272 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Modern effects for a modern Streamer
 | |
|  * Copyright (C) 2018 Michael Fabian Dirks
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 | |
| */
 | |
| 
 | |
| #pragma once
 | |
| #include <cinttypes>
 | |
| #include <cstddef>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <vector>
 | |
| 
 | |
| extern "C" {
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable : 4201)
 | |
| #endif
 | |
| #include <obs.h>
 | |
| #include <graphics/vec2.h>
 | |
| #include <graphics/vec3.h>
 | |
| #include <graphics/vec4.h>
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Constants
 | |
| #define S_PI 3.1415926535897932384626433832795        // PI = pi
 | |
| #define S_PI2 6.283185307179586476925286766559        // 2PI = 2 * pi
 | |
| #define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
 | |
| #define S_RAD 57.295779513082320876798154814105       // 180/pi
 | |
| #define S_DEG 0.01745329251994329576923690768489      // pi/180
 | |
| #define D_DEG_TO_RAD(x) (x * S_DEG)
 | |
| #define D_RAD_TO_DEG(x) (x * S_RAD)
 | |
| 
 | |
| #define D_STR(s) #s
 | |
| #define D_VSTR(s) D_STR(s)
 | |
| 
 | |
| namespace streamfx::util {
 | |
| 	bool inline are_property_groups_broken()
 | |
| 	{
 | |
| 		return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc);
 | |
| 
 | |
| 	inline bool is_tristate_enabled(int64_t tristate)
 | |
| 	{
 | |
| 		return tristate == 1;
 | |
| 	}
 | |
| 
 | |
| 	inline bool is_tristate_disabled(int64_t tristate)
 | |
| 	{
 | |
| 		return tristate == 0;
 | |
| 	}
 | |
| 
 | |
| 	inline bool is_tristate_default(int64_t tristate)
 | |
| 	{
 | |
| 		return tristate == -1;
 | |
| 	}
 | |
| 
 | |
| 	struct vec2a : public vec2 {
 | |
| 		// 16-byte Aligned version of vec2
 | |
| 		static void* operator new(std::size_t count);
 | |
| 		static void* operator new[](std::size_t count);
 | |
| 		static void  operator delete(void* p);
 | |
| 		static void  operator delete[](void* p);
 | |
| 	};
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	__declspec(align(16))
 | |
| #endif
 | |
| 		struct vec3a : public vec3 {
 | |
| 		// 16-byte Aligned version of vec3
 | |
| 		static void* operator new(std::size_t count);
 | |
| 		static void* operator new[](std::size_t count);
 | |
| 		static void  operator delete(void* p);
 | |
| 		static void  operator delete[](void* p);
 | |
| 	};
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	__declspec(align(16))
 | |
| #endif
 | |
| 		struct vec4a : public vec4 {
 | |
| 		// 16-byte Aligned version of vec4
 | |
| 		static void* operator new(std::size_t count);
 | |
| 		static void* operator new[](std::size_t count);
 | |
| 		static void  operator delete(void* p);
 | |
| 		static void  operator delete[](void* p);
 | |
| 	};
 | |
| 
 | |
| 	std::pair<int64_t, int64_t> size_from_string(std::string text, bool allowSquare = true);
 | |
| 
 | |
| 	namespace math {
 | |
| 		template<typename T>
 | |
| 		inline T pow(T base, T exp)
 | |
| 		{
 | |
| 			T res = 1;
 | |
| 			while (exp) {
 | |
| 				if (exp & 1)
 | |
| 					res *= base;
 | |
| 				exp >>= 1;
 | |
| 				base *= base;
 | |
| 			}
 | |
| 			return res;
 | |
| 		}
 | |
| 
 | |
| 		// Proven by tests to be the fastest implementation on Intel and AMD CPUs.
 | |
| 		// Ranking: log10, loop < bitscan < pow
 | |
| 		// loop and log10 trade blows, usually almost identical.
 | |
| 		// loop is used for integers, log10 for anything else.
 | |
| 		template<typename T>
 | |
| 		inline bool is_power_of_two(T v)
 | |
| 		{
 | |
| 			return T(1ull << uint64_t(floor(log10(T(v)) / log10(2.0)))) == v;
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline bool is_power_of_two_loop(T v)
 | |
| 		{
 | |
| 			bool have_bit = false;
 | |
| 			for (std::size_t index = 0; index < (sizeof(T) * 8); index++) {
 | |
| 				bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
 | |
| 				if (cur) {
 | |
| 					if (have_bit)
 | |
| 						return false;
 | |
| 					have_bit = true;
 | |
| 				}
 | |
| 			}
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| #pragma push_macro("P_IS_POWER_OF_TWO_AS_LOOP")
 | |
| #define P_IS_POWER_OF_TWO_AS_LOOP(x)    \
 | |
| 	template<>                          \
 | |
| 	inline bool is_power_of_two(x v)    \
 | |
| 	{                                   \
 | |
| 		return is_power_of_two_loop(v); \
 | |
| 	}
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(int8_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(uint8_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(int16_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(uint16_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(int32_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(uint32_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(int64_t)
 | |
| 		P_IS_POWER_OF_TWO_AS_LOOP(uint64_t)
 | |
| #undef P_IS_POWER_OF_TWO_AS_LOOP
 | |
| #pragma pop_macro("P_IS_POWER_OF_TWO_AS_LOOP")
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline uint64_t get_power_of_two_exponent_floor(T v)
 | |
| 		{
 | |
| 			return uint64_t(floor(log10(T(v)) / log10(2.0)));
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline uint64_t get_power_of_two_exponent_ceil(T v)
 | |
| 		{
 | |
| 			return uint64_t(ceil(log10(T(v)) / log10(2.0)));
 | |
| 		}
 | |
| 
 | |
| 		template<typename T, typename C>
 | |
| 		inline bool is_equal(T target, C value)
 | |
| 		{
 | |
| 			return (target > (value - std::numeric_limits<T>::epsilon()))
 | |
| 				   && (target < (value + std::numeric_limits<T>::epsilon()));
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline bool is_close(T target, T value, T delta)
 | |
| 		{
 | |
| 			return (target > (value - delta)) && (target < (value + delta));
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline std::vector<T> pascal_triangle(size_t n)
 | |
| 		{
 | |
| 			std::vector<T> line;
 | |
| 			line.push_back(1);
 | |
| 			for (uint64_t k = 0; k < n; k++) {
 | |
| 				T v = static_cast<T>(line.at(k) * static_cast<double_t>(n - k) / static_cast<double_t>(k + 1));
 | |
| 				line.push_back(v);
 | |
| 			}
 | |
| 			return line;
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline T gaussian(T x, T o /*, T u = 0*/)
 | |
| 		{
 | |
| 			// u/µ can be simulated by subtracting that value from x.
 | |
| 			//static const double_t pi            = 3.1415926535897932384626433832795;
 | |
| 			//static const double_t two_pi        = pi * 2.;
 | |
| 			static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
 | |
| 
 | |
| 			if (is_equal<double_t>(0, o)) {
 | |
| 				return T(std::numeric_limits<double_t>::infinity());
 | |
| 			}
 | |
| 
 | |
| 			// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
 | |
| 			double_t left_e      = 1. / (o * two_pi_sqroot);
 | |
| 			double_t mid_right_e = ((x /* - u*/) / o);
 | |
| 			double_t right_e     = -0.5 * mid_right_e * mid_right_e;
 | |
| 			double_t final       = left_e * exp(right_e);
 | |
| 
 | |
| 			return T(final);
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		inline T lerp(T a, T b, double_t v)
 | |
| 		{
 | |
| 			return static_cast<T>((static_cast<double_t>(a) * (1.0 - v)) + (static_cast<double_t>(b) * v));
 | |
| 		}
 | |
| 
 | |
| 		template<typename T>
 | |
| 		class kalman1D {
 | |
| 			T _q_process_noise_covariance;
 | |
| 			T _r_measurement_noise_covariance;
 | |
| 			T _x_value_of_interest;
 | |
| 			T _p_estimation_error_covariance;
 | |
| 			T _k_kalman_gain;
 | |
| 
 | |
| 			public:
 | |
| 			kalman1D()
 | |
| 				: _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0),
 | |
| 				  _p_estimation_error_covariance(0), _k_kalman_gain(0.0)
 | |
| 			{}
 | |
| 			kalman1D(T pnc, T mnc, T eec, T value)
 | |
| 				: _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value),
 | |
| 				  _p_estimation_error_covariance(eec), _k_kalman_gain(0.0)
 | |
| 			{}
 | |
| 			~kalman1D() {}
 | |
| 
 | |
| 			T filter(T measurement)
 | |
| 			{
 | |
| 				_p_estimation_error_covariance += _q_process_noise_covariance;
 | |
| 				_k_kalman_gain =
 | |
| 					_p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance);
 | |
| 				_x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest);
 | |
| 				_p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance;
 | |
| 				return _x_value_of_interest;
 | |
| 			}
 | |
| 
 | |
| 			T get()
 | |
| 			{
 | |
| 				return _x_value_of_interest;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace math
 | |
| 
 | |
| 	inline std::size_t aligned_offset(std::size_t align, std::size_t pos)
 | |
| 	{
 | |
| 		return ((pos / align) + 1) * align;
 | |
| 	}
 | |
| 	void* malloc_aligned(std::size_t align, std::size_t size);
 | |
| 	void  free_aligned(void* mem);
 | |
| } // namespace streamfx::util
 |