditional not operator, 112
debugger command, 236
environment variable, 290
event designators, 47

extended pattern-matching operator, 99

logical not operator, 148
negation operator, 118
negation wildcard, 12
process ID shell variable, 210
exec command, 62,258, 289
exec statement, 232
execfail shell variable, 62
executable files, 7
execute permission, for scripts, 82
execution tracing, 241
exit command, 6,211, 289
EXIT signal, 225
exit statement, 115
exit status of commands, 108-111
combining, 112-113
reversing, 112
expand-tilde variable, readline, 52
export command, 75, 76, 289
extglob shell option, 99

F

F command, vi, 43
f command, vi, 43
-f (file attribute operator), 117
fake signals, 224-229, 277
fc command, 28, 45-47,270, 289
-e option, 46
-l option, 45
-m option, 46
-n option, 46
-s option, 47
-v option, 46

FCEDIT environment variable, 46, 65,292

Index

323

fg command, 199, 270, 289
FIGNORE environment variable, 292
file attribute checking, 117-121
file attribute operators, 117
file command, 251
file descriptors, 163, 167
filename completion, emacs editing
mode, 34
filenames, 7
special handling of, 270
wildcards in, 10-13
files
default permissions for, 255
limits on, 255-257
overwriting, 164
overwriting with output redirection, not
allowing, 61
permissions for, 255
reading lines from, 174
redirecting output to, 14
specifiying on command line, 265
temporary, 211
types of, 7
(see also I/O)
filtering utilities, 15
find command, 22
flow control
break statement, 133
case statement, 128-131
exit statement, 115
for statement, 122-128
if statement, 108
select statement, 131-134
select statements, 131
until statement, 134-136
while statement, 134-136
(see also conditions)
flow control statements, 107
folders, 10
fonts used in this book, xiii
for statement, 122-128
arithmetic, 155, 159-161
configuring, 270
foreground jobs, 18
bringing background jobs to, 199
sending foreground jobs to
background, 200
formatted output (see printf command)
Fox, Brian, 4
FSF (Free Software Foundation), 4, 267
full pathname, 8

FUNCNAME environment variable, 292
functions, 83—-85
Bourne shell not supporting, 277
compared to scripts, 84
declaring variables as function
names, 145
defined, listing, 84
defining, 84
deleting, 84
displaying list of, 145
examples in archive for, 273
exit status of, specifying, 111
global, 258
global variables of, 87
Korn support, 280
loadable built-in functions, 304-308
local variables in, 88
local variables of, 87
naming, 265
order of precedence for, 84
popd function example, 103-106
positional parameters in, 87
pushd function example, 103-106
readline editing interface, 50
return values of, 111
traps and, 209

G

g command, debugger, 236
G command, vi, 41, 42
-G (file attribute operator), 117
Garfinkel, Simson (Practical UNIX and
Internet Security), 260
-ge (greater than or equal to test
operator), 149
-ge (integer comparison operator), 121
getopt command, Bourne shell, 277
getopts command, 140, 289
global customization, 257
global variables, 87
globbing, 12
disabling, 61
extended operators for, 99
ignoring files for, 292
GLOBIGNORE environment variable, 292
GNU Copyleft for bash, 268
GNU project, 4
GNU tools for MS-DOS, 283
graphical user interface (GUI), 2
graphics utility example, 97, 142-145, 189

324 | Index

greater than sign (>)

>> (bit-shift right operator), 147

>= (greater than or equal to

operator), 148

>& (output redirection), 163, 167

>&- (output redirection), 163

>> (output redirection), 162

>| (output redirection), 163, 164

greater than operator, 148

output redirection, 16, 162

string comparison operator, 114
grep command, 15, 100
GROUPS environment variable, 292
-gt (greater than test operator), 149
-gt (integer comparison operator), 121
guest accounts, restricted shell for, 258
GUI (graphical user interface), 2
gunzip utility, 268

H

h command, debugger, 236
h command, vi, 37, 38, 41
hangup (HUP) signal, 212
hard limits, 257
hash command, 72, 289
hash mark (#)
(pattern-matching operator), 96
array element length operator, 158
comments, 93
environment variable, 87,290
length operator, 99
pattern matching operator, 96
pattern-matching operator, 106
prepend comment, 45
printf flag, 172
hash tables, 62, 72
hashall shell option, 73
head utility, 93
header files, for built-in functions, 306
help
for bash, 273
for built-in functions, 306
help command, 26, 270, 276, 289
here-documents, 163, 164-167
hidden files, 10
histappend shell option, 62
histchars environment variable, 294
HISTCMD environment variable, 64, 65,
292
HISTCONTROL environment variable, 64,
65,292

HISTFILE environment variable, 28, 64,292
HISTFILESIZE environment variable, 64, 65,
292
HISTIGNORE environment variable, 64, 63,
292
history command, 270, 289
history of commands, 27, 28
appending to, 62
displaying, 289
emacs editing mode, 31
expansion commands, 47
fc command, 28, 45-47
multiple-line commands in, 62
size of, 65
time stamp for, 66
vi editing mode, 41-42
HISTSIZE environment variable, 64, 65, 292
HISTTIMEFORMAT environment
variable, 65, 66,292
home directory, 8,9, 74
HOME environment variable, 74, 75,292
horizontal-scroll-mode variable, readline, 52
HOSTFILE environment variable, 292
hostname completion, emacs editing
mode, 34
HOSTNAME environment variable, 293
HOSTTYPE environment variable, 293
HUP (hangup) signal, 212
hyphen (-)
-- (decrement operator), 147
append word, vi, 45
environment variable, 290
preceding options, 7
printf flag, 172
subtraction operator, 147
vi command, 41

I command, vi, 39

i command, vi, 39

IEEE POSIX 1003.2 shell, 275, 278-280
$if directive, readline, 51

if statement, 108

IFS environment variable, 86, 90, 123,292
ignoredups option, 65

IGNOREEQF environment variable, 293
ignoreeof shell option, 61

indices of array elements, 157

indirect expansion, 194

infinite loops, guarding against, 257
infinite recursion, 110

Index | 325

input

from user, reading, 178

standard, 14, 167, 253

(see also I/O)
input files, as command-line arguments, 265
input mode, vi editing mode, 36, 39
input redirection (see I/O redirection)
input-meta variable, readline, 52
INPUTRC environment variable, 50,293
.inputrc file, 28, 50-52
INT (interrupt) signal, 202, 208
integer comparisons, 121
integer variables (see arithmetic variables)
interactive processes, 215
interactive use of bash, 6
internal field separator (IFS), 86, 90
interprocess communication (IPC), 202
interrupt (INT) signal, 202
interrupt key, 25
/0, 14-17

background 1/0, 19

for strings, 168-180
/0O redirection, 14, 16, 162-168

Bourne shell support, 277

exec command with, 232

files overwritten with, not allowing, 61

in restricted shell, 258

list of redirectors, 298

multiple commands and, 175

pdksh support, 281
I/O-intensive processes, 215
IPC (interprocess communication), 202
iteration, 122

J

j command, vi, 41
job control, 5, 17-20, 198-201
Bourne shell support, 277
bringing background job to
foreground, 199
configuring, 270
foreground jobs, 18
listing running jobs, 199
priority of jobs, 20
resuming suspended jobs, 201
sending foreground jobs to
background, 200
suspending jobs, 200
job number, 198
jobs command, 18, 199, 270, 289
Bourne shell not supporting, 276
-1 option, 199

-n option, 199

-p option, 199, 204

-r option, 199

-s option, 199

-x option, 199
Joy, Bill, 3

K

k command, vi, 41
key bindings, readline, 50, 52
keymap variable, readline, 52
keywords, processing on command line, 180
kill command, 202, 203, 208, 289
KILL signal, 202
killalljobs example, 204
Korn cd example, 130
Korn shell (see ksh)
ksh (Korn shell), ix, 3
compared to bash, 280
public domain version of (pdksh), 281

L

| command, vi, 37, 41
LANG environment variable, 293
LC_ALL environment variable, 293
LC_COLLATE environment variable, 293
LC_CTYPE environment variable, 293
LC_MESSAGES environment variable, 293
LC_NUMERIC environment variable, 293
-le (integer comparison operator), 121
-le (less than or equal to test operator), 149
Learning the UNIX Operating System (Peek,
Todino, Strang), x
length operator, 99
less than sign (<)
<< (bit-shift left operator), 147
<< (here-document), 163, 164-167
<& (input redirection), 163
<&- (input redirection), 163
<> (input/output redirection), 163
<= (less than or equal to operator), 148
input redirection>, 162
less than operator, 148
redirecting input, 16
string comparison operator, 114
let command, 150, 289
line continuation character, 23, 179
LINENO environment variable, 223, 233,
293
LINES environment variable, 76, 79
lists, in for statement, 122

326 | Index

lithist shell option, 62
loadable built-in functions, 304-308
local command, 88, 277, 289
local statement, 88
local variables, 87, 88, 146
logging in, files read during, 56
logging out
CTRL-D for, disabling, 61
files executed during, 57
logical operators, 112,118, 148
login directory, 8
(see also home directory)
login shell
bash acting as, 254
changing, 272
installing bash as, 5,272
logout command, 6, 289
loop variable, 122
looping construct
arithmetic for statement, 155, 159-161
for statement, 122-128
until statement, 134-136
while statement, 134-136
Is by dates example, 102
Is command, 10
-a option, 10
-F option, 58
-l option, 10
-R option, 125
Is example, 119
-It (integer comparison operator), 121
-It (less than test operator), 149

M

MACHTYPE environment variable, 293
macros, readline editing interface, 50
mail

notification if already read, 62

shell variables for, 67—69
MAIL environment variable, 68, 75, 293
mail example, 102
mail header lines, deleting,

example, 165-167

MAIL shell variable, 68

MAILCHECK environment variable, 68, 293

MAILPATH environment variable, 68,293
mailwarn shell option, 62

make command, 269

make install script, 270

make script, 269

make tests command, 271

make utility example, 188

MANIFEST file, bash archive, 268

mark-directories variable, readline, 52

mark-modified-lines variable, readline, 52

memory, size limitations, 255

menus, select statement for, 131

metacharacters, processing on command
line, 180

meta-flag variable, readline, 52

MKS Toolkit (Mortice Kern Systems), 283

more command, 16

MS-DOS, GNU tools for, 283

multibyte character support, 270

multiple copies example, 216

multitasking, user-controlled, 197

N

N command, vi, 41
n command, vi, 41, 42
-N (file attribute operator), 117
-n (string comparison operator), 114
named pipes, 219
navigating directories, 9
ndu (disk space usage) example, 151-152
-ne (integer comparison operator), 121
-ne (not equal to test operator), 149
negating wildcards, 12
nested subshells, 218
NetPBM utility package, 116, 143
pnmcat utility, 195
pnmmargin utility, 143
pnmnlfilt utility, 191
pnmscale utility, 143
pnmtext utility, 195
NEWS file, bash archive, 268
newsgroups for bash, 274
nice command, 20
noclobber shell option, 61
noglob shell option, 61
nohup command, 212
nounset shell option, 61
nroff test formatter, 269
-nt (file attribute operator), 118
numbered parameter names (see positional
parameters)

0

O command, vi, 37

-O (file attribute operator), 117

-0 (logical operator), 118

OLDPWD environment variable, 74, 293
one-dimensional arrays, 280

Index | 327

online help, 26
operators
arithmetic operators, 147
assignment, 150
for conditions
arithmetic operators, 121, 149
file attribute operators, 117
string comparison operators, 114
logical operators, 148
relational operators, 148
string operators, 91-99
OPTARG environment variable, 142,293
OPTERR environment variable, 293
OPTIND environment variable, 142,293
options (see command-line options)
order of precedence
for aliases, 84
for commands, 84
for functions, 84
for scripts, 84
in arithmetic expressions, 147
overriding, 184
POSIX, 279
O’Reilly contact information, xiv
orphan processes, 207
OSTYPE environment variable, 293
-ot (file attribute operator), 118
output
standard, 14, 167, 188
(see also I/0O)
output files, as command-line options, 265
output redirection (see I/O redirection)
output-meta variable, readline, 52

P

P command, vi, 41
p command, vi, 41
parallelization, 216-217
parameters, positional (see positional
parameters)
parameters (see arguments)
parent directory, 10
parentheses (())
((...)) (arithmetic test), 150, 266, 270
command substitution, 100
grouping conditional operators, 118
in arithmetic expressions, 148
nested subshells, 218
PATH environment variable, 71, 75, 258,
293

pathname expansion, 13

pathnames, 8

expansion of, 182
tilde (~) notation, 9
wildcards for, 10
pattern matching operators, 95-98
Bourne shell support, 277
extended, 99
pbmtext utility, 195
PC platforms, shells for, 282
pdksh (Public Domain Korn shell), 281
Peek, Jerry (Learning the UNIX Operating
System), x
percent sign (%)
%? (job containing string), 200
%% (job most recently put in
background), 200
%+ (job most recently put in
background), 200
%- (job second-most recently put in
background), 200
%% (pattern-matching operator), 96, 106
job numbers, 199
modulus operator, 147
pattern-matching operator, 96
printf format specifiers, 171, 173
word designator, 48
permissions, 255
default, 255
for scripts, 82
PID (process ID), 198, 205
determining, 204
shell variable containing, 210
pipe character (), 251, 276
pipe character (), 162, 180
pipelines, 15,16
as coroutines, 214
in command line processing, 180
named pipes, 219
system calls invoked by, 214
PIPESTATUS environment variable, 293
plus sign (+)
++ (increment operatro), 147
addition operator, 147
extended pattern-matching operator, 99
printf flag, 172
vi command, 41
xtrace output, 223
PNM (Portable Anymap) format, 116, 143
pnmcat utility, 195
pnmmargin utility, NetPBM, 143
pnmnlfilt utility, NetPBM, 191
pnmscale utility, NetPBM, 143

328 | Index

point, emacs editing mode, 29
popd command, 270, 289
Bourne shell not supporting, 277
Korn not supporting, 281
-N option, 155
+n option, 152
popd function example, 103-106, 152-155
Portable Anymap (PNM) format, 116, 143
positional parameters, 86—88
assignments using, 138
command-line options and, 137-145
in functions, 87
POSIX, bash using, 252,254
POSIX regular expressions, 270
POSIX shell, 186,275, 278-280
POSIXLY_CORRECT environment
variable, 293
pound sign (see hash mark)
PPID environment variable, 294
Practical UNIX and Internet Security
(Spafford, Garfinkel), 260
precedence (see order of precedence)
print command, Korn, 280
printer file filter example, 97
printf command, 170-173
Bourne shell support, 277
flags for, 172
format specifiers for, 171, 173
priority of jobs, 20
privileged mode, 260
procedures (see functions)
process ID (PID), 198
determining, 204
shell variable containing, 210
process substitution, 219, 270
processes
listing information about, 204-207
parallelization of, 216-217
simultaneous (coroutines), 214-217
system resources used by, 215
zombies or orphans, 207
(see also signals)
profile, 56
customizing, 254-258
environment file and, 79
environment variables in, 76
ignoring, 254
restricted, 259
.profile file, 57
programmable completion, 271, 309-312
programming language, choosing, 266
programming, shell (see scripts)

programs (see executable files)
prompt string customizations, 287
PROMPT_COMMAND environment
variable, 293
prompting shell variables, 69-71
ps command, 204-207
-a option, 205
-ax option, 207
-e option, 207
PS1 environment variable, 69, 257,270, 293
PS2 environment variable, 69, 270, 293
PS3 environment variable, 69, 270, 293
PS4 environment variable, 69,223,270, 281,
294
pushd command, 270, 289
Bourne shell not supporting, 277
Korn not supporting, 281
-N option, 155
+n option, 152
pushd directory stack example, 132
pushd function example, 103-106, 109,
152-155
pwd command, 9, 289
PWD environment variable, 74, 75, 294

Q

q command, debugger, 236

question mark (?)
debugger command, 236
environment variable, 111, 290
extended pattern-matching operator, 99
vi command, 41
wildcard, 11

QUIT signal, 202

quoting
$@ and $* strings, 90
* (asterisk) environment variable, 90
@ (at sign) environment variable, 90
alias definition, 59
arithmetic expressions, 146
command substitution, 100
command-line processing and, 183
guidelines for, 146
in assignments, 150
RETURN key, 23
shell variables and, 63
special characters, 21

R

R command, vi, 39
-r (file attribute operator), 117

Index | 329

Ramey, Chet, 4
RANDOM environment variable, 226, 294
range wildcard notation, 11
rbash command, 271
read command, 173-180, 289
-a option, 179
Bourne shell support, 277
continuation character for, 179
-e option, 179
in while loop, 175
-p option, 179
-r option, 179
reading lines from files, 174
reading user input, 178
-s option, 180
-t option, 180
readline editing interface, 49-53
conditionals, 51
editing and history capabilities, 271
functions, 50
key bindings, 52
macros, 50
programmable completion and, 271
startup file, 50-52
variables, 51
readline variable, 28
README file, bash archive, 268, 269
readonly command, 146, 289
read-only variables, declaring, 145, 146
recursion, 125
recursion, infinite, 110
recursive aliases, 59, 182
regular files, 7
relational operators, 148, 149
relative pathname, 8
REPLY environment variable, 173, 233, 294
reserved words, list of, 288-290
resources (see books)
restricted shell, 253,258, 271
return command, 289
RETURN key, 36
CTRL-M equivalent for, 24
quoting, 23
RETURN signal, 225,228
return statement, 111,277
return values of functions, 111
Reverse Polish Notation (RPN), 177, 194
root, 7
RPN (Reverse Polish Notation), 177, 194

s command, debugger, 236, 237
-s (file attribute operator), 117
scripts, 81-83
comments in, 93,261
examples in archive for, 273
execute permission for, 82
functions in, 83-85
good practices for, 261-266
options for, guidelines, 263-265
order of precedence for, 84
potential problems with, 265
running, 81
running as background job, 82
running in subshells, 82
when not to use bash for, 266
whitespace in, 265
SECOND environment variable, 74
SECONDS environment variable, 294
security, 258-260
PATH variable and, 72
privileged mode, 260
restricted shell, 258
suid bit and, 259
system break-in scenario, 259
Trojan horses, 260
sed command, 15
select statement, 131-134, 271
Bourne shell not supporting, 277
POSIX support, 279
selection sort example, 159-161
semicolon (;), 115
statement separator, 115
vi command, 43
set command, 289
Bourne shell support, 276
debugging options for, 222-224
displaying settings of, 61
emacs option, 28, 61
functrace option, 228, 229
ignoreeof option, 61
-k option, 76
noclobber option, 61, 164
noexec option, 222,224
noglob option, 61
nounset option, 61
-0 and +o options, 60
options for, list of, 295
options for, setting on bash command
line, 253,285
pdksh support, 281

330 | Index

posix option, 252
privileged option, 260
-r option, 259
verbose option, 222
vi option, 28, 61
xtrace option, 222,223
set user ID (suid) bit, 259
set wildcard construct, 11
sh (Bourne shell), 3
compared to bash, 276
compatibility with bash, 251
shared object compilation, 307

SHELL environment variable, 5,76, 78, 258,

294

shell execution directive, 265

shell programming (see scripts)

shell scripts (see scripts)

shell variables, 62-64, 86
arithmetic, 150-155
attributes of, 145-146
braces syntax for, 90
built-in, 64-74
built-in, list of, 290-294
checking value of, 63
command substitution in, 99-103
containing process ID, 210
converting to environment variables, 75
declaring as arrays, 145
declaring as function names, 145
declaring as integers, 145, 146
defining, 62
deleting, 63
displaying list of, with values, 145
exporting to environment, 145, 146
for command-line editing, 64-67
for mail, 67—-69
for prompting, 69-71
in arithmetic expressions, 146
naming, 263, 265
not supported by Bourne shell, 276
positional parameters, 86—88
quoting, 63
reading values into, 173-180
read-only, 145, 146
string operators for, 91-99
using in commands, 63

value of, as name of another variable, 194

SHELLOPTS environment variable, 294
shells, ix, 1,2
Bourne (sh), 3, 251,276
C shell (csh), x, 3
determining which shell is in use, 5
history of, 3

[EEE POSIX 1003.2, 275, 278-280
Korn (ksh), ix, 3, 280
login shell, 5,254,272
on PC platforms, 282
Public Domain Korn (pdksh), 281
restricted, 253,258,271
standard shell, ix, 251
subshells, 217-219
Tenex C (tcsh), ix
zsh, 282
(see also bash)
shift command, 138-140, 289
SHLVL environment variable, 294
shopt command, 61
Bourne shell support, 276
extdebug option, 229
options for, list of, 297-298
options on bash command line for, 253
show-all-if-ambiguous variable, readline, 52
signals, 201-207
control-key signals, 202
fake, 224-229
ignoring, 212
kill command, 203
listing, 202
POSIX support, 279
trapping, 207-214
single quotes ()
around special characters, 21
command line processing of, 183
enclosing RETURN, 23
in alias definition, 59
when to use, 100, 147
slash (/)
// (pattern-matching and replacement
operator), 96
division operator, 147
in restricted shell, 258
pattern-matching and replacement
operator, 96
vi command, 41
soft limits, 257
sort command, 15,238
-n option, 92
-r option, 92
source command, 56, 81
Spafford, Gene (Practical UNIX and Internet
Security), 260
special characters, 20-25
backslash-escaping, 22
control keys, 24
quoting, 21
Stallman, Richard, 4

Index | 331

standard error, 14
file descriptor for, 167
prompts sent to, 178
saving to a file, 167
standard error and output file example, 167,
188
standard input, 14
file descriptor for, 167
reading commands from, 253
standard output, 14
file descriptor for, 167
saving to a file, 167, 188
standard shell, ix, 251
statement separator, 115
status (see exit status of commands)
stepping, in debugger, 230, 236, 237
Strang, John (Learning the UNIX Operating
System), x
string comparisons, 113-117
string /O, 168-180
string operators, 91-99
comparison, 114
extended pattern matching operators, 99
length operator, 99
pattern matching operators, 95-98
substitution operators, 91-95
stty command, 24, 202
subprocesses
environment settings known to, 75-79
(see also background jobs)
subroutines (see functions)
subshells, 217-219
environment variables in, 83
inheritance of, 218
nested, 218
scripts running in, 82
substitution operators, 91-95
substring expansion, 92
suid (set user ID) bit, 259
suspend command, 289
switch statement, 128
system administration, 251
bash command options for, 253
configuring and building bash, 269-271
customizing environment, 254-258
global customization, 257
installing bash as login shell, 272
installing bash as standard shell, 251
obtaining bash, 267
switching bash to POSIX mode, 252
unpacking bash archive, 268
system calls, pipelines invoking, 214
System V, ps command, 206

T

T command, vi, 43
t command, vi, 43
TAB command, emacs, 33
tar utility, 268
tcsh (Tenex C shell), ix
tee command, 168
temporary files, 211
Tenex C shell (see tcsh)
TERM environment variable, 75, 76,77, 174
TERM (terminate) signal, 203
terminal stop (TSTP) signal, 202
terminate (TERM) signal, 203
terminfo database, 77
test command, 113,289
test operators, list of, 294-295
text files (see regular files)
textual completion, 309-312
emacs editing mode, 33-35
programmable, 271
vi editing mode, 44
thrashing, 216
tilde (~)
bitwise not operator, 148
home directory, 182
in pathnames, 9, 276
invert case, vi, 45
username completion, 34
time command, 270
time stamp for command history, 66
TIMEFORMAT environment variable, 294
times command, 290
TMOUT environment variable, 257,294
Todino, Grace (Learning the UNIX
Operating System), x
tokens, processing on command line, 180
tr command, 15
tracing, execution, 241
trap command, 207-214, 290
- argument, 213
debugging with, 225
fake signals and, 224-229
ignoring signals using, 212
with exit command, 211
traps
fake signals for, 224
functions and, 209
resetting, 213
tree, 7
troff format, 269
Trojan horses, protecting against, 260
true command, 208

332 | Index

TSTP (terminal stop) signal, 202
tty built-in, 304
type command, 72, 85, 290
-a option, 85
Bourne shell not supporting, 277
-f option, 85
Korn not supporting, 280
-P option, 85
-p option, 85
-t option, 85
typed variables, 145-146
typeset command, 145, 290

U

u command, vi, 40

UID environment variable, 294

ulimit command, 255-257, 277, 290

umask command, 255,277, 290

unalias command, 60, 290

UNIX shells (see shells)

unset command, 63, 84, 159, 290

until statement, 134-136

user input, reading, 178

user interfaces, 2

user-controlled multitasking, 197

username completion, emacs editing
mode, 34

UWIN package (AT&T), 284

v

variables
in cd command, 62
undefined, not allowing, 61
variables, environment (see environment
variables)
variables, shell (see shell variables)
version of bash, determining, 74, 254
versions of bash, ix, 4
vertical bar (|)
|| (logical or operator), 112, 118, 149
bitwise or operator, 147
extended pattern matching, 99
in case statement, 129
pipe, 16, 162, 180
vi command, 44
vi editing mode, 36—45
character-finding commands, 43
commands conflicting with terminal
interface control keys, 28
commands for, list of, 302
control mode commands, 37

deletion commands, 40
history list, 41-42
input mode commands, 39
selecting, 28, 61
textual completion, 44
when to use, 53
vi shell option, 61
visible-stats variable, readline, 52
VISUAL environment variable, 75

W

W command, vi, 37,38
w command, vi, 37, 38
-w (file attribute operator), 117
wait command, 215, 290
whence command, 6, 280
whereis command, 6
which command, 6
while statement, 134-136
getopts command used with, 141-142
with read command, 175
whitespace in scripts, 265
who command, 102
wildcard expansion, 12
wildcards
in aliases, 59
in filenames, 10-13
not expanding, 61
word designators, 48
words, in command, 2
working directory, 8,9, 74

X

x command, debugger, 236

X command, vi, 40

x command, vi, 40

-x (file attribute operator), 117

y command, vi, 41

Z

-z (string comparison operator), 114
zero (0) printf flag, 172

zero (0) word designator, 48
zombie processes, 207

zsh shell, 282

Index |

333

About the Authors

Cameron Newham is an information technology developer living in the United
Kingdom. Originally from Australia, Cameron completed a Bachelor of Science
degree in information technology and geography at the University of Western
Australia. In his spare time Cameron can be found working on his project to digi-
tally record buildings of architectural interest in England. He also has more than a
passing interest in a diverse range of subjects including space science, digital
imaging, ecclesiology, and architectural history.

Bill Rosenblatt is the author of the O’Reilly book Learning the Korn Shell; co-author,
with Deb Cameron and Eric Raymond, of Learning GNU Emacs; and a contributor
to UNIX Power Tools. He is a native of Philadelphia. Bill is a market development
manager for media and publishing at Sun Microsystems in New York. He received a
B.S.E. from Princeton University, and an M.S. and A.B.D. from the University of
Massachusetts at Amherst, each in some variant of Computer Science. Bill’s interests
in the computing field include digital libraries, digital intellectual property, and
internet/intranet software development tools. Outside of the computing field, he’s
interested in French cooking, classical music, jazz, and Sherlock Holmes pastiche
novels. Bill lives with his wife, Jessica, on the Upper West Side of Manhattan, in a
location that is strategically close to some of the best food and bookstores anywhere.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Learning the bash Shell, Third Edition, is a silver bass,
one of the 400-500 species of sea bass. The silver bass, also known as the white
perch, is found in freshwater bays and river mouths along the Atlantic coast of North
America from Nova Scotia to South Carolina, and is most abundant in the Chesa-
peake region. Silver bass live in large schools and feed on small fishes and
crustaceans. Although many bass never stray far from one place their whole lives,
silver bass swim upstream to spawn, often becoming landlocked in the process. Like
most bass, the silver bass is attracted to bright, shiny objects, and can be drawn quite
close to swimmers and divers in this way.

Colleen Gorman was the production editor and copyeditor for Learning the bash
Shell, Third Edition. MaryAnne Weeks Mayo, Lydia Onofrei, and Emily Quill
provided quality control. Peter Ryan provided production assistance. Angela Howard
wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover
layout with Adobe InDesign CS using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Judy Hoer to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were created by Chris Reilley and updated for the third edition by Robert Romano,
Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe
Photoshop CS. This colophon was written by Clairemarie Fisher O’Leary.

	Table of Contents
	Preface
	bash Versions
	Summary of bash Features
	Intended Audience
	Code Examples
	Chapter Summary
	Conventions Used in This Handbook
	We’d Like to Hear from You
	Using Code Examples
	Safari Enabled
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition
	Acknowledgments for the Third Edition

	bash Basics
	What Is a Shell?
	Scope of This Book
	History of UNIX Shells
	The Bourne Again Shell
	Features of bash

	Getting bash
	Interactive Shell Use
	Commands, Arguments, and Options

	Files
	Directories
	The working directory
	Tilde notation
	Changing working directories

	Filenames, Wildcards, and Pathname Expansion
	Brace Expansion

	Input and Output
	Standard I/O
	I/O Redirection
	Pipelines

	Background Jobs
	Background I/O
	Background Jobs and Priorities

	Special Characters and Quoting
	Quoting
	Backslash-Escaping
	Quoting Quotation Marks
	Continuing Lines
	Control Keys

	Help

	Command-Line Editing
	Enabling Command-Line Editing
	The History List
	emacs Editing Mode
	Basic Commands
	Word Commands
	Line Commands
	Moving Around in the History List
	Textual Completion
	Miscellaneous Commands

	vi Editing Mode
	Simple Control Mode Commands
	Entering and Changing Text
	Deletion Commands
	Moving Around in the History List
	Character-Finding Commands
	Textual Completion
	Miscellaneous Commands

	The fc Command
	History Expansion
	readline
	The readline Startup File
	readline variables

	Key Bindings Using bind

	Keyboard Habits

	Customizing Your Environment
	The .bash_profile, .bash_logout, and .bashrc Files
	Aliases
	Options
	shopt

	Shell Variables
	Variables and Quoting
	Built-In Variables
	Editing mode variables
	Mail variables
	Prompting variables
	Command search path
	Command hashing
	Directory search path and variables
	Miscellaneous variables

	Customization and Subprocesses
	Environment Variables
	Terminal types
	Other common variables

	The Environment File

	Customization Hints

	Basic Shell Programming
	Shell Scripts and Functions
	Functions

	Shell Variables
	Positional Parameters
	Positional parameters in functions

	Local Variables in Functions
	Quoting with $@ and $*
	More on Variable Syntax

	String Operators
	Syntax of String Operators
	Patterns and Pattern Matching
	Length Operator
	Extended Pattern Matching

	Command Substitution
	Advanced Examples: pushd and popd

	Flow Control
	if/else
	Exit Status
	Return
	Combinations of Exit Statuses
	Condition Tests
	String comparisons
	File attribute checking

	Integer Conditionals

	for
	case
	select
	while and until

	Command-Line Options and Typed Variables
	Command-Line Options
	shift
	Options with Arguments
	getopts

	Typed Variables
	Integer Variables and Arithmetic
	Arithmetic Conditionals
	Arithmetic Variables and Assignment
	Arithmetic for Loops

	Arrays

	Input/Output and Command-Line Processing
	I/O Redirectors
	Here-documents
	File Descriptors

	String I/O
	echo
	Options to echo
	echo escape sequences

	printf
	Additional bash printf specifiers

	read
	Reading lines from files
	I/O redirection and multiple commands
	Command blocks
	Reading user input

	Command-Line Processing
	Quoting
	command, builtin, and enable
	eval

	Process Handling
	Process IDs and Job Numbers
	Job Control
	Foreground and Background
	Suspending a Job

	Signals
	Control-Key Signals
	kill
	ps
	System V
	BSD

	trap
	Traps and Functions
	Process ID Variables and Temporary Files
	Ignoring Signals
	disown
	Resetting Traps

	Coroutines
	wait
	Advantages and Disadvantages of Coroutines
	Parallelization

	Subshells
	Subshell Inheritance
	Nested Subshells

	Process Substitution

	Debugging Shell Programs
	Basic Debugging Aids
	Set Options
	Fake Signals
	EXIT
	ERR
	DEBUG
	RETURN

	Debugging Variables

	A bash Debugger
	Structure of the Debugger
	The driver script
	exec

	The Preamble
	Debugger Functions
	Commands
	Stepping
	Breakpoints
	Break conditions
	Execution tracing
	Debugger limitations

	A Sample bashdb Session
	Exercises

	bash Administration
	Installing bash as the Standard Shell
	POSIX Mode
	Command-Line Options

	Environment Customization
	umask
	ulimit
	Types of Global Customization

	System Security Features
	Restricted Shell
	A System Break-In Scenario
	Privileged Mode

	Shell Scripting
	What’s That Do?
	Comments
	Variables and Constants

	Starting Up
	Potential Problems
	Don’t Use bash

	bash for Your System
	Obtaining bash
	Unpacking the Archive
	What’s in the Archive
	Documentation
	Configuring and Building bash
	Testing bash
	Potential Problems
	Installing bash as a Login Shell
	Examples

	Who Do I Turn to?
	Asking Questions
	Reporting Bugs

	Related Shells
	The Bourne Shell
	The IEEE 1003.2 POSIX Shell Standard
	The Korn Shell
	pdksh
	zsh
	Shell Clones and Unix-like Platforms
	Cygwin
	DJGPP
	MKS Toolkit
	AT&T UWIN

	Reference Lists
	Invocation
	Prompt String Customizations
	Built-In Commands and Reserved Words
	Built-In Shell Variables
	Test Operators
	set Options
	shopt Options
	I/O Redirection
	emacs Mode Commands
	vi Control Mode Commands

	Loadable Built-Ins
	Programmable Completion
	Index

