obs-streamFX/source/obs/gs/gs-vertexbuffer.cpp

377 lines
12 KiB
C++

// AUTOGENERATED COPYRIGHT HEADER START
// Copyright (C) 2017-2023 Michael Fabian 'Xaymar' Dirks <info@xaymar.com>
// Copyright (C) 2022 lainon <GermanAizek@yandex.ru>
// AUTOGENERATED COPYRIGHT HEADER END
#include "gs-vertexbuffer.hpp"
#include "obs/gs/gs-helper.hpp"
#include "warning-disable.hpp"
#include <stdexcept>
#include "warning-enable.hpp"
void streamfx::obs::gs::vertexbuffer::initialize(uint32_t capacity, uint8_t layers)
{
finalize();
if (capacity > MAXIMUM_VERTICES) {
throw std::out_of_range("capacity");
}
if (layers > MAXIMUM_UVW_LAYERS) {
throw std::out_of_range("layers");
}
// Allocate necessary memory for storing information.
_positions = decltype(_positions)(static_cast<decltype(_positions)::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(decltype(_positions)::element_type) * _capacity)), [](decltype(_positions)::element_type* v) { streamfx::util::memory::free_aligned(v); });
_normals = decltype(_normals)(static_cast<decltype(_normals)::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(vec3) * _capacity)), [](vec3* v) { streamfx::util::memory::free_aligned(v); });
_tangents = decltype(_tangents)(static_cast<decltype(_tangents)::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(vec3) * _capacity)), [](vec3* v) { streamfx::util::memory::free_aligned(v); });
_colors = decltype(_colors)(static_cast<decltype(_colors)::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(decltype(_colors)::element_type) * _capacity)), [](decltype(_colors)::element_type* v) { streamfx::util::memory::free_aligned(v); });
if (_layers) {
for (auto i = 0; i < _layers; i++) {
using tn = std::remove_all_extents<decltype(_uvs)>::type;
_uvs[i] = tn(static_cast<tn::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(tn::element_type) * _capacity)), [](tn::element_type* v) { streamfx::util::memory::free_aligned(v); });
}
}
// Allocate memory for data.
_data = std::make_unique<decltype(_data)::element_type>();
_data->num = _capacity;
_data->num_tex = _layers;
_data->points = _positions.get();
_data->normals = _normals.get();
_data->tangents = _tangents.get();
_data->colors = _colors.get();
if (_layers == 0) {
_data->tvarray = nullptr;
} else {
_uv_layers = decltype(_uv_layers)(static_cast<decltype(_uv_layers)::element_type*>(streamfx::util::memory::malloc_aligned(16, sizeof(decltype(_uv_layers)::element_type) * _capacity)), [](decltype(_uv_layers)::element_type* v) { streamfx::util::memory::free_aligned(v); });
_data->tvarray = _uv_layers.get();
for (auto i = 0; i < _layers; i++) {
// This insanity is sponsored by C. It works, get over it.
_uv_layers.get()[i].array = _uvs[i].get();
_uv_layers.get()[i].width = 4;
}
}
// Allocate actual GPU vertex buffer.
{
auto gctx = streamfx::obs::gs::context();
_buffer = decltype(_buffer)(gs_vertexbuffer_create(_data.get(), GS_DYNAMIC | GS_DUP_BUFFER), [](gs_vertbuffer_t* v) {
auto gctx = streamfx::obs::gs::context();
gs_vertexbuffer_destroy(v);
});
_obs_data = gs_vertexbuffer_get_data(_buffer.get());
}
if (!_buffer) {
throw std::runtime_error("Failed to create vertex buffer.");
}
}
void streamfx::obs::gs::vertexbuffer::finalize()
{
// Free data
_positions.reset();
_normals.reset();
_tangents.reset();
_colors.reset();
_uv_layers.reset();
for (std::size_t n = 0; n < _layers; n++) {
_uvs[n].reset();
}
_buffer.reset();
_data.reset();
}
streamfx::obs::gs::vertexbuffer::~vertexbuffer()
{
finalize();
}
streamfx::obs::gs::vertexbuffer::vertexbuffer(uint32_t size, uint8_t layers)
: _capacity(size), _size(size), _layers(layers),
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{
initialize(_size, _layers);
}
streamfx::obs::gs::vertexbuffer::vertexbuffer(gs_vertbuffer_t* vb)
: _capacity(0), _size(0), _layers(0),
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{
auto gctx = streamfx::obs::gs::context();
gs_vb_data* vbd = gs_vertexbuffer_get_data(vb);
if (!vbd)
throw std::runtime_error("vertex buffer with no data");
initialize(static_cast<uint32_t>(vbd->num), static_cast<uint8_t>(vbd->num_tex));
if (_positions && vbd->points)
memcpy(_positions.get(), vbd->points, vbd->num * sizeof(vec3));
if (_normals && vbd->normals)
memcpy(_normals.get(), vbd->normals, vbd->num * sizeof(vec3));
if (_tangents && vbd->tangents)
memcpy(_tangents.get(), vbd->tangents, vbd->num * sizeof(vec3));
if (_colors && vbd->colors)
memcpy(_colors.get(), vbd->colors, vbd->num * sizeof(uint32_t));
if (vbd->tvarray != nullptr) {
for (std::size_t n = 0; n < vbd->num_tex; n++) {
if (vbd->tvarray[n].array != nullptr && vbd->tvarray[n].width <= 4 && vbd->tvarray[n].width > 0) {
if (vbd->tvarray[n].width == 4) {
memcpy(_uvs[n].get(), vbd->tvarray[n].array, vbd->num * sizeof(vec4));
} else if (vbd->tvarray[n].width < 4) {
for (std::size_t idx = 0; idx < _capacity; idx++) {
float* mem = reinterpret_cast<float*>(vbd->tvarray[n].array) + (idx * vbd->tvarray[n].width);
memset(&_uvs[n].get()[idx], 0, sizeof(vec4));
memcpy(&_uvs[n].get()[idx], mem, vbd->tvarray[n].width);
}
}
}
}
}
}
streamfx::obs::gs::vertexbuffer::vertexbuffer(vertexbuffer const& other) : vertexbuffer(other._capacity, other._layers)
{ // Copy Constructor
memcpy(_positions.get(), other._positions.get(), _capacity * sizeof(vec3));
memcpy(_normals.get(), other._normals.get(), _capacity * sizeof(vec3));
memcpy(_tangents.get(), other._tangents.get(), _capacity * sizeof(vec3));
memcpy(_colors.get(), other._colors.get(), _capacity * sizeof(vec3));
for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n].get(), other._uvs[n].get(), _capacity * sizeof(vec4));
}
}
void streamfx::obs::gs::vertexbuffer::operator=(vertexbuffer const& other)
{ // Copy operator
initialize(other._capacity, other._layers);
_size = other._size;
// Copy actual data over.
memcpy(_positions.get(), other._positions.get(), other._capacity * sizeof(vec3));
memcpy(_normals.get(), other._normals.get(), other._capacity * sizeof(vec3));
memcpy(_tangents.get(), other._tangents.get(), other._capacity * sizeof(vec3));
memcpy(_colors.get(), other._colors.get(), other._capacity * sizeof(uint32_t));
memcpy(_uv_layers.get(), other._uv_layers.get(), sizeof(gs_tvertarray));
for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n].get(), other._uvs[n].get(), _capacity * sizeof(vec4));
}
}
streamfx::obs::gs::vertexbuffer::vertexbuffer(vertexbuffer const&& other) noexcept
{ // Move Constructor
_capacity = other._capacity;
_size = other._size;
_layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions;
_normals = other._normals;
_tangents = other._tangents;
_colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n];
}
_obs_data = other._obs_data;
}
void streamfx::obs::gs::vertexbuffer::operator=(vertexbuffer const&& other) noexcept
{ // Move Assignment
finalize();
_capacity = other._capacity;
_size = other._size;
_layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions;
_normals = other._normals;
_tangents = other._tangents;
_colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n];
}
_obs_data = other._obs_data;
}
void streamfx::obs::gs::vertexbuffer::resize(uint32_t size)
{
if (size > _capacity) {
throw std::out_of_range("size larger than capacity");
}
_size = size;
}
uint32_t streamfx::obs::gs::vertexbuffer::size()
{
return _size;
}
uint32_t streamfx::obs::gs::vertexbuffer::capacity()
{
return _capacity;
}
bool streamfx::obs::gs::vertexbuffer::empty()
{
return _size == 0;
}
const streamfx::obs::gs::vertex streamfx::obs::gs::vertexbuffer::at(uint32_t idx)
{
if (idx >= _size) {
throw std::out_of_range("idx out of range");
}
streamfx::obs::gs::vertex vtx(&_positions.get()[idx], &_normals.get()[idx], &_tangents.get()[idx], &_colors.get()[idx], nullptr);
for (std::size_t n = 0; n < _layers; n++) {
vtx.uv[n] = &_uvs[n].get()[idx];
}
return vtx;
}
const streamfx::obs::gs::vertex streamfx::obs::gs::vertexbuffer::operator[](uint32_t const pos)
{
return at(pos);
}
void streamfx::obs::gs::vertexbuffer::set_uv_layers(uint8_t layers)
{
_layers = layers;
}
uint8_t streamfx::obs::gs::vertexbuffer::get_uv_layers()
{
return _layers;
}
vec3* streamfx::obs::gs::vertexbuffer::get_positions()
{
return _positions.get();
}
vec3* streamfx::obs::gs::vertexbuffer::get_normals()
{
return _normals.get();
}
vec3* streamfx::obs::gs::vertexbuffer::get_tangents()
{
return _tangents.get();
}
uint32_t* streamfx::obs::gs::vertexbuffer::get_colors()
{
return _colors.get();
}
vec4* streamfx::obs::gs::vertexbuffer::get_uv_layer(uint8_t idx)
{
if (idx >= _layers) {
throw std::out_of_range("idx out of range");
}
return _uvs[idx].get();
}
gs_vertbuffer_t* streamfx::obs::gs::vertexbuffer::update(bool refreshGPU)
{
if (refreshGPU) {
auto gctx = streamfx::obs::gs::context();
gs_vertexbuffer_flush_direct(_buffer.get(), _data.get());
_obs_data = gs_vertexbuffer_get_data(_buffer.get());
}
return _buffer.get();
}
gs_vertbuffer_t* streamfx::obs::gs::vertexbuffer::update()
{
return update(true);
}
streamfx::obs::gs::vertexbuffer::pool::pool() {}
streamfx::obs::gs::vertexbuffer::pool::~pool() {}
void streamfx::obs::gs::vertexbuffer::pool::release(_underlying* value)
{
cleanup();
std::unique_lock<decltype(_lock)> lock{_lock};
auto key = _key{value->capacity(), value->get_uv_layers()};
auto rvalue = _value{_tracked{value}, std::chrono::high_resolution_clock::now()};
if (auto kv = _pool.find(key); kv != _pool.end()) {
kv->second.push_front(rvalue);
} else {
_pool.emplace(key, std::list{rvalue});
}
}
streamfx::obs::gs::vertexbuffer::pool::_tracked streamfx::obs::gs::vertexbuffer::pool::acquire(uint32_t capacity, uint8_t layers)
{
cleanup();
std::unique_lock<decltype(_lock)> lock{_lock};
_underlying* ptr = nullptr;
if (auto kv = _pool.find(_key{capacity, layers}); kv != _pool.end()) {
// Found an existing list and item.
auto value = kv->second.front();
kv->second.pop_front();
ptr = new streamfx::obs::gs::vertexbuffer(std::move(*value.first.get())); // Move Construction should do the trick
} else {
ptr = new streamfx::obs::gs::vertexbuffer(capacity, layers);
}
return _tracked(ptr, [](_underlying* v) { streamfx::obs::gs::vertexbuffer::pool::instance()->release(v); });
}
void streamfx::obs::gs::vertexbuffer::pool::cleanup()
{
auto time = std::chrono::high_resolution_clock::now();
std::unique_lock<decltype(_lock)> lock{_lock};
for (auto kv : _pool) {
std::erase_if(kv.second, [&time](const auto& value) { return ((time - value.second) > std::chrono::seconds(1)); });
}
std::erase_if(_pool, [](const auto& value) { return value.second.empty(); });
}
std::shared_ptr<streamfx::obs::gs::vertexbuffer::pool> streamfx::obs::gs::vertexbuffer::pool::instance()
{
static std::weak_ptr<streamfx::obs::gs::vertexbuffer::pool> winst;
static std::mutex mtx;
std::unique_lock<decltype(mtx)> lock(mtx);
auto instance = winst.lock();
if (!instance) {
instance = std::shared_ptr<streamfx::obs::gs::vertexbuffer::pool>(new streamfx::obs::gs::vertexbuffer::pool());
winst = instance;
}
return instance;
}
static std::shared_ptr<streamfx::obs::gs::vertexbuffer::pool> loader_instance;
static auto loader = streamfx::component(
"core::gs::vertexbuffer",
[]() { // Initializer
loader_instance = streamfx::obs::gs::vertexbuffer::pool::instance();
},
[]() { // Finalizer
loader_instance.reset();
},
{});