81 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| #include "common.effect"
 | |
| 
 | |
| // # Linear Optimization
 | |
| // While the normal way is to sample every texel in the pSize, linear optimization
 | |
| //  takes advantage of the fact that most people, especially after compression,
 | |
| //  will not be able to tell the difference between a linear approximation and
 | |
| //  the actual thing.
 | |
| //
 | |
| // Instead of sampling every texel like this:
 | |
| //
 | |
| //   |Tx|Tx|Tx|Tx|Tx|
 | |
| // Tx|-2|-1| 0|+1|+2|
 | |
| //
 | |
| // Linear optimization will sample like this:
 | |
| //
 | |
| //   |Tx|Tx|Tx|Tx|Tx|
 | |
| // Tx| -1  | 0|  +1 |
 | |
| //
 | |
| // This effectively removes half the necessary samples and looks identical when
 | |
| //  when used with box blur. However there is an edge case when the blur width
 | |
| //  is not a multiple of two, where two additional samples have to be spent on
 | |
| //  reading the outer edge:
 | |
| //
 | |
| //   |Tx|Tx|Tx|Tx|Tx|Tx|Tx|
 | |
| // Tx|-2| -1  | 0|  +1 |+2|
 | |
| //
 | |
| // or this alternative pattern that uses two less samples:
 | |
| //
 | |
| //   |Tx|Tx|Tx|Tx|Tx|Tx|Tx|
 | |
| // Tx|  0  |  +1 |  +2 |+3|
 | |
| //
 | |
| // With careful planning this can even be used for other types of Blur, such as
 | |
| //  Gaussian Blur, which suffers a larger hit - however there are better and
 | |
| //  faster alternatives than linear sampling with Gaussian Blur, such as
 | |
| //  Dual Filtering ("Dual Kawase").
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Defines
 | |
| //------------------------------------------------------------------------------
 | |
| #define MAX_BLUR_SIZE 128u
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Technique: Directional / Area
 | |
| //------------------------------------------------------------------------------
 | |
| float4 PSBlur1D(VertexInformation vtx) : TARGET {
 | |
| 	// y = yes, s = skip, b = break
 | |
| 	// Size-> | 1| 2| 3| 4| 5| 6| 7|
 | |
| 	// -------+--+--+--+--+--+--+--+
 | |
| 	//  n=1   | b| y| y| y| y| y| y|
 | |
| 	//  n=2   |  |bs| s| s| s| s| s|
 | |
| 	//  n=3   |  | b| b| y| y| y| y|
 | |
| 	//  n=4   |  |  |  |bs| s| s| s|
 | |
| 	//  n=5   |  |  |  | b| b| y| y|
 | |
| 	//  n=6   |  |  |  |  |  |bs| s|
 | |
| 	//  n=7   |  |  |  |  |  | b| b|
 | |
| 	//  n=8   |  |  |  |  |  |  |  |
 | |
| 
 | |
| 	float4 final = pImage.Sample(LinearClampSampler, vtx.uv);
 | |
| 	for (uint n = 1u; (n < uint(pSize)) && (n < MAX_BLUR_SIZE); n += 2u) {
 | |
| 		float2 nstep = (pImageTexel * pStepScale) * (float(n) + 0.5);
 | |
| 		final += pImage.Sample(LinearClampSampler, vtx.uv + nstep) * 2.;
 | |
| 		final += pImage.Sample(LinearClampSampler, vtx.uv - nstep) * 2.;
 | |
| 	}
 | |
| 
 | |
| 	if ((uint(pSize) % 2u) == 1u) {
 | |
| 		float2 nstep = (pImageTexel * pStepScale) * pSize;
 | |
| 		final += pImage.Sample(LinearClampSampler, vtx.uv + nstep);
 | |
| 		final += pImage.Sample(LinearClampSampler, vtx.uv - nstep);
 | |
| 	}
 | |
| 
 | |
| 	final *= pSizeInverseMul;
 | |
| 	return final;
 | |
| }
 | |
| 
 | |
| technique Draw {
 | |
| 	pass {
 | |
| 		vertex_shader = VSDefault(vtx);
 | |
| 		pixel_shader  = PSBlur1D(vtx);
 | |
| 	}
 | |
| }
 |